JPH0426862A - Production of magnetic toner - Google Patents

Production of magnetic toner

Info

Publication number
JPH0426862A
JPH0426862A JP2131374A JP13137490A JPH0426862A JP H0426862 A JPH0426862 A JP H0426862A JP 2131374 A JP2131374 A JP 2131374A JP 13137490 A JP13137490 A JP 13137490A JP H0426862 A JPH0426862 A JP H0426862A
Authority
JP
Japan
Prior art keywords
particles
magnetic toner
toner
base particles
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2131374A
Other languages
Japanese (ja)
Inventor
Jiro Aoshima
青島 二郎
Hideo Fujita
秀夫 藤田
Hirohiko Matsui
松井 裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2131374A priority Critical patent/JPH0426862A/en
Publication of JPH0426862A publication Critical patent/JPH0426862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To prevent deterioration of the magnetic toner even due to long-time friction by heat fusing a mixture of a magnetic powder and a binder resin and kneading it, and crushing it to form base particles, mixing conductive particles with them, and exerting external force to firmly attach a number of fine conductive particles to the surfaces of the base particles or to bury them into the surfaces. CONSTITUTION:The fine magnetic toner particles are formed by mixing the binder resin and the magnetic powder in a mixer, kneading the mixture in a kneader, classifying the obtained powder mixture with a sieve or a wind classifier, then, mixing the fine conductive particles with the obtained base particles, exerting compression and friction forces on the obtained mixture to firmly attach the numerous fine conductive particles to the surfaces of the base particles or to bury them into the surface, thus permitting the magnetic toner to be enhanced in rigidity, consequently, sufficiently endure stirring during storage or development, friction during conveyance, and further heat due to friction or heat emission in an apparatus and to maintain the primary form and function of the toner.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電子写真法、静電印刷法、静電記録法などに
おいて形成される静電荷像を現像するための磁性トナー
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a magnetic toner for developing electrostatic images formed in electrophotography, electrostatic printing, electrostatic recording, etc. .

〈従来の技術〉 一般シこ電子写真法は光導電性物質からなる感光体上に
、その光導電性を利用して電気的な潜像を形成し、つい
で該潜像をトナーを用いて現像し、必要に応して紙等の
被転写材にトナー画像を転写した後、加熱、圧力などに
より定着し複写物を得るものである。このための現像剤
のうち、2成分系現像法は比較的安定した良画像の得ら
れる優れた方法であるが、常乙こトナーの帯電量を一定
に保持するためキャリヤーとトナーの混合比を一定にす
る必要がある。しかしながら、該2成分系現像法はコピ
ーの過程でトナーとキャリヤーの混合比が変動するため
常にトナー濃度のコントロールを要し、またキャリヤー
自身が劣化するので耐久性に限界があるという問題を有
する。
<Prior art> In the general electrophotographic method, an electrical latent image is formed on a photoreceptor made of a photoconductive material by utilizing its photoconductivity, and then the latent image is developed using toner. After the toner image is transferred to a transfer material such as paper if necessary, it is fixed by heating, pressure, etc. to obtain a copy. Among the developers for this purpose, the two-component developing method is an excellent method for obtaining relatively stable and good images, but in order to keep the amount of charge of the toner constant, the mixing ratio of carrier and toner must be adjusted. It needs to be constant. However, the two-component developing method has the problem that the mixing ratio of toner and carrier fluctuates during the copying process, requiring constant control of toner concentration, and that the carrier itself deteriorates, resulting in limited durability.

これに対してトナーにキャリヤーの機能を備えた1成分
系現像法はこれらの問題がなく消費しただけのトナーを
補給するだけで、中でも磁性を有するトナー粒子による
現像方法は一定の画像を維持できる点で利点が多い。
On the other hand, one-component development methods, in which the toner has a carrier function, do not have these problems and only replenish the amount of toner that has been consumed.In particular, development methods using magnetic toner particles can maintain a constant image. There are many advantages in this respect.

しかしながら、トナーは潜像面への運搬時に伴う機械的
圧力、あるいは現像系において定着系、駆動系等の発熱
部からの熱に耐えて、その現像特性を変えることなく、
また保存時においてもその性能を維持する必要がある。
However, toner can withstand mechanical pressure during transportation to the latent image surface, or heat from heat generating parts such as the fixing system and drive system in the developing system, without changing its developing characteristics.
It is also necessary to maintain its performance during storage.

かかる磁性トナーは、体積固有抵抗が102〜10”0
口の導電性磁性トナーと、体積固を抵抗が109〜10
14Ω国の絶縁性磁性トナーとに大別される。
Such magnetic toner has a volume resistivity of 102 to 10"0.
The conductive magnetic toner has a volumetric resistance of 109 to 10
It is broadly classified into 14Ω insulating magnetic toner.

従来、このような磁性トナーの製造方法については磁性
粉、結着樹脂、その他必要に応じて添加される添加剤を
所定の割合にトライブレンドし、この混合物をエクスト
ルーダー、ロールミル等を用いて熔融混練せしめ、得ら
れた塊状体をジェットミル等の機械的粉砕手段により粉
砕して、所定の粒径の粒子に分散し、その後ヘンシェル
ミキサー等の混合機によりトナーにカーボンブランク等
を外添して付着させていた。
Conventionally, the method for manufacturing such magnetic toner involves tri-blending magnetic powder, binder resin, and other additives added as necessary in a predetermined ratio, and melting this mixture using an extruder, roll mill, etc. The resulting agglomerates are pulverized by a mechanical pulverizer such as a jet mill to disperse them into particles of a predetermined particle size, and then a carbon blank or the like is externally added to the toner using a mixer such as a Henschel mixer. It was attached.

〈発明が解決しようとする課題〉 しかしながら、従来の技術で製造していた磁性トナーは
、現像槽内における撹拌によって容易に磁性トナーの表
面よりカーボンブラックが離脱し、該カーボンブランク
がコピー紙へ付着してコピー紙の汚れを生しさせていた
。また、カーボンブラックの代わりに酸化チタン、酸化
亜鉛等の白色粉末を表面に付着させた磁性トナーの場合
には、離脱した白色粉末が現像スリーブに付着し、現像
不良を発生させ、また、感光体上にカーボンブラックか
白色粉末が付着する、いわゆるフィルミングを発生させ
ていた。
<Problems to be Solved by the Invention> However, with magnetic toner manufactured using conventional techniques, carbon black easily separates from the surface of the magnetic toner due to stirring in the developer tank, and the carbon blank adheres to copy paper. This caused stains on the copy paper. In addition, in the case of magnetic toner with white powder such as titanium oxide or zinc oxide attached to the surface instead of carbon black, the separated white powder adheres to the developing sleeve, causing development defects and also causing damage to the photoreceptor. This caused so-called filming, where carbon black or white powder adhered to the surface.

これらの問題を解決すべ〈従来の技術では、磁性トナー
の表面にカーボンブランク等を付着させた後、熱気流中
へ磁性トナーを通しカーボンブラック等を固着させる方
法があるが、コストが非常に高く、また高温下で磁性ト
ナーを処理するため粉塵爆発の危険もあった。
To solve these problems, the conventional technology involves attaching a carbon blank, etc. to the surface of magnetic toner, and then passing the magnetic toner through a hot air stream to fix carbon black, etc., but this method is very expensive. Also, since magnetic toner was processed at high temperatures, there was a risk of dust explosion.

本発明の目的は、上述の如き欠点を解決した磁性トナー
を、特に長時間摩擦にも劣化することの少ない磁性トナ
ーを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic toner that overcomes the above-mentioned drawbacks, and in particular, provides a magnetic toner that is less susceptible to deterioration even under long-term friction.

〈問題点を解決するための手段〉 本発明の磁性トナーの製造方法は、まず第1の工程では
、結着樹脂に磁性粉を分散せしめて、母粒子を作成する
工程である。すなわち、後述する結着樹脂と磁性粉とを
ボールミル、V型混合機、S型混合機などの混合機で混
合し、得られた混合物をエクストルーダー、双腕ニーダ
−1三本ロール、コニーダー、加圧ニーグーなどの混練
機で混練し、この混練物をつぎにハンマーミル、ジェッ
トミル、ボールミルなどの粉砕機で粉砕し、得られた粉
末を篩、風力分級機で分級して平均粒径が5〜30μm
の母粒子を得る工程である。
<Means for Solving the Problems> In the method for producing a magnetic toner of the present invention, in the first step, magnetic powder is dispersed in a binder resin to create mother particles. That is, a binder resin and magnetic powder, which will be described later, are mixed in a mixer such as a ball mill, a V-type mixer, or an S-type mixer, and the resulting mixture is passed through an extruder, a double-arm kneader - 1 three rolls, a co-kneader, The mixture is kneaded using a pressurized kneading machine such as a pressurized niegu, and then this kneaded material is pulverized using a pulverizer such as a hammer mill, jet mill, or ball mill, and the resulting powder is classified using a sieve or a wind classifier to determine the average particle size. 5-30μm
This is the process of obtaining mother particles.

上記母粒子には必要に応じて、電荷制御剤、着色剤、流
動性改質剤、定着助剤を添加しても良く、電荷制御剤、
流動性改質剤は磁性トナーに外添してもよい。該電荷制
御剤としては含金属染料、ニグロシン染料等があり、着
色剤としては従来より知られている染料、顔料が使用可
能であり、流動性改質剤としてはコロイダルシリカ、脂
肪酸金属塩等、定着助剤には低分子量ポリプロピレン等
がある。
A charge control agent, a coloring agent, a fluidity modifier, and a fixing aid may be added to the above-mentioned base particles as necessary.
The fluidity modifier may be externally added to the magnetic toner. Examples of the charge control agent include metal-containing dyes and nigrosine dyes. As the coloring agent, conventionally known dyes and pigments can be used. As the fluidity modifier, colloidal silica, fatty acid metal salts, etc. Fixing aids include low molecular weight polypropylene and the like.

体積固有抵抗が102〜10@Ωlの導電性磁性トナー
を作成するためには、母粒子にカーボンブラック等の導
電性物質を含有させればよい。次に第2の工程では、第
1の工程で得られた母粒子と導電性微粒子とを混合し、
該母粒子と導電性微粒子とに圧縮力及び摩擦力を与えて
該母粒子の表面に複数個の導電性微粒子を固着させて磁
性トナーの微粒子を作成する。
In order to produce a conductive magnetic toner having a volume resistivity of 10@2 to 10@Ωl, a conductive substance such as carbon black may be contained in the base particles. Next, in the second step, the base particles obtained in the first step and conductive fine particles are mixed,
A compressive force and a frictional force are applied to the base particles and the conductive fine particles to fix a plurality of conductive fine particles to the surface of the base particles, thereby creating fine particles of magnetic toner.

この際、目的に応して、母粒子に添加する導電性微粒子
の添加量を変化して固着することにより、磁性トナーの
体積固有抵抗がコントロールされた導電性磁性トナーも
しくは絶縁性磁性トナーが得られる。
At this time, by changing the amount of conductive fine particles added to the base particles and fixing them depending on the purpose, conductive magnetic toner or insulating magnetic toner with controlled volume resistivity of the magnetic toner can be obtained. It will be done.

以下、本発明の構成要素について詳述する。Hereinafter, the constituent elements of the present invention will be explained in detail.

i)母粒子について 本発明の構成要素の1つである母粒子は、磁性粉、結着
樹脂その他必要に応じて、電荷制限剤、着色剤、流動性
改質剤、定着助剖にて構成される。
i) About the base particle The base particle, which is one of the constituent elements of the present invention, is composed of magnetic powder, a binder resin, and as necessary, a charge limiting agent, a coloring agent, a fluidity modifier, and a fixing agent. be done.

母粒子を構成する結着樹脂の微粉末については、一般の
熱可塑性樹脂が使用される。結着樹脂としてはポリスチ
レン、ポリp−クロルスチレン、ポリビニルトルエン、
スチレン−pクロルスチレン共重合体、スチレンビニル
トルエン共重合体等のスチレンおよびその置換体の単独
重合体及びそれらの共重合体;スチレン−アクリル酸メ
チル共重合体、スチレン−アクリル酸エチル共重合体、
スチレン−アクリル酸n−ブチル共重合体等のスチレン
とアクリル酸エステルとの共重合体重スチレンーメタク
リル酸メチル共重合体、スチレン−メタクリル酸エチル
共重合体、スチレン−メタクリル酸n−ブチル共重合体
等のスチレンとメタクリル酸エステルとの共重合体;ス
チレンとアクリル酸エステル及びメタクリル酸エステル
との多元共重合体;その他スチレンーアクリロニトリル
共重合体、スチレンビニルメチルエーテル共重合体、ス
チレンブタジェン共重合体、スチレンビニルメチルケト
ン共重合体、スチレンアクリルニトリルインデン共重合
体、スチレン−マレイン酸エステル共重合体等のスチレ
ンと他のビニル系モノマーとのスチレン系共重合体;ポ
リメチルメタクリレート、ポリブチルメタクリレート、
ポリ酢酸ビニルポリエステル、ポリアミド、エポキシ樹
脂、ポリビニルブチラール、ポリアクリル酸フェノール
樹脂、脂肪族又は脂環族炭化水素樹脂、石油樹脂、塩素
化パラフィン、等が単独または混合して使用できる。
As for the fine powder of the binder resin constituting the mother particles, a general thermoplastic resin is used. Binder resins include polystyrene, polyp-chlorostyrene, polyvinyltoluene,
Homopolymers of styrene and its substituted products, such as styrene-p-chlorostyrene copolymers and styrene vinyltoluene copolymers, and copolymers thereof; styrene-methyl acrylate copolymers, styrene-ethyl acrylate copolymers ,
Copolymers of styrene and acrylic esters such as styrene-n-butyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-n-butyl methacrylate copolymer Copolymers of styrene and methacrylic esters such as; multi-component copolymers of styrene and acrylic esters and methacrylic esters; other styrene-acrylonitrile copolymers, styrene vinyl methyl ether copolymers, styrene butadiene copolymers Styrenic copolymers of styrene and other vinyl monomers such as styrene vinyl methyl ketone copolymer, styrene acrylonitrile indene copolymer, styrene-maleic acid ester copolymer; polymethyl methacrylate, polybutyl methacrylate ,
Polyvinyl acetate polyester, polyamide, epoxy resin, polyvinyl butyral, polyacrylic acid phenol resin, aliphatic or alicyclic hydrocarbon resin, petroleum resin, chlorinated paraffin, etc. can be used alone or in combination.

さらには圧力定着方式に供せられるトナー用の結着樹脂
として、低分子ポリエチレン、低分子ポリプロピレン、
エチレン酢酸ビニル共重合体、エチレンアクリル酸エス
テル共重合体、高級脂肪酸、ポリアミド樹脂、ポリエス
テル樹脂等が単独または混合して使用できる。
Furthermore, low molecular polyethylene, low molecular polypropylene,
Ethylene vinyl acetate copolymers, ethylene acrylate copolymers, higher fatty acids, polyamide resins, polyester resins, etc. can be used alone or in combination.

li)[性粉について 磁性粉としては、コバルト、鉄、ニッケル等の金属、ア
ルミニウム、コバルト、銅、鉄、ニッケル、マグネシウ
ム、スズ、亜鉛、金、銀、セレン、チタン、タングステ
ン、ジルコニウム、その他の金属の合金、酸化アルミニ
ウム、酸化鉄、酸化ニッケル等の金属酸化物、強磁性フ
ェライト、マグネタイトまたはその混合物を挙げること
ができる。この磁性粉は、平均粒子径が0.05〜3μ
mのものが好適に使用され、磁性トナー全体に対する割
合は通常10〜90重量%、好ましくは35〜65重量
%である。
li) [About magnetic powders] Magnetic powders include metals such as cobalt, iron, and nickel, aluminum, cobalt, copper, iron, nickel, magnesium, tin, zinc, gold, silver, selenium, titanium, tungsten, zirconium, and other Mention may be made of metal alloys, metal oxides such as aluminum oxide, iron oxide, nickel oxide, ferromagnetic ferrite, magnetite or mixtures thereof. This magnetic powder has an average particle size of 0.05 to 3μ
m is preferably used, and its proportion to the total magnetic toner is usually 10 to 90% by weight, preferably 35 to 65% by weight.

iii )導電性微粒子について 導電性微粒子としては、カーボンブラック、酸化亜鉛、
酸化チタン、酸化スズ、酸化アンチモン、マグネタイト
、フェライト等が挙げられ、この中でも特に磁性トナー
の体積固有抵抗をコントロールしやすいためカーボンブ
ラックが好適に使用される。これらの導電性微粒子は平
均粒子径が0.05〜10μmのものが好適に使用され
る。
iii) About conductive fine particles Conductive fine particles include carbon black, zinc oxide,
Examples include titanium oxide, tin oxide, antimony oxide, magnetite, and ferrite. Among these, carbon black is particularly preferably used because it is easy to control the volume resistivity of the magnetic toner. These conductive fine particles having an average particle diameter of 0.05 to 10 μm are preferably used.

母粒子に対する導電性微粒子の固着量は次の通りである
。すなわち、絶縁性磁性トナーの場合は、母粒子に対し
て0.01〜0.5重量%、好ましくは0.1〜0,2
重量%である。また、導電性磁性トナーの場合は0.0
5〜5重量%であり、好ましくは1〜2重量%である。
The amount of conductive fine particles adhering to the base particles is as follows. That is, in the case of an insulating magnetic toner, the amount is 0.01 to 0.5% by weight, preferably 0.1 to 0.2% by weight based on the base particles.
Weight%. In addition, in the case of conductive magnetic toner, 0.0
It is 5 to 5% by weight, preferably 1 to 2% by weight.

このように母粒子に固着させる導電性微粒子の量によっ
て磁性トナーの体積固有抵抗をコントロールすることが
できる。
In this way, the volume resistivity of the magnetic toner can be controlled by the amount of conductive fine particles fixed to the base particles.

iv)固着について 上記の材料を使って母粒子の表面に導電性粒子を固着さ
せる手段としては、表面改質機として知られる奈良機械
製作所社製の“ナラ・ハイブリダイゼーションシステム
”やホソカワミクロン社製の“オングミル”が好適に使
用しうる。
iv) About fixation As a means of fixing conductive particles to the surface of base particles using the above-mentioned materials, there is a "Nara Hybridization System" made by Nara Kikai Seisakusho Co., Ltd., which is known as a surface modification machine, and a "Nara Hybridization System" made by Hosokawa Micron Co., Ltd., which is known as a surface modification machine. “Ong Mill” can be preferably used.

〈作 用〉 前記の如き混合手段を用いれば、通常母粒子と導電性微
粒子とを両者が実質的に破砕を起こさない状態下で混合
することができ、その際母粒子と導電性微粒子との間に
圧縮力および摩擦力、必要に応じて衝撃力を両粒子間に
与えることができる。
<Function> By using the above-mentioned mixing means, it is possible to mix the base particles and the conductive fine particles in a state where they are not substantially crushed. Compressive force and frictional force can be applied between the two particles, and if necessary, impact force can be applied between the two particles.

このような現象は、混合中母粒子と導電性微粒子とが点
接触し、接触点において圧縮力および摩棒刀、場合によ
り衝撃力が働き、該接触点で一時的に両粒子のうちの少
なくとも一方の粒子の融点以上の熱が瞬時に発生し、融
着による固着現象を生起するためと考えられる。
This phenomenon occurs when the mother particles and conductive fine particles come into point contact during mixing, and compressive force, force, and sometimes impact force are applied at the contact point, and at least one of the two particles temporarily acts at the contact point. This is thought to be because heat exceeding the melting point of one of the particles is instantaneously generated, causing a sticking phenomenon due to fusion.

上述のように、本発明の方法によって得られた磁性トナ
ーは、はぼ球形の母粒子の表面に導電性微粒子が埋め込
まれていることにより、剛性が向上するため、保存中あ
るいは現像のための撹拌あるいは搬送工程における摩擦
、更に摩擦熱および装置から発生する熱によく゛耐え、
トナー本来の形態および機能を維持することができる。
As mentioned above, the magnetic toner obtained by the method of the present invention has conductive fine particles embedded in the surface of the spherical base particles, which improves the rigidity, so it is difficult to use during storage or development. It can withstand friction during stirring or conveyance processes, as well as frictional heat and heat generated from equipment.
The original form and function of the toner can be maintained.

一般に、絶縁性磁性トナーの場合は体積固有抵抗が10
”9口以上なので、現像時に感光体の電荷により誘起さ
れる感光体の電荷とは逆帯電の電荷は現像スリーブより
感光体へ接しているトナー粒子に運ばれるが、この時ト
ナーの電気抵抗が高いため電荷が感光体へ接しているト
ナー粒子まで移をトナー表面に打ち込んであるため、現
像時のようにトナー粒子自体が自由に運動している状態
では、トナー表面の導電性部分がトナー粒子間で接触す
ることによりトナーの見掛は上の電気抵抗が10′3Ω
口以下にまで下がり、電荷が容易に感光体と接している
トナー粒子まで誘起され、現像性悪化を防止できる。ま
た転写時は、感光体上に現像されたトナー粒子は感光体
上では静止状態にあり、トナー粒子どうしの接触がない
ため、トナー粒子表面の導電性部の接触もなく電気抵抗
は10′3Ω■以上である。従って感光体上に現像され
たトナーの電荷が感光体へと移動されずトナーに保持さ
れる。よって転写工程で紙の裏面に付着されたトナーと
は逆の電荷による静電力でトナーを紙に転写されるので
、感光体表面でのトナーの帯電量低下による転写性の悪
化は起こらない。これに反し、導電性微粒子をヘンシェ
ルミキサー等でトナー表面に外添しただけでは、導電性
微粒子はトナー表面から離脱し、カーボンブラックの場
合にはコピー上への地力ブリ、酸化チタン、酸化亜鉛等
の場合には感光体への融着現象が発生する。
Generally, in the case of insulating magnetic toner, the volume resistivity is 10
``Since there are more than 9 ports, the charge opposite to the charge on the photoreceptor induced by the charge on the photoreceptor during development is carried from the developing sleeve to the toner particles in contact with the photoreceptor, but at this time, the electrical resistance of the toner is Because the charge is high, the toner particles that are in contact with the photoreceptor are transferred to the toner surface, so when the toner particles themselves are moving freely, such as during development, the conductive parts of the toner surface are The apparent electrical resistance of the toner is 10'3Ω due to contact between
The charge is easily induced even to the toner particles that are in contact with the photoreceptor, thereby preventing deterioration of developability. Furthermore, during transfer, the toner particles developed on the photoreceptor are in a stationary state on the photoreceptor, and there is no contact between the toner particles, so there is no contact between the conductive parts on the surface of the toner particles, and the electrical resistance is 10'3 Ω. ■That's all. Therefore, the charge of the toner developed on the photoreceptor is not transferred to the photoreceptor but is retained by the toner. Therefore, since the toner is transferred to the paper by electrostatic force due to the opposite charge to that of the toner attached to the back surface of the paper in the transfer process, deterioration of transferability due to a decrease in the amount of charge of the toner on the surface of the photoreceptor does not occur. On the other hand, if conductive fine particles are simply externally added to the toner surface using a Henschel mixer or the like, the conductive fine particles will separate from the toner surface, and in the case of carbon black, they will cause burr, titanium oxide, zinc oxide, etc. on the copy. In this case, a phenomenon of fusion to the photoreceptor occurs.

以下、実施例について詳述する。Examples will be described in detail below.

[導電性磁性トナーの場合] 〈実施例1〉 以上のトナー配合物を加圧ニーダ−で混練りを行い、粉
砕分級により平均粒径15μmの母粒子を得た。
[In the case of conductive magnetic toner] <Example 1> The above toner composition was kneaded in a pressure kneader, and then pulverized and classified to obtain base particles with an average particle size of 15 μm.

次に、奈良機械製作所社製“奈良ハイブリタイザルシス
テム”を使用しカーボンブランク1重量%を母粒子表面
に固着し体積固有抵抗103ΩCの導電性磁性トナーを
得た。
Next, using "Nara Hybridization System" manufactured by Nara Kikai Seisakusho Co., Ltd., 1% by weight of carbon blank was adhered to the surface of the base particles to obtain a conductive magnetic toner having a volume resistivity of 103 ΩC.

〈実施例2〉 実施例1で使用した母粒子に“奈良ハイブリタイザルシ
ステム”を使用し酸化チタン1重量%を母粒子表面に固
着し体積固有抵抗10S性磁性トナーを得た。
<Example 2> 1% by weight of titanium oxide was adhered to the surface of the mother particles used in Example 1 using the "Nara Hybridizer System" to obtain a volume resistivity 10S magnetic toner.

〈実施例3〉 「 マグネタイト(FezO:+) Ω1の導電 (グツドイヤー社製プライオライ ドAC) 以上のトナー配合物を加圧ニーダ−で混練りを行い、粉
砕分級により平均粒径13μmの母粒子を得た。
<Example 3> Magnetite (FezO:+) Conductivity of Ω1 (Prioride AC manufactured by Gutdeyer) The above toner composition was kneaded in a pressure kneader, and base particles with an average particle size of 13 μm were obtained by pulverization and classification. Obtained.

この母粒子に線用ミクロン社製“メカノフュージョン”
を使用しカーボンブラック0.8重量%を母粒子表面に
固着し体積固有抵抗10“0口の導電性磁性トナーを得
た。
This base particle is manufactured by Micron Co., Ltd. “Mechanofusion”
0.8% by weight of carbon black was adhered to the surface of the base particles to obtain a conductive magnetic toner having a volume resistivity of 10"0.

〈比較例1〉 実施例1で得た母粒子にカーボンブラック1重量%を三
井三池社製ヘンシェルミキサーにおいて付着させ、10
3Ω口の体積固有抵抗をもつ導電性磁性トナーを得た。
<Comparative Example 1> 1% by weight of carbon black was attached to the mother particles obtained in Example 1 using a Henschel mixer manufactured by Mitsui Miike Co., Ltd.
A conductive magnetic toner having a volume resistivity of 3Ω was obtained.

く比較例2〉 実施例1で得た母粒子に酸化チタン1重量%を三井三池
社製ヘンシェルミキサーにおいて付着させ、10sQa
nの体積固有抵抗をもつ導電性磁性トナーを得た。
Comparative Example 2> 1% by weight of titanium oxide was attached to the base particles obtained in Example 1 using a Henschel mixer manufactured by Mitsui Miike Co., Ltd., and 10 sQa
A conductive magnetic toner having a volume resistivity of n was obtained.

〈評 価〉 実施例および比較例で得た導電性磁性トナーを市販複写
機“三田工業社製900 D”において実写コピー試験
による評価を行った。なお、実施例3、比較例2のトナ
ーは熱ロール定着用なので900Dでコピー後、定着は
外部熱ロール定着器で行った。
<Evaluation> The conductive magnetic toners obtained in Examples and Comparative Examples were evaluated by a live copy test using a commercially available copying machine "900 D manufactured by Sanda Kogyo Co., Ltd.". The toners of Example 3 and Comparative Example 2 were for hot roll fixing, so after copying with 900D, fixing was performed using an external hot roll fixing device.

その結果を第1表に記載する。この時、画像濃度の測定
には「マクベスデンシトメーター」 (マクベス社)を
用い、カプリ濃度の測定には「ハンター白色度計」 (
日本電色工業)を用いた。
The results are listed in Table 1. At this time, a "Macbeth densitometer" (Macbeth) was used to measure the image density, and a "Hunter brightness meter" (Macbeth) was used to measure the Capri density.
Nippon Denshoku Kogyo) was used.

第1表 以上の結果のように、実施例1〜3の表面改質を行った
導電性磁性トナーは導電炒粉の離脱による地力ブリ、尾
引き、黒へタ部均−性等の画像品質が優れている。一方
、比較例1〜2の表面改質を行わず、単にヘンシェルミ
キサーで導電炒粉を外添したものは、実機での現像時に
導電炒粉の離脱によるコピーの地力ブリ、尾引き、黒ベ
タ部均−性で問題があった。
As shown in the results in Table 1, the conductive magnetic toners subjected to the surface modification of Examples 1 to 3 have poor image quality such as ground braking, tailing, and uniformity of black spots due to the separation of the conductive powder. is excellent. On the other hand, when the surface of Comparative Examples 1 and 2 was not modified and the conductive powder was simply added externally using a Henschel mixer, the conductive powder was detached during development using an actual machine, resulting in blurring, trailing, and black spots on the copy. There was a problem with uniformity.

[絶縁性磁性トナーの場合] 〈実施例4〉 以上のトナー配合物を加圧ニーダ−で混練りを行い、粉
砕分級により平均粒径10μmの母粒子を得た。
[Insulating Magnetic Toner] <Example 4> The above toner composition was kneaded in a pressure kneader, and then pulverized and classified to obtain base particles with an average particle size of 10 μm.

次に、このトナーに奈良機械製作所社製“奈良ハイブリ
タイザーシステム”を使用しカーボンブラック0.2重
量%を母粒子表面に固着し体積固有抵抗10I0Ω口の
絶縁性磁性トナーを得た。
Next, 0.2% by weight of carbon black was fixed to the surface of the base particles using "Nara Hybridizer System" manufactured by Nara Kikai Seisakusho Co., Ltd. to obtain an insulating magnetic toner having a volume resistivity of 10I0Ω.

〈実施例5〉 実施例4で使用した母粒子に奈良機械製作所社製“奈良
ハイブリタイザーシステム”を使用し酸化チタン0.2
重量%を母粒子表面に固着し体積固有抵抗1012Ω口
の絶縁性磁性トナーを得た。
<Example 5> Titanium oxide 0.2 was added to the base particles used in Example 4 using "Nara Hybridizer System" manufactured by Nara Kikai Seisakusho Co., Ltd.
% by weight was fixed on the surface of the base particles to obtain an insulating magnetic toner having a volume resistivity of 1012Ω.

〈実施例6〉 実施例4で使用した母粒子に線用ミクロン社製“メカノ
フュージョン”を使用し、マグネタイト(戸田工業社製
E P −1000)  0.5重量%を母粒子表面に
固着し体積固有抵抗1oIコΩ■の絶縁性磁性トナーを
得た。
<Example 6> For the base particles used in Example 4, "Mechanofusion" manufactured by Line Micron Co., Ltd. was used, and 0.5% by weight of magnetite (EP-1000 manufactured by Toda Kogyo Co., Ltd.) was fixed to the surface of the base particles. An insulating magnetic toner having a volume resistivity of 1 oI Ω■ was obtained.

く比較例3〉 実施例4で得た母粒子をそのまま使用して、体積固有抵
抗1011Ωcmの絶縁性磁性トナーを得た。
Comparative Example 3 Using the base particles obtained in Example 4 as is, an insulating magnetic toner having a volume resistivity of 1011 Ωcm was obtained.

〈比較例4〉 比較例3の母粒子に疎水性シυ力0.2重置%を三井三
池社製ヘンシェルミキサーにおいて付着させ、体積固有
抵抗10”Ω■の絶縁性磁性トナーを得た。
<Comparative Example 4> 0.2% hydrophobic adhesive was applied to the base particles of Comparative Example 3 using a Henschel mixer manufactured by Mitsui Miike Co., Ltd. to obtain an insulating magnetic toner having a volume resistivity of 10''Ω■.

〈比較例5〉 比較例3の母粒子に酸化チタン0.2重量%を三井三池
社製−・ンシェルミキサーにおいて付着させ、体積固有
抵抗1012Ωcmの絶縁性磁性トナーを得た。
<Comparative Example 5> 0.2% by weight of titanium oxide was adhered to the base particles of Comparative Example 3 using a Mitsui Miike Co., Ltd. Nshell mixer to obtain an insulating magnetic toner having a volume resistivity of 1012 Ωcm.

く比較例6〉 比較例3の母粒子にマグネタイト(戸田工業社製E P
 −1000)  0.5重量%を三井三池社製ヘンシ
ェルミキサーにおいて付着させ、体積固有抵抗10”Ω
0の絶縁性磁性トナーを得た。
Comparative Example 6> Magnetite (EP manufactured by Toda Kogyo Co., Ltd.) was used as the base particle of Comparative Example 3.
-1000) was deposited in a Mitsui Miike Henschel mixer to give a volume resistivity of 10"Ω.
0 insulating magnetic toner was obtained.

〈評 価〉 実施例および比較例で得た絶縁性磁性トナーを市販複写
機′コニカ社製U−BIXT”において実写コピー試験
による評価を行った。その結果を第2表に記載する。こ
の時画像濃度の測定には「マクベスデンシトメーター」
 (マクベス社)を用い、カブリ濃度の測定には「ハン
ター白色度計」 (日本電色工業)を用いた。
<Evaluation> The insulating magnetic toners obtained in the Examples and Comparative Examples were evaluated by a live copy test using a commercial copying machine 'U-BIXT manufactured by Konica Corporation'.The results are shown in Table 2. Macbeth densitometer for measuring image density
(Macbeth), and a "Hunter Whiteness Meter" (Nippon Denshoku Kogyo) was used to measure the fog density.

第2゛表 以上の結果のように、実施例4〜6のように導電性微粒
子をトナー粒子表面に固着したトナーは画像濃度、地力
ブリが良好で1万枚連続コピー後でも異常のない良好な
品質が得られた。また、比較例3では画像濃度が悪かっ
た。比較例4〜6では、導電性微粒子の離脱によるコピ
ーの地力ブリ、フィルミングの発生のトラブルが発生し
た。
As shown in the results in Table 2 and above, the toners in which conductive fine particles were fixed to the surface of the toner particles as in Examples 4 to 6 had good image density and ground blur, and showed no abnormality even after continuous copying of 10,000 sheets. Good quality was obtained. Furthermore, in Comparative Example 3, the image density was poor. In Comparative Examples 4 to 6, troubles such as blurring and filming occurred in copies due to detachment of the conductive particles.

〈発明の効果〉 上述のように、本発明の方法によって得られた磁性トナ
ーは、はぼ球形の母粒子の表面に導電性微粉末粒子が、
固着または埋没されることにより、剛性が向上するため
、保存中あるいは現像のための撹拌あるいは搬送工程に
おける摩擦、更に摩擦熱および装置から発生する熱によ
く耐え、トナー本来の形態および機能を維持することが
できる。
<Effects of the Invention> As described above, the magnetic toner obtained by the method of the present invention has conductive fine powder particles on the surface of the spherical base particles.
By fixing or embedding, the toner's rigidity improves, so it can withstand friction during storage or during the stirring or transportation process for development, as well as frictional heat and heat generated from equipment, and maintains the toner's original form and function. be able to.

代理人 弁理士 竹  内   守Agent Patent Attorney Mamoru Takeuchi

Claims (4)

【特許請求の範囲】[Claims] (1)磁性粉および結着樹脂からなる混合物を熱熔融、
混練りした後粉砕して母粒子を作成し、しかる後、該母
粒子に対し導電性微粒子を混合し、得られた混合物に圧
縮力および摩擦力または衝撃力を付与して母粒子の表面
に、複数の導電性微粒子を固着あるいは埋没せしめるこ
とを特徴とする電子写真用磁性トナーの製造方法。
(1) Heat melting a mixture consisting of magnetic powder and binder resin,
After kneading and pulverizing to create base particles, conductive fine particles are mixed with the base particles, and compressive force and frictional force or impact force is applied to the resulting mixture to form a base particle on the surface of the base particle. A method for producing a magnetic toner for electrophotography, which comprises fixing or embedding a plurality of conductive fine particles.
(2)導電性微粒子を、母粒子に対して0.01〜5重
量%固着または埋没させることを特徴とする請求項1記
載の電子写真用磁性トナーの製造方法。
(2) The method for producing a magnetic toner for electrophotography according to claim 1, characterized in that 0.01 to 5% by weight of the conductive fine particles are fixed to or embedded in the base particles.
(3)導電性微粒子を、母粒子に対して0.01〜0.
5重量%固着または埋没させることを特徴とする請求項
1記載の電子写真用絶縁性磁性トナーの製造方法。
(3) Conductive fine particles are added to the base particles by 0.01 to 0.
2. The method for producing an electrophotographic insulating magnetic toner according to claim 1, wherein 5% by weight of the insulating magnetic toner is fixed or buried.
(4)導電性微粒子を、母粒子に対して0.05〜5重
量%固着または埋没させることを特徴とする請求項1記
載の電子写真用導電性磁性トナーの製造方法。
(4) The method for producing a conductive magnetic toner for electrophotography according to claim 1, characterized in that 0.05 to 5% by weight of the conductive fine particles are fixed to or embedded in the base particles.
JP2131374A 1990-05-23 1990-05-23 Production of magnetic toner Pending JPH0426862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131374A JPH0426862A (en) 1990-05-23 1990-05-23 Production of magnetic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131374A JPH0426862A (en) 1990-05-23 1990-05-23 Production of magnetic toner

Publications (1)

Publication Number Publication Date
JPH0426862A true JPH0426862A (en) 1992-01-30

Family

ID=15056449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131374A Pending JPH0426862A (en) 1990-05-23 1990-05-23 Production of magnetic toner

Country Status (1)

Country Link
JP (1) JPH0426862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323658A (en) * 1992-05-19 1993-12-07 Tomoegawa Paper Co Ltd Electrostatic charge image developing toner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394932A (en) * 1977-01-31 1978-08-19 Hitachi Metals Ltd Magnetic toner
JPS5528032A (en) * 1978-08-18 1980-02-28 Hitachi Metals Ltd Electrostatic transfer type magnetic toner and production thereof
JPS5596960A (en) * 1979-01-17 1980-07-23 Hitachi Metals Ltd Magnetic toner
JPH0293544A (en) * 1988-09-30 1990-04-04 Asahi Chem Ind Co Ltd Magnetic toner and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394932A (en) * 1977-01-31 1978-08-19 Hitachi Metals Ltd Magnetic toner
JPS5528032A (en) * 1978-08-18 1980-02-28 Hitachi Metals Ltd Electrostatic transfer type magnetic toner and production thereof
JPS5596960A (en) * 1979-01-17 1980-07-23 Hitachi Metals Ltd Magnetic toner
JPH0293544A (en) * 1988-09-30 1990-04-04 Asahi Chem Ind Co Ltd Magnetic toner and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323658A (en) * 1992-05-19 1993-12-07 Tomoegawa Paper Co Ltd Electrostatic charge image developing toner

Similar Documents

Publication Publication Date Title
JP3282015B2 (en) Image forming method
JP2568244B2 (en) Image forming method
JP3025694B2 (en) Electrophotographic developer and manufacturing method thereof
JPH0426862A (en) Production of magnetic toner
JP3131753B2 (en) Magnetic toner and image forming method
JP3309294B2 (en) Electrophotographic developer and manufacturing method thereof
JPH0656508B2 (en) Positive friction charging toner for electrostatic image development
JP3485861B2 (en) Magnetic one-component developer and developing method thereof
JPH1039537A (en) Electrophotographic toner and its production
JP2626838B2 (en) Electrophotographic developer
JPS6142665A (en) One component type insulating magnetic toner
JP2683981B2 (en) Electrophotographic developer
JP2650731B2 (en) Electrostatic image development method
JP3486712B2 (en) Dry two-component developer
JPH10301319A (en) Magnetic developer and image forming method using the same
JPS59137957A (en) Electrostatic charge image developing magnetic toner
JPH03264961A (en) Electrostatic charge image developing toner
JP2002244339A (en) Electrostatic charge image developing toner
JPH0764322A (en) Magnetic toner
JP3135312B2 (en) Magnetic toner
JP3242030B2 (en) Color toner
JPH10260546A (en) Electrostatic charge image developing toner
JPH0973188A (en) Electrostatic charge image developing toner
JPS6187162A (en) Formation of image
JPH1138672A (en) Magnetic one-component toner matrix particles and magnetic one-component toner