JPH04268404A - Measuring apparatus for displacement and measuring apparatus for geometry - Google Patents

Measuring apparatus for displacement and measuring apparatus for geometry

Info

Publication number
JPH04268404A
JPH04268404A JP2881291A JP2881291A JPH04268404A JP H04268404 A JPH04268404 A JP H04268404A JP 2881291 A JP2881291 A JP 2881291A JP 2881291 A JP2881291 A JP 2881291A JP H04268404 A JPH04268404 A JP H04268404A
Authority
JP
Japan
Prior art keywords
light
measured
lens
light beam
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2881291A
Other languages
Japanese (ja)
Inventor
Kuniyuki Yoshikawa
吉川 邦幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2881291A priority Critical patent/JPH04268404A/en
Publication of JPH04268404A publication Critical patent/JPH04268404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To obtain a measuring apparatus for displacement having a small observation angle made by a light transmission axis and a light reception axis for measuring a distance to a surface to be measured and obtain a measuring apparatus for geometry for measuring the geometry of the surface to be measured. CONSTITUTION:A light transmission/reception lens 24 transmits an incident light beam to a surface 34 to be measured and condenses the reflected light from the surface 34 to be measured. A light spot of the surface 34 condensed by the light transmission/reception lens 24 is applied to a one-dimensional CCD sensor 28, and a signal according to a position of an image point is input to an arithmetic circuit 32. Thus an observation angle made by a light transmission system and a light reception system is not unnecessarily large, so that a distance to the surface to be measured and geometry of an object to be measured can be measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、変位測定装置にかかり
、特に、光ビームを被測定面に送光し被測定面からの反
射光を受光することにより被測定面までの距離を測定す
る変位測定装置および被測定面の形状を測定する形状測
定装置に関する。
[Industrial Application Field] The present invention relates to a displacement measuring device, and in particular, measures the distance to a measured surface by transmitting a light beam to the measured surface and receiving reflected light from the measured surface. The present invention relates to a displacement measuring device and a shape measuring device that measures the shape of a surface to be measured.

【0002】0002

【従来の技術】従来より、非接触にて被測定面の凸凹部
等の変位を測定する三角測量法等を用いた変位測定装置
が知られている(特公昭50−36374号公報、特願
昭56−138204号公報、特願昭57−22508
号公報、特願昭58−52508号公報等)。
[Prior Art] Displacement measuring devices that use triangulation methods, etc. to measure the displacement of irregularities, etc. on a surface to be measured in a non-contact manner have been known (Japanese Patent Publication No. 50-36374, Patent Application Publication No. 56-138204, patent application No. 57-22508
(Japanese Patent Application No. 58-52508, etc.).

【0003】かかる変位測定装置は、図6に示すように
、光源50、コリメートレンズ52および送光レンズ5
4を備えた送光光学系、受光レンズ56および位置検出
センサ58を備えた受光光学系を備えている。この変位
測定装置によれば、光源50の光がコリメートレンズ5
2により集光されて射出される。コリメートレンズ52
から射出された光ビームは送光レンズ54に照射されて
、送光レンズ54の射出光が被測定面60へ照射される
。そして、この被測定面60からの反射光は受光レンズ
56により集光されて、位置検出センサ58へ照射され
る。これにより、この位置検出センサ58上には、被測
定面60に照射された光点の像が照射される。この位置
検出センサ58は像点の位置に応じた電気信号を出力す
る。一方、上記受光光学系の光軸は送光光学系の光軸と
所定の角度θをもって取り付けられている。このため、
被測定面60が送光光学系の光軸方向に変位したときに
は、被測定面60上の光点の位置が、図6に示すように
点P1 から点P2 または点P3 へ変化することに
なり、位置検出センサ58上での像点位置は、図6に示
すように点Q1 から点Q2 または点Q3 へ移動す
る。このように、被測定面上の光点の位置は、受光光学
系の光軸と交差する方向に変化すると、位置検出センサ
58上の像点の位置は受光光学系の光軸と直交する方向
に変化する。
As shown in FIG. 6, such a displacement measuring device includes a light source 50, a collimating lens 52, and a light transmitting lens 5.
4, a light receiving optical system including a light receiving lens 56, and a position detection sensor 58. According to this displacement measuring device, the light from the light source 50 is transmitted to the collimating lens 5.
2, the light is focused and emitted. Collimator lens 52
The light beam emitted from the light beam is irradiated onto the light transmitting lens 54, and the light emitted from the light transmitting lens 54 is irradiated onto the surface to be measured 60. The reflected light from the surface to be measured 60 is collected by the light receiving lens 56 and irradiated onto the position detection sensor 58. As a result, the position detection sensor 58 is irradiated with an image of the light spot irradiated onto the surface to be measured 60 . This position detection sensor 58 outputs an electrical signal according to the position of the image point. On the other hand, the optical axis of the light-receiving optical system is attached at a predetermined angle θ with respect to the optical axis of the light-transmitting optical system. For this reason,
When the surface to be measured 60 is displaced in the optical axis direction of the light transmission optical system, the position of the light spot on the surface to be measured 60 changes from point P1 to point P2 or point P3 as shown in FIG. , the image point position on the position detection sensor 58 moves from point Q1 to point Q2 or point Q3 as shown in FIG. In this way, when the position of the light spot on the surface to be measured changes in the direction intersecting the optical axis of the light receiving optical system, the position of the image point on the position detection sensor 58 changes in the direction perpendicular to the optical axis of the light receiving optical system. Changes to

【0004】したがって、被測定面の基準位置からの変
位に応じて位置検出センサ58上に像点の変位となって
表れるので、位置検出センサ58上の像点位置に応じて
出力される信号と予め設定された基準の光点位置の出力
信号とにより偏差量等を求めて、被測定面の変位を求め
ている。
Therefore, since the displacement of the image point on the position detection sensor 58 appears as a displacement of the image point in accordance with the displacement of the surface to be measured from the reference position, the signal output in accordance with the position of the image point on the position detection sensor 58 and The displacement of the surface to be measured is determined by determining the amount of deviation and the like based on the output signal of the preset reference light spot position.

【0005】なお、上記の光ビームを1次元方向に連続
的なスリット状の光で被測定面へ照射することにより、
光切断の方法による表面形状等を測定することも行われ
ている。
[0005] By irradiating the above-mentioned light beam in the form of a continuous slit in a one-dimensional direction onto the surface to be measured,
Measurement of surface shape and the like using a method of optical cutting is also being carried out.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
三角測量法による変位測定装置では、図6に示したよう
に送光レンズと受光レンズを用いて送光系と受光系とが
離れて配置されているために、観察角θは大きくなり、
凹部の測定時には、被測定面自体の周囲の壁面により受
光系の光路が遮断され測定できないことがある。この測
定可能深さHは、数1に示すように
[Problems to be Solved by the Invention] However, in the conventional displacement measuring device using the triangulation method, the light transmitting system and the light receiving system are arranged separately using a light transmitting lens and a light receiving lens, as shown in FIG. Therefore, the observation angle θ becomes large,
When measuring a concave portion, the optical path of the light receiving system may be blocked by the wall surface around the surface to be measured itself, making measurement impossible. This measurable depth H is as shown in equation 1.

【0007】[0007]

【数1】[Math 1]

【0008】但し、H  :測定可能深さL  :測定
時に必要な凹部の最大半径または長さθa :送光系と
受光レンズ最外周との成す角度のうち最小の角度 となる。
However, H: Measurable depth L: Maximum radius or length of the recess necessary for measurement θa: Minimum angle between the light transmitting system and the outermost periphery of the light receiving lens.

【0009】ここで、より深い凹部における測定を行う
ためには、送光系および受光系の各々のレンズを小径に
する等、送光系および受光系の位置関係を変更し、送光
系の光軸と受光系の光軸との成す観察角θが小さな角度
になるようにしなければならない。
[0009] In order to perform measurements in deeper recesses, the positional relationship between the light transmitting system and the light receiving system is changed, such as by reducing the diameter of each lens in the light transmitting system and the light receiving system. The observation angle θ formed between the optical axis and the optical axis of the light receiving system must be made small.

【0010】一方、得られる変位信号のレベルはレンズ
の口径に対する依存度が高く、所定値以上のレンズの口
径にする必要がある。すなわち、送光系および受光系の
レンズ口径を小さくすると、センサ上に照射された像点
の光量が小さくなるため、得られる変位信号のS/N、
分解能および安定性等は悪化してしまう。このように、
上記の変位信号を適正な状態に維持するため、レンズの
口径が決定され、また、レンズを保持するホルダ等の保
持金具等の大きさが決められる。このため、送光系の有
効径および受光系の有効径の大きさは制限され、送光系
の光軸と受光系の光軸との成す観察角θは、小さくする
ことができず、凹部の深さにより、受光できない領域が
発生してしまう、という問題点がある。
On the other hand, the level of the displacement signal obtained is highly dependent on the aperture of the lens, and it is necessary to set the aperture of the lens to a predetermined value or more. In other words, when the lens apertures of the light transmitting system and the light receiving system are made smaller, the amount of light at the image point irradiated onto the sensor becomes smaller, so the S/N of the obtained displacement signal,
Resolution, stability, etc. will deteriorate. in this way,
In order to maintain the above displacement signal in an appropriate state, the aperture of the lens is determined, and the size of a holding fitting such as a holder for holding the lens is determined. For this reason, the sizes of the effective diameter of the light transmitting system and the effective diameter of the light receiving system are limited, and the observation angle θ formed by the optical axis of the light transmitting system and the optical axis of the light receiving system cannot be made small. There is a problem in that there are areas where light cannot be received depending on the depth.

【0011】本発明は、上記問題を解決すべく成された
もので、送光軸と受光軸との成す観察角を小さくし、測
定可能領域を増加させて、被測定面までの距離を測定す
る変位測定装置及び被測定面の形状を測定する形状測定
装置の提供を目的とする。
The present invention has been made to solve the above problem, and it is possible to measure the distance to the surface to be measured by reducing the observation angle formed by the light transmitting axis and the light receiving axis, increasing the measurable area. The present invention aims to provide a displacement measuring device for measuring the shape of a surface to be measured, and a shape measuring device for measuring the shape of a surface to be measured.

【0012】0012

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、変位測定装置において、光ビーム
を照射する光源と、前記光源から照射された光ビームを
被測定面へ送光して照明すると共に被測定面の照明部の
像を結像する単一の集光レンズと、前記集光レンズの結
像側に配設されると共に照射された光ビームの位置に応
じた信号を出力する位置検出手段とを備えている。
Means for Solving the Problems In order to achieve the above object, the invention of claim 1 provides a displacement measuring device that includes a light source that irradiates a light beam, and a light beam that is irradiated from the light source and that sends the light beam to a surface to be measured. a single condensing lens that illuminates with light and forms an image of the illuminated portion of the surface to be measured; and position detection means for outputting a signal.

【0013】請求項2の発明は、形状測定装置において
、光ビームを照射する光源と、前記光源から照射された
光ビームを被測定面へ送光して照明すると共に被測定面
の照明部の像を結像する単一の集光レンズと、入射され
た光ビームを一方向にのみ発散して光ビームを被測定面
へスリット状の光として照射する発散手段と、前記集光
レンズの結像側に配設されると共に照射された光ビーム
の位置に応じた信号を出力する位置検出手段とを備えて
いる。
[0013] According to a second aspect of the invention, in the shape measuring apparatus, there is provided a light source for emitting a light beam, and a light beam emitted from the light source is transmitted to and illuminates a surface to be measured, and an illumination portion of the surface to be measured is illuminated. A single condensing lens that forms an image, a diverging means that diverges an incident light beam in only one direction and irradiates the light beam as a slit-shaped light onto a surface to be measured, and a condenser of the condensing lens. A position detecting means is provided on the image side and outputs a signal according to the position of the irradiated light beam.

【0014】[0014]

【作用】請求項1の発明は、光ビームを被測定面へ送光
して照明することと被測定面からの照明部の像を結像す
ることとを単一の集光レンズにより行っている。また、
前記集光レンズの結像側には位置検出手段が配設されて
いる。この位置検出手段は、照射された光ビームの位置
に応じた信号を出力する。
[Operation] According to the invention of claim 1, a single condensing lens is used to transmit a light beam to a surface to be measured for illumination and to form an image of the illumination portion from the surface to be measured. There is. Also,
A position detection means is provided on the imaging side of the condenser lens. This position detection means outputs a signal according to the position of the irradiated light beam.

【0015】請求項2の発明は、光ビームを被測定面へ
送光して照明することと被測定面からの照明部の像を結
像することとを単一の集光レンズにより行っている。発
散手段は、入射された光ビームを一方向にのみ発散して
光ビームを被測定面へスリット状の光として照射する。 また、前記集光レンズの結像側には位置検出手段が配設
されている。この位置検出手段は、照射された光ビーム
の位置に応じた信号を出力する。
According to the second aspect of the invention, a single condensing lens is used to transmit the light beam to the surface to be measured for illumination and to form an image of the illumination portion from the surface to be measured. There is. The diverging means diverges the incident light beam in only one direction and irradiates the measured surface with the light beam as a slit-shaped light. Further, a position detecting means is provided on the image forming side of the condensing lens. This position detection means outputs a signal according to the position of the irradiated light beam.

【0016】このように、被測定面への送光および被測
定面の照明部の結像を単一の集光レンズにより行ってい
るので、送光系と受光系との成す観察角を小さくするこ
とができる。このため、測定可能領域を増加させて、被
測定面の変位、被測定面の形状を測定することができる
In this way, since the light transmission to the surface to be measured and the imaging of the illumination part of the surface to be measured are performed by a single condensing lens, the observation angle formed by the light transmission system and the light reception system can be made small. can do. Therefore, it is possible to increase the measurable area and measure the displacement of the surface to be measured and the shape of the surface to be measured.

【0017】[0017]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0018】第1実施例は、本発明を変位測定装置10
を示すものである。図1に示すように、半導体レーザで
構成された光源20は図示しない変位測定装置10の筐
体に取り付けられており、光源20から射出された光ビ
ームはコリメートレンズ22により集光される。コリメ
ートレンズ22の射出側には送受光レンズ24が配設さ
れており、コリメートレンズ22から射出される小径の
光ビームが、送受光レンズ24の周辺部へ照射される。 送受光レンズ24の射出側には被測定面34が設置され
ており、送受光レンズ24から射出される光ビームは、
被測定面34へ照射され被測定面34上に光点Aを形成
する。
In the first embodiment, the present invention is applied to a displacement measuring device 10.
This shows that. As shown in FIG. 1, a light source 20 composed of a semiconductor laser is attached to a housing of a displacement measuring device 10 (not shown), and a light beam emitted from the light source 20 is focused by a collimating lens 22. A light transmitting/receiving lens 24 is disposed on the exit side of the collimating lens 22, and a small diameter light beam emitted from the collimating lens 22 is irradiated onto the periphery of the transmitting/receiving lens 24. A surface to be measured 34 is installed on the emission side of the light transmitting/receiving lens 24, and the light beam emitted from the light transmitting/receiving lens 24 is
The light is irradiated onto the surface to be measured 34 to form a light spot A on the surface to be measured 34 .

【0019】被測定面34上に照射された小径の光点は
、送受光レンズ24により集光される。この送受光レン
ズ24の結像側には、1次元リニヤセンサ28が配設さ
れている。この1次元リニヤセンサ28は、送受光レン
ズ24から予め定められた所定の間隔を隔てた位置に配
置されかつ受光面が、送受光レンズ24の光軸と垂直に
なるように、変位測定装置10の筐体に取り付けられて
おり、像点の位置に応じた電気信号を出力する。また、
1次元リニヤセンサ28は演算回路32に接続されてい
る。
The small-diameter light spot irradiated onto the surface to be measured 34 is focused by the light transmitting/receiving lens 24. A one-dimensional linear sensor 28 is disposed on the imaging side of the light transmitting/receiving lens 24. The one-dimensional linear sensor 28 is arranged at a predetermined distance from the light transmitting/receiving lens 24 and is attached to the displacement measuring device 10 so that the light receiving surface is perpendicular to the optical axis of the light transmitting/receiving lens 24. It is attached to the housing and outputs an electrical signal depending on the position of the image point. Also,
The one-dimensional linear sensor 28 is connected to an arithmetic circuit 32.

【0020】以下、第1実施例の作用について説明する
。コリメートレンズ22により集光された光ビームは、
送受光レンズ24の中心軸L1からhの間隔を隔てた部
位に入射される。送受光レンズ24から射出された光ビ
ームは、前記中心軸L1とαの角度を成して被測定面3
4に照射され、被測定面34に光点Aが形成される。こ
の光点Aは、送受光レンズ24により集光されて、1次
元リニヤセンサ28上には像点が形成される。 この像点の中心部は前記中心軸L1とSxの間隔を隔て
た位置に成る。
The operation of the first embodiment will be explained below. The light beam focused by the collimating lens 22 is
The light is incident on a portion of the light transmitting/receiving lens 24 separated by a distance h from the central axis L1. The light beam emitted from the transmitting/receiving lens 24 forms an angle α with the central axis L1 and reaches the surface to be measured 3.
4, and a light spot A is formed on the surface to be measured 34. This light spot A is focused by the light transmitting/receiving lens 24, and an image point is formed on the one-dimensional linear sensor 28. The center of this image point is located at a distance between the central axis L1 and Sx.

【0021】ここで、本実施例の1次元リニヤセンサ2
8が送受光レンズ24の結像位置に設置された場合の結
像関係について、図5を参照して説明する。射出角度α
および入射高さhと光ビームが輝く位置との関係は、数
2に示すように、
Here, the one-dimensional linear sensor 2 of this embodiment
8 is installed at the imaging position of the light transmitting/receiving lens 24, the imaging relationship will be described with reference to FIG. Injection angle α
And the relationship between the incident height h and the position where the light beam shines is as shown in Equation 2,

【0022】[0022]

【数2】[Math 2]

【0023】但し、h  :送受光レンズ24の中心軸
からの光ビームの入射高さ X  :送受光レンズ24の中心軸からの被測定面の光
点位置までのX軸方向の距離 α  :送受光レンズ24の中心軸と送受光レンズ24
から被測定面へ射出される光ビーム光軸との成す角度と
表せる。また、結像倍率(横倍率)mは、ニュートンの
公式を用ると数3に示すように、
However, h: Incident height of the light beam from the central axis of the transmitting/receiving lens 24 X: Distance in the X-axis direction from the central axis of the transmitting/receiving lens 24 to the light spot position on the surface to be measured α: Transmission height The central axis of the light receiving lens 24 and the light transmitting/receiving lens 24
It can be expressed as the angle formed by the optical axis of the light beam emitted from the surface to the surface to be measured. Also, the imaging magnification (lateral magnification) m is as shown in Equation 3 using Newton's formula:

【0024】[0024]

【数3】[Math 3]

【0025】但し、m  :結像倍率(横倍率)f  
:送受光レンズ24の焦点距離 Sx :被測定面の光点のX軸方向の像高Z  :送受
光レンズ24から被測定面の光点位置までの距離 b  :送受光レンズ24から被測定面の像点位置まで
の距離 となる。
[0025] However, m: imaging magnification (lateral magnification) f
: Focal length Sx of the transmitting/receiving lens 24 : Image height Z in the X-axis direction of the light spot on the surface to be measured : Distance b from the transmitting/receiving lens 24 to the position of the light spot on the surface to be measured : From the transmitting/receiving lens 24 to the surface to be measured is the distance to the image point position.

【0026】このため、結像位置に1次元リニヤセンサ
28が配設され、得られる電気信号によりSx の距離
が検出されると、上記数2および数3により、以下の数
4に示すように被測定面までの距離Zが、求められる。
For this reason, when the one-dimensional linear sensor 28 is disposed at the image forming position and the distance of Sx is detected from the obtained electric signal, from the above equations 2 and 3, the received signal is calculated as shown in the following equation 4. The distance Z to the measurement surface is determined.

【0027】[0027]

【数4】[Math 4]

【0028】同様に、上記数2および数3を用いること
により送受光レンズ24の中心軸からの被測定面の光点
位置までのX軸方向の距離Xが求められる。
Similarly, by using Equations 2 and 3 above, the distance X in the X-axis direction from the central axis of the light transmitting/receiving lens 24 to the position of the light spot on the surface to be measured can be determined.

【0029】上記の距離Xおよび距離Zは、被測定面の
光点が結像される結像位置に1次元リニヤセンサ28を
配設した場合について説明したが、ここで、1次元リニ
ヤセンサ28が配設された検出面Kを固定して被測定面
の光点が光軸方向に変位した場合について説明する。
The above distances X and Z have been explained for the case where the one-dimensional linear sensor 28 is arranged at the imaging position where the light spot on the surface to be measured is formed. A case will be described in which the installed detection surface K is fixed and the light spot on the surface to be measured is displaced in the optical axis direction.

【0030】被測定面の光点位置が、図8に示すように
、結像点が検出面K上にある光点位置A1 より光軸方
向へ送受光レンズ24から離れた光点位置A2 、A3
 へ変位した場合には、光点位置A2 、A3 の像は
検出面Kから離れた位置K2 、K3 に結像される。 このとき、結像点K1 、K2 、K3 は、測定範囲
が余り大きくなければ、ほぼ直線上に位置する。
As shown in FIG. 8, the light spot position on the surface to be measured is from the light spot position A1 where the imaging point is on the detection surface K to the light spot position A2 which is further away from the light transmitting/receiving lens 24 in the optical axis direction. A3
When the light spot positions A2 and A3 are displaced to , the images of the light spot positions A2 and A3 are formed at positions K2 and K3 distant from the detection surface K. At this time, the imaging points K1, K2, and K3 are located approximately on a straight line unless the measurement range is too large.

【0031】したがって、1次元リニアセンサにあおり
をつけることにより光点位置が変化して結像位置が変化
した場合でも、常にセンサ上に結像させることができる
。したがって、測定位置が変化しても、数4によりSX
 はセンサ上の位置より求めることができるために、距
離を計算できる。
Therefore, even if the position of the light spot changes and the image formation position changes by tilting the one-dimensional linear sensor, the image can always be formed on the sensor. Therefore, even if the measurement position changes, SX
can be determined from the position on the sensor, so the distance can be calculated.

【0032】[0032]

【数5】[Math 5]

【0033】[0033]

【数6】[Math 6]

【0034】これにより、本実施例の変位測定装置10
では、数5および数6を用いて、1次元リニヤセンサ2
8の出力より、基準位置からの変位量から被測定面まで
の距離Zが算出される。
[0034] As a result, the displacement measuring device 10 of this embodiment
Now, using Equation 5 and Equation 6, one-dimensional linear sensor 2
From the output of step 8, the distance Z from the amount of displacement from the reference position to the surface to be measured is calculated.

【0035】以上説明したように、1つのレンズ系にて
送受光が共に行われるので、送受光系の相互干渉等の影
響を受けることなく、送光軸または受光軸の成す観察角
αを小さくすることができる。このため、凹部の深さ測
定等の場合には、被測定面までの入射角度を小さな角度
にできるため、被測定面自身による光軸の遮断領域部分
を少なくなることにより、測定可能領域が増加して、被
測定面までのより深い距離を測定することができる。
As explained above, since both light transmission and reception are carried out in one lens system, the observation angle α formed by the light transmission axis or the light reception axis can be made small without being affected by mutual interference between the light transmission and reception systems. can do. Therefore, when measuring the depth of a recess, etc., the angle of incidence to the surface to be measured can be made small, which increases the measurable area by reducing the area where the optical axis is blocked by the surface to be measured. By doing so, it is possible to measure a deeper distance to the surface to be measured.

【0036】上記第1実施例は、被測定面までの距離を
測定するものであるが、以下に述べる第2実施例は本発
明を断面形状測定装置12に適用したものである。この
第2実施例では、第1実施例の光点を被測定面に照射し
たのに対して、ロッドレンズ26により、光ビームをス
リット状に形成して被測定面へ照射したものである。ま
た、第2実施例は、第1実施例と略同様の構成であるの
で、同一部分には略号を付して詳細な説明は省略する。
The first embodiment described above measures the distance to the surface to be measured, but the second embodiment described below applies the present invention to the cross-sectional shape measuring device 12. In this second embodiment, whereas the light spot of the first embodiment was irradiated onto the surface to be measured, a light beam is formed into a slit shape using the rod lens 26 and is irradiated onto the surface to be measured. Furthermore, since the second embodiment has substantially the same configuration as the first embodiment, the same parts are given abbreviations and detailed explanations are omitted.

【0037】図2に示すように、半導体レーザで構成さ
れた光源20は図示しない断面形状測定装置12の筐体
に取り付けられており、光源20から射出される光ビー
ムはコリメートレンズ22により集光される。コリメー
トレンズ22の射出側には送受光レンズ24が配設され
ており、コリメートレンズ22から射出された小径の光
ビームは、送受光レンズ24に照射される。送受光レン
ズ24の射出側には円柱形状のロッドレンズ26が配設
されており、入射される光ビームをスリット状に発散し
て射出する。また、このロッドレンズ26は、発散方向
がX軸およびZ軸方向と直交するY軸方向になるように
取り付けられている。ロッドレンズ26の射出側には被
測定面34が設置されており、ロッドレンズ26から射
出されるスリット状の光ビームは、被測定面34へ照射
される。すなわち、図3に示されるように、光ビームは
ロッドレンズ26から被測定面34に向かって扇型に照
射される。
As shown in FIG. 2, a light source 20 composed of a semiconductor laser is attached to the housing of the cross-sectional shape measuring device 12 (not shown), and the light beam emitted from the light source 20 is condensed by a collimating lens 22. be done. A light transmitting/receiving lens 24 is disposed on the exit side of the collimating lens 22 , and the small diameter light beam emitted from the collimating lens 22 is irradiated onto the transmitting/receiving lens 24 . A cylindrical rod lens 26 is disposed on the exit side of the light transmitting/receiving lens 24, and diverges the incident light beam into a slit shape to emit the light beam. Moreover, this rod lens 26 is attached so that the divergence direction is in the Y-axis direction orthogonal to the X-axis and Z-axis directions. A surface to be measured 34 is installed on the exit side of the rod lens 26, and the slit-shaped light beam emitted from the rod lens 26 is irradiated onto the surface to be measured 34. That is, as shown in FIG. 3, the light beam is irradiated from the rod lens 26 toward the surface to be measured 34 in a fan shape.

【0038】したがって、被測定面34にはスリット状
に発散されたスリット光線が照射され、Y軸方向にスリ
ット状に発散された光線と被測定面34との交点が輝く
、すなわち、被測定面34の形状に応じた形状に照明さ
れる。送受光レンズ24の結像側には、2次元CCDセ
ンサ30が配設されている。被測定面34に照射された
スリット状に発散されたスリット光線は、送受光レンズ
24により集光され、2次元CCDセンサ30に照射さ
れる。この2次元CCDセンサ30は、送受光レンズ2
4から予め定められた所定の間隔を隔てた位置に配設さ
れかつ、測定軸のX軸方向が、被測定面34上に照射さ
れる光点方向と平行になりかつ測定軸のY軸方向が、ロ
ッドレンズ26により光ビームをスリット状に発散させ
て射出するY軸方向と平行になるように、断面形状測定
装置12の筐体に取り付けられている。また、この2次
元CCDセンサ30は、2次元にCCD素子が配列され
ており、2次元CCDセンサ30上に照射された光ビー
ムの位置および形状に応じた電気信号を出力する。なお
、2次元CCDセンサ30は演算回路32に接続されて
いる。
Therefore, the surface to be measured 34 is irradiated with a slit-like beam of light, and the intersection of the light beam and the surface to be measured 34 shines, that is, the surface to be measured shines. It is illuminated in a shape corresponding to the shape of 34. A two-dimensional CCD sensor 30 is disposed on the imaging side of the light transmitting/receiving lens 24. The slit-shaped beam of light irradiated onto the surface to be measured 34 is condensed by the light transmitting/receiving lens 24 and irradiated onto the two-dimensional CCD sensor 30 . This two-dimensional CCD sensor 30 has a light transmitting/receiving lens 2
4, the X-axis direction of the measurement axis is parallel to the direction of the light spot irradiated onto the surface to be measured 34, and the Y-axis direction of the measurement axis is attached to the housing of the cross-sectional shape measuring device 12 so as to be parallel to the Y-axis direction in which the rod lens 26 diverges the light beam into a slit shape and emits it. Further, this two-dimensional CCD sensor 30 has CCD elements arranged two-dimensionally, and outputs an electric signal according to the position and shape of the light beam irradiated onto the two-dimensional CCD sensor 30. Note that the two-dimensional CCD sensor 30 is connected to an arithmetic circuit 32.

【0039】例えば、送受光レンズ24の中心軸L2と
X軸方向にx、Y軸方向にyの間隔を隔てた位置B点で
輝く光は、送受光レンズ24により集光され、2次元C
CDセンサ30に照射される。2次元CCDセンサ30
上に照射される光ビームは、図4に示すように、例えば
、前記中心軸L2とX軸方向にSx 、Y軸方向にSy
 の間隔を隔てた位置に照射される。そこで、2次元C
CDセンサ30では、2次元の光ビームの位置に応じた
電気信号に変換され、演算回路32に入力される。この
2次元CCDセンサ30よりの電気信号に応じて被測定
面の形状が測定される。
For example, light that shines at a point B, which is spaced x in the X-axis direction and y in the Y-axis direction from the central axis L2 of the light transmitting and receiving lens 24, is condensed by the light transmitting and receiving lens 24, and is converted into a two-dimensional C
The CD sensor 30 is irradiated with light. 2D CCD sensor 30
As shown in FIG. 4, the light beam irradiated upward is, for example, Sx in the X-axis direction and Sy in the Y-axis direction with respect to the central axis L2.
The beams are irradiated at positions separated by . Therefore, two-dimensional C
The CD sensor 30 converts it into an electrical signal according to the position of the two-dimensional light beam, and inputs it to the arithmetic circuit 32 . The shape of the surface to be measured is measured according to the electrical signal from the two-dimensional CCD sensor 30.

【0040】以下、第2実施例の作用について説明する
。コリメートレンズ22により集光された光ビームは、
前記中心軸L2からhの間隔を隔てた部位に入射される
。送受光レンズ24から射出された光ビームは、前記中
心軸L1とαの角度を成しており、ロッドレンズ26を
介してスリット状に発散されて被測定面34方向に照射
され、被測定面34にスリット状の光線が形成される。 この光線は送受光レンズ24により集光されて、2次元
CCDセンサ30上に照射される。例えば、被測定面上
のB点は、図4に示すように2次元CCDセンサ30上
では、前記中心軸L2からX軸方向にSx の間隔を隔
てると共にY軸方向にSy の間隔を隔てた位置に成る
The operation of the second embodiment will be explained below. The light beam focused by the collimating lens 22 is
The light is incident on a portion separated by a distance h from the central axis L2. The light beam emitted from the transmitting/receiving lens 24 forms an angle α with the central axis L1, is diverged into a slit shape through the rod lens 26, and is irradiated in the direction of the surface to be measured 34. A slit-shaped light beam is formed at 34. This light beam is focused by the light transmitting/receiving lens 24 and irradiated onto the two-dimensional CCD sensor 30. For example, as shown in FIG. 4, on the two-dimensional CCD sensor 30, point B on the surface to be measured is spaced apart from the central axis L2 by Sx in the X-axis direction and Sy in the Y-axis direction. get into position.

【0041】第2実施例では、第1実施例において図5
を参照して説明した結像関係より、位置検出素子として
2次元CCDセンサ30を用いているので、2次元の出
力が可能である。したがって、上記第1実施例と同様に
、数2および数3を用いて距離Yを求めることができる
In the second embodiment, FIG.
According to the imaging relationship described with reference to , since the two-dimensional CCD sensor 30 is used as the position detection element, two-dimensional output is possible. Therefore, similarly to the first embodiment, the distance Y can be determined using Equations 2 and 3.

【0042】従って、被測定面の結像位置が2次元CC
Dセンサ30から外れた場合の補正量を考慮にいれ、以
下の数7が得られる。なお、送受光レンズ24の中心軸
からの被測定面の光点位置までのX軸方向の距離X、送
受光レンズ24から被測定面の光点位置までの距離Zは
、第1実施例と同様に上記の数5および数6を用いる。
Therefore, the imaging position of the surface to be measured is two-dimensional CC
Taking into account the amount of correction in the case of deviation from the D sensor 30, the following Equation 7 can be obtained. Note that the distance X in the X-axis direction from the central axis of the light transmitting/receiving lens 24 to the light spot position on the surface to be measured, and the distance Z from the light transmitting/receiving lens 24 to the light spot position on the surface to be measured are the same as in the first embodiment. Similarly, the above equations 5 and 6 are used.

【0043】[0043]

【数7】[Math 7]

【0044】但し、Sy :被測定面の光点のX軸方向
の像高これにより、第2実施例の断面形状測定装置12
では、2次元CCDセンサ30の出力Sxから、数5を
用いて、演算回路32により被測定面34までの距離Z
が算出される。また、2次元CCDセンサ30の出力S
yから、数6および数7を用いて、演算回路32により
被測定面34の、前記中心軸L2からの距離が合わせて
算出され、被測定面34の測定点Bの位置および距離(
X、Y、Zの値)が求められる。このため、2次元CC
Dセンサ30の検出面全てに渡り、対応する被測定面3
4の測定点の位置および距離を求めることにより被測定
面34の段差等の形状を求めることができる。
Here, Sy: Image height of the light spot on the surface to be measured in the X-axis direction.
Now, from the output Sx of the two-dimensional CCD sensor 30, the distance Z to the surface to be measured 34 is calculated by the arithmetic circuit 32 using Equation 5.
is calculated. In addition, the output S of the two-dimensional CCD sensor 30
From y, the distance of the surface to be measured 34 from the central axis L2 is calculated by the arithmetic circuit 32 using Equations 6 and 7, and the position and distance of the measurement point B on the surface to be measured 34 (
X, Y, Z values) are determined. For this reason, the two-dimensional CC
Across all detection surfaces of the D sensor 30, the corresponding measurement surface 3
By determining the positions and distances of the measurement points No. 4, the shape of the surface to be measured 34, such as a step, etc., can be determined.

【0045】以上のように、第2実施例では、1つのレ
ンズ系にて送受光が共に行われ、送受光系の相互干渉の
影響を受けることなく、被測定面までの入射角度を小さ
な角度にでき、凹部の深さ測定等の形状測定を行うこと
ができるので、測定可能領域が大きくとれ、被測定面ま
でのより深い距離や段差等の存在する形状を測定するこ
とができる。
As described above, in the second embodiment, both light transmission and reception are performed using one lens system, and the angle of incidence to the surface to be measured is reduced to a small angle without being affected by mutual interference between the light transmission and reception systems. Since it is possible to perform shape measurements such as depth measurements of recesses, a large measurable area can be obtained, and it is possible to measure deeper distances to the surface to be measured and shapes with steps and the like.

【0046】なお、第2実施例ではロッドレンズを利用
してスリット状の光を得る例について説明したが、スリ
ット状の光を得る素子としてシリンドリカルレンズ、シ
リンドリカルミラー等を用いることもでき、回転多面鏡
等の光ビームをスキャンすることによりスリット状の光
を得ることもできる。
In the second embodiment, an example was explained in which a rod lens is used to obtain slit-shaped light, but a cylindrical lens, a cylindrical mirror, etc. can also be used as an element for obtaining slit-shaped light, and a rotating polygon Slit-shaped light can also be obtained by scanning a light beam from a mirror or the like.

【0047】また、第2実施例ではロッドレンズを送受
光レンズの射出側に配置した場合について説明したが、
送受光レンズの入射側に用いてもよく、また、光源側に
スリット等を設けてスリット像を被測定面に照射するよ
うにしてもよい。
Furthermore, in the second embodiment, a case was explained in which the rod lens was arranged on the exit side of the light transmitting and receiving lens.
It may be used on the incident side of the light transmitting/receiving lens, or a slit or the like may be provided on the light source side to irradiate the surface to be measured with a slit image.

【0048】なお、第2実施例では位置検出器として2
次元CCDセンサを用いた場合について説明したが、位
置検出器として2次元CCDセンサに限定されるもので
はなく、撮像管を用いたテレビジョンシステムによる位
置検出方法を用いてセンサ上で2次元の位置を出力する
ことのできる素子を利用してもよい。
In the second embodiment, two position detectors are used.
Although we have explained the case where a dimensional CCD sensor is used, the position detector is not limited to a 2-dimensional CCD sensor, and it is possible to detect a 2-dimensional position on the sensor using a position detection method using a television system using an image pickup tube. It is also possible to use an element that can output .

【0049】なお、上記第1実施例および第2実施例で
は送光光学系および受光光学系が固定されかつ位置検出
器も固定されて測定を行う場合について説明したが、送
光光学系および受光光学系の少なくとも1つの光学系の
測定字句との角度を変更することにより、観察角度を変
更するようにしてもよく、また、位置検出器を移動させ
てもよい。
Note that in the first and second embodiments described above, the case where the light transmitting optical system and the light receiving optical system are fixed and the position detector is also fixed is explained, but the light transmitting optical system and the light receiving optical system are fixed. The viewing angle may be changed by changing the angle of at least one of the optical systems with respect to the measurement term, and the position detector may be moved.

【0050】[0050]

【発明の効果】以上説明したように本発明によれば、段
差等の存在する測定面の測定であっても、送光系と受光
系との成す観察角を小さくすることにより、測定可能領
域を大きくとることができ、測定面自身による送光系ま
たは受光系の光遮断領域を少なくできる、という優れた
効果を有する。
Effects of the Invention As explained above, according to the present invention, even when measuring a measurement surface with steps, etc., the measurable area can be improved by reducing the observation angle formed by the light transmitting system and the light receiving system. It has the excellent effect that it can increase the amount of light and reduce the light blocking area of the light transmitting system or the light receiving system due to the measurement surface itself.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例にかかる変位測定装置の光
学系の周辺を示す概略図である。
FIG. 1 is a schematic diagram showing the vicinity of an optical system of a displacement measuring device according to a first embodiment of the present invention.

【図2】本発明の第2実施例にかかる形状測定装置の光
学系の周辺の正面を示す概略図である。
FIG. 2 is a schematic diagram showing the front view of the periphery of an optical system of a shape measuring device according to a second embodiment of the present invention.

【図3】本発明の第2実施例にかかる形状測定装置の光
学系の周辺の側面を示す概略図である。
FIG. 3 is a schematic diagram showing a side view of the periphery of an optical system of a shape measuring device according to a second embodiment of the present invention.

【図4】形状測定装置の位置検出器(受光面)上におけ
る光ビームの照射状態を示す線図である。
FIG. 4 is a diagram showing the irradiation state of the light beam on the position detector (light receiving surface) of the shape measuring device.

【図5】結像光学系における被測定面と位置検出器との
関係を示す線図である。
FIG. 5 is a diagram showing the relationship between a surface to be measured and a position detector in the imaging optical system.

【図6】従来の三角測量法による距離測定装置の光学系
の周辺を示す概略図である。
FIG. 6 is a schematic diagram showing the periphery of an optical system of a distance measuring device using a conventional triangulation method.

【図7】結像光学系において被測定面が光軸方向に変位
した場合の検出面に照射される光ビームのスポット径を
示す線図である。
FIG. 7 is a diagram showing the spot diameter of the light beam irradiated onto the detection surface when the surface to be measured is displaced in the optical axis direction in the imaging optical system.

【図8】被測定面と検出面および結像面との関係を示す
線図である。
FIG. 8 is a diagram showing the relationship between a surface to be measured, a detection surface, and an imaging surface.

【符号の説明】[Explanation of symbols]

10    変位測定装置 12    断面形状測定装置 20    光源 22    コリメートレンズ 24    送受光レンズ 26    ロッドレンズ 28    1次元リニヤセンサ 30    2次元CCDセンサ 32    演算回路 34    被測定面 10 Displacement measuring device 12 Cross-sectional shape measuring device 20 Light source 22 Collimating lens 24 Transmitting and receiving lens 26 Rod lens 28 One-dimensional linear sensor 30 Two-dimensional CCD sensor 32 Arithmetic circuit 34 Surface to be measured

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光ビームを照射する光源と、前記光源
から照射された光ビームを被測定面へ送光して照明する
と共に被測定面の照明部の像を結像する単一の集光レン
ズと、前記集光レンズの結像側に配設されると共に照射
された光ビームの位置に応じた信号を出力する位置検出
手段と、を備えた変位測定装置。
1. A light source that irradiates a light beam, and a single condenser that sends the light beam irradiated from the light source to a surface to be measured to illuminate it and forms an image of the illuminated portion of the surface to be measured. A displacement measuring device comprising: a lens; and a position detecting means that is disposed on the imaging side of the condensing lens and outputs a signal according to the position of the irradiated light beam.
【請求項2】  光ビームを照射する光源と、前記光源
から照射された光ビームを被測定面へ送光して照明する
と共に被測定面の照明部の像を結像する単一の集光レン
ズと、入射された光ビームを一方向にのみ発散して光ビ
ームを被測定面へスリット状の光として照射する発散手
段と、前記集光レンズの結像側に配設されると共に照射
された光ビームの位置に応じた信号を出力する位置検出
手段と、を備えた形状測定装置。
2. A light source that irradiates a light beam, and a single condenser that sends the light beam irradiated from the light source to a surface to be measured to illuminate it and forms an image of the illuminated portion of the surface to be measured. a lens, a diverging means that diverges the incident light beam in only one direction and irradiates the light beam as a slit-shaped light onto the surface to be measured; A shape measuring device comprising: a position detecting means for outputting a signal according to the position of a light beam.
JP2881291A 1991-02-22 1991-02-22 Measuring apparatus for displacement and measuring apparatus for geometry Pending JPH04268404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2881291A JPH04268404A (en) 1991-02-22 1991-02-22 Measuring apparatus for displacement and measuring apparatus for geometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2881291A JPH04268404A (en) 1991-02-22 1991-02-22 Measuring apparatus for displacement and measuring apparatus for geometry

Publications (1)

Publication Number Publication Date
JPH04268404A true JPH04268404A (en) 1992-09-24

Family

ID=12258825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2881291A Pending JPH04268404A (en) 1991-02-22 1991-02-22 Measuring apparatus for displacement and measuring apparatus for geometry

Country Status (1)

Country Link
JP (1) JPH04268404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227922A (en) * 1995-02-21 1996-09-03 Nec Kyushu Ltd Evaluation equipment for semiconductor device
JP2009222418A (en) * 2008-03-13 2009-10-01 Aisin Seiki Co Ltd Uneven surface inspection apparatus
JP5736622B1 (en) * 2014-05-01 2015-06-17 機械設計中畑株式会社 Detection device and operation control of manipulator equipped with the device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227922A (en) * 1995-02-21 1996-09-03 Nec Kyushu Ltd Evaluation equipment for semiconductor device
JP2009222418A (en) * 2008-03-13 2009-10-01 Aisin Seiki Co Ltd Uneven surface inspection apparatus
JP5736622B1 (en) * 2014-05-01 2015-06-17 機械設計中畑株式会社 Detection device and operation control of manipulator equipped with the device
CN105043246A (en) * 2014-05-01 2015-11-11 机械设计中畑株式会社 Detection apparatus, detection method and manipulator
US9482754B2 (en) 2014-05-01 2016-11-01 Kikai Sekkei Nakahata Kabushiki Kaisha Detection apparatus, detection method and manipulator

Similar Documents

Publication Publication Date Title
EP2093536B1 (en) Measurement device and measurement method
EP0279347B1 (en) Optical axis displacement sensor
JPH1068635A (en) Optical position detector
JPH06137826A (en) Shape detecting method and its device
JP2510786B2 (en) Object shape detection method and apparatus
JPH11257917A (en) Reflection type optical sensor
JPH08240408A (en) Displacement sensor
JP3921004B2 (en) Displacement tilt measuring device
JPH04268404A (en) Measuring apparatus for displacement and measuring apparatus for geometry
JP2010085395A (en) Optical position angle detector
US5815272A (en) Filter for laser gaging system
JPS6316892A (en) Distance measuring instrument for laser beam machine
JPH05340723A (en) Clearance size measuring method
KR0131526B1 (en) Optical measuring device and its measuring method
JPS62291512A (en) Distance measuring apparatus
JPS63225108A (en) Distance and inclination measuring instrument
JPS5928608A (en) Detector for weld line
JPH0729452Y2 (en) Displacement measuring device
JP2010164354A (en) Autocollimator
JP2675051B2 (en) Optical non-contact position measuring device
JP4230758B2 (en) Non-contact sectional shape measuring method and apparatus
JP2006184091A (en) In-plane direction displacement gauge
JP2001317922A (en) Optical shape measuring device
JP2006189390A (en) Optical displacement measuring method and device
CN115280164A (en) Device for determining the speed and/or length of a product