JPH04267309A - Focused orientation long magnet - Google Patents

Focused orientation long magnet

Info

Publication number
JPH04267309A
JPH04267309A JP3047473A JP4747391A JPH04267309A JP H04267309 A JPH04267309 A JP H04267309A JP 3047473 A JP3047473 A JP 3047473A JP 4747391 A JP4747391 A JP 4747391A JP H04267309 A JPH04267309 A JP H04267309A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
magnetic powder
magnets
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3047473A
Other languages
Japanese (ja)
Other versions
JPH0787140B2 (en
Inventor
Satoru Nakatsuka
哲 中塚
Koichi Nushishiro
晃一 主代
Itsuro Tanaka
逸郎 田中
Akira Yasuda
晃 安田
Koichiro Sawa
孝一郎 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3047473A priority Critical patent/JPH0787140B2/en
Publication of JPH04267309A publication Critical patent/JPH04267309A/en
Publication of JPH0787140B2 publication Critical patent/JPH0787140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the surface magnetic fields of the magnet use face in a long magnet where the longitudinal length is longer than the diameter of the end face. CONSTITUTION:The working area of a high surface magnetic field is gotten by making working areas, where the directions of the orientation of magnetic particles focus, at the parts of the outlines in the cross sections which cross the longitudinal directions of long magnets, and placing those working areas in a row in the above longitudinal direction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、端面の径に比較して
長手方向の長さが長い長尺磁石に関し、特に作用面にお
ける表面磁界の向上を図ったものである。この発明は、
磁石作用面が細長く延びる長尺性を要求される用途に適
合し、例えば測長機用磁石やアウターロータ型モータの
トルク用磁石等に用いてとりわけ有利に適合する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elongated magnet whose length in the longitudinal direction is longer than the diameter of its end face, and is particularly intended to improve the surface magnetic field at its working face. This invention is
It is suitable for applications requiring a long and thin magnetic working surface, and is particularly advantageous for use in, for example, magnets for length measuring machines, torque magnets for outer rotor type motors, and the like.

【0002】0002

【従来の技術】この種用途の磁石には、これまで希土類
系またはフェライト系の焼結磁石あるいは合成樹脂磁石
が主に使用されてきた。上記の磁石のうち、とくに表面
磁界が強くまた吸着力の優れたものは希土類系の焼結磁
石や合成樹脂磁石であり、これらに比べるとフェライト
系焼結磁石は性能が幾分、またフェライト系合成樹脂磁
石は性能がかなり劣り、それぞれ用途に応じて使用され
てきた。すなわちコストの高い希土類系磁石は高級用途
に、またコストの低いフェライト系磁石は低級用途に使
用されてきたが、いずれにせよ磁粉の配向方向は等方か
厚み方向であり、磁気特性は使用原料の善し悪しによっ
てのみ決まっていた。中でもフェライト系の合成樹脂磁
石は、複雑な形状のものでも容易に成形でき、また軽量
で一体成形も可能という利点はそなえるものの、磁石の
表面磁界が低いことから、その用途は自ずから限定され
ていた。
2. Description of the Related Art Until now, rare earth or ferrite sintered magnets or synthetic resin magnets have been mainly used as magnets for this type of use. Among the above-mentioned magnets, those with particularly strong surface magnetic fields and excellent attraction are rare-earth sintered magnets and synthetic resin magnets.Compared to these, ferrite-based sintered magnets have somewhat lower performance, Synthetic resin magnets have considerably inferior performance, and each has been used depending on its purpose. In other words, expensive rare earth magnets have been used for high-grade applications, and low-cost ferrite magnets have been used for low-grade applications, but in either case, the orientation direction of magnetic particles is isotropic or in the thickness direction, and the magnetic properties depend on the raw materials used. It was determined only by the goodness or badness of Among these, ferrite-based synthetic resin magnets have the advantage of being easily molded into complex shapes, being lightweight and capable of being molded in one piece, but their use has been limited due to the magnet's low surface magnetic field. .

【0003】0003

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、たとえフェライト系磁粉を
用いた場合であっても、作用面において強い表面磁界が
得られる新規な磁粉粒子配向構造になる長尺磁石を提案
することを目的とする。
[Problems to be Solved by the Invention] The present invention advantageously solves the above problems, and provides novel magnetic powder particles that can obtain a strong surface magnetic field on the working surface even when ferrite magnetic powder is used. The purpose is to propose a long magnet with an oriented structure.

【0004】0004

【課題を解決するための手段】すなわちこの発明は、長
尺磁石の長手方向を横切る断面における輪郭線の部分に
、磁粉粒子の配向方向が集束する作用域を形成し、該作
用域を上記長手方向に連ねてなる集束配向型長尺磁石で
ある。また磁石を可撓性の合成樹脂材料で形成すること
によって、さらに用途を拡大でき有利である。
[Means for Solving the Problems] That is, the present invention forms an action area in which the orientation direction of magnetic powder particles is focused in a contour line portion in a cross section that crosses the longitudinal direction of a long magnet, and It is a focused orientation type long magnet arranged in a row in the direction. Furthermore, by forming the magnet from a flexible synthetic resin material, it is advantageous because the applications can be further expanded.

【0005】この発明の長尺磁石としては、合成樹脂磁
石及び焼結磁石いずれもが利用できる。合成樹脂磁石及
び焼結磁石おける磁粉としては、フェライト系磁粉、ア
ルニコ系磁粉およびサマリウム−コバルト系磁粉やネオ
ジム−鉄−ボロン系磁粉等の希土類系磁粉など、従来公
知のものいずれもが使用でき、その粒子形状については
平均粒径が 1.5μm 程度で、圧縮密度:3.20
以上のものが好ましい。
As the long magnet of the present invention, both synthetic resin magnets and sintered magnets can be used. As magnetic powder for synthetic resin magnets and sintered magnets, any conventionally known magnetic powder can be used, such as ferrite magnetic powder, alnico magnetic powder, and rare earth magnetic powder such as samarium-cobalt magnetic powder and neodymium-iron-boron magnetic powder. Regarding its particle shape, the average particle size is about 1.5 μm, and the compressed density is 3.20.
The above are preferred.

【0006】また合成樹脂についても、従来公知のもの
いずれもが使用でき、その代表例を示すと次のとおりで
ある。ポリアミド−6およびポリアミド−12などのポ
リアミド系合成樹脂。ポリ塩化ビニル、塩化ビニル酢酸
ビニル共重合体、ポリメチルメタクリレート、ポリスチ
レン、ポリエチレンおよびポリプロピレンなどの単独ま
たは共重合した合成樹脂。ポリウレタン、シリコーン、
ポリカーボネート、PBT、PET、ポリエーテルエー
テルケトン、塩素化ポリエチレンおよびハイパロンなど
の合成樹脂。ネオプレン、スチレンブタジエンおよびア
クリロニトリルブタジエンなどのゴム。エポキシ系樹脂
。 フェノール系合成樹脂。さらに磁粉とバインダーである
合成樹脂などとの配合比率は、磁粉:60〜70vol
 %とするのが望ましい。なおその他にも、従来から常
用される可塑剤や坑酸化剤、表面処理剤などを目的に応
じて適量使用できるのはいうまでもなく、特に可塑剤は
可撓性を付与する際には有効で、可塑剤としては例えば
ジオクチルフタレート(DOP),ジブタジルチタレー
ト(DBP)等のフタル酸エステル系可塑剤、ジオクチ
ルアジペイト(DOA)等のアジピン酸系可塑剤或いは
ポリエステル系に代表される高分子系可塑剤などを使用
できる。
[0006] As for the synthetic resin, any conventionally known synthetic resin can be used, and representative examples thereof are as follows. Polyamide-based synthetic resins such as polyamide-6 and polyamide-12. Single or copolymerized synthetic resins such as polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, polystyrene, polyethylene, and polypropylene. polyurethane, silicone,
Synthetic resins such as polycarbonate, PBT, PET, polyetheretherketone, chlorinated polyethylene and Hypalon. Rubbers such as neoprene, styrene butadiene and acrylonitrile butadiene. Epoxy resin. Phenolic synthetic resin. Furthermore, the blending ratio of magnetic powder and synthetic resin as a binder is 60 to 70 vol.
It is desirable to set it as %. In addition, it goes without saying that conventionally used plasticizers, antioxidants, surface treatment agents, etc. can be used in appropriate amounts depending on the purpose, and plasticizers are particularly effective in imparting flexibility. Examples of plasticizers include phthalic acid ester plasticizers such as dioctyl phthalate (DOP) and dibutadyl titalate (DBP), adipic acid plasticizers such as dioctyl adipate (DOA), and polymeric plasticizers such as polyester. Molecular plasticizers etc. can be used.

【0007】[0007]

【作用】図1に、この発明に従って磁粉粒子を配向させ
た長尺磁石を示す。図中の矢印は磁粉粒子の配向方向で
あり、この長尺磁石1の長手方向と直交する断面におけ
る輪郭線の部分に、すなわち図示例では長方形における
一方の長辺の中央部に磁粉粒子の配向方向が集束する作
用域2を形成し、この作用域2を上記長手方向へ連ねて
なる。従って図2に示す従来の長尺磁石と比較すると、
この従来磁石では無駄な磁束が存在するのに対し、図1
に示したこの発明の長尺磁石では全ての磁束が作用域に
集束しているため、より高い表面磁界が得られる。
[Operation] FIG. 1 shows a long magnet in which magnetic powder particles are oriented according to the present invention. The arrow in the figure indicates the orientation direction of the magnetic powder particles, and the orientation of the magnetic powder particles is at the contour line in the cross section perpendicular to the longitudinal direction of the long magnet 1, that is, at the center of one long side of the rectangle in the illustrated example. A working area 2 converging in direction is formed, and this working area 2 is connected in the longitudinal direction. Therefore, when compared with the conventional long magnet shown in Figure 2,
In contrast to this conventional magnet, there is wasted magnetic flux.
In the elongated magnet of the present invention shown in FIG. 1, all the magnetic flux is focused in the active area, so a higher surface magnetic field can be obtained.

【0008】ここに図1中にαで示す磁粉粒子の配向角
度は、10〜70°好ましくは20〜60°程度とする
のが望ましい。というのは配向角度αが10°より小さ
いと表面磁界の改善効果に乏しく、一方70°より大き
くなると表面磁界が発現する実質的な作用面が著しく狭
くなると共に、磁石の固有保磁力によっては減磁する場
合があるからである。
It is desirable that the orientation angle of the magnetic powder particles, indicated by α in FIG. 1, be about 10 to 70 degrees, preferably about 20 to 60 degrees. This is because if the orientation angle α is smaller than 10°, the effect of improving the surface magnetic field will be poor, while if it is larger than 70°, the effective surface area on which the surface magnetic field will appear will be significantly narrowed, and it will be reduced depending on the magnet's intrinsic coercive force. This is because it may become magnetic.

【0009】上記の例では、長尺磁石の端面形状が長方
形の場合について主に説明したが、磁石形状はこの場合
だけに限るものではなく、図3(a) 〜(e) に示
すような、台形、三角形、多角形、円形、又は半円形等
の様々な端面形状であっても、また同図(f), (g
)に示すように作用域を複数形成しても良く、要は、長
尺磁石の長手方向を横切る断面における輪郭線の少なく
とも一部分に、磁粉粒子の配向方向が集束する作用域を
形成し、この作用域が上記長手方向に連続又は断続して
連なっていれば良いのである。
[0009] In the above example, the case where the end face shape of the elongated magnet is rectangular was mainly explained, but the magnet shape is not limited to this case, and may be as shown in Figs. 3(a) to (e). , trapezoid, triangle, polygon, circle, or semicircle.
), a plurality of action areas may be formed, and in short, an action area where the orientation direction of the magnetic powder particles is focused is formed in at least a part of the contour line in a cross section that crosses the longitudinal direction of the elongated magnet. It is sufficient that the action areas are continuous or intermittently continuous in the longitudinal direction.

【0010】さてこの発明は、長尺磁石中における磁粉
粒子の配向方向を制御することによって、磁石使用面で
の表面磁界の向上を図るものである。そこで図4に、こ
の発明に従う磁粉配向要領について図解する。図中番号
3は磁場配向成形金型に設けたキャビティ、4は磁極、
5は対向磁極、6は励磁用コイル、7は磁気回路のリタ
ーンヨークである。なお各磁極を永久磁石とすることに
よって、励磁用コイルを省略することも可能である。そ
してキャビティ3内に、磁粉と合成樹脂とを所定の割合
で配合した合成樹脂磁石を装入し、かつ合成樹脂磁石の
場合を図5に示すように押出しながら、磁場を印加する
と、図中に矢印で示した方向に磁力線5が発生し、この
磁力線5に沿って磁粉粒子が配向することになる。この
ように磁粉の配向方向を作用域に集束させることによっ
て、磁束を絞ることができ、その結果作用域での表面磁
界を著しく向上させることができるのである。
[0010] The present invention aims to improve the surface magnetic field on the surface of the magnet in use by controlling the orientation direction of magnetic powder particles in the elongated magnet. Therefore, FIG. 4 illustrates the magnetic particle orientation procedure according to the present invention. In the figure, number 3 is the cavity provided in the magnetic field orientation mold, 4 is the magnetic pole,
5 is an opposing magnetic pole, 6 is an excitation coil, and 7 is a return yoke of the magnetic circuit. Note that by making each magnetic pole a permanent magnet, it is also possible to omit the excitation coil. Then, a synthetic resin magnet containing magnetic powder and synthetic resin in a predetermined ratio is inserted into the cavity 3, and when a magnetic field is applied while extruding the synthetic resin magnet as shown in FIG. Lines of magnetic force 5 are generated in the direction shown by the arrow, and magnetic powder particles are oriented along these lines of force 5. By converging the orientation direction of the magnetic particles in the active area in this way, the magnetic flux can be narrowed down, and as a result, the surface magnetic field in the active area can be significantly improved.

【0011】ちなみに上記磁場配向成形金型の磁極4、
対向磁極5及びリターンヨークに用いる強磁性体として
は、S55C,S50C,S40C等の炭素鋼、SKD
11,SKD61等のダイス鋼、その他パメンジュール
、純鉄等が使用できるが、耐摩耗性向上のため表面硬化
処理を施すことは一層有利である。また磁極まわりを埋
める非磁性体としては、ステンレス鋼、銅ベリリウム合
金、ハイマンガン鋼、青銅、真ちゅう及び非磁性超鋼N
−7等が有利に適合し、これらにも必要に応じ耐摩耗性
向上のため表面硬化処理を施すことは有利である。
Incidentally, the magnetic pole 4 of the magnetic field orientation mold,
As the ferromagnetic material used for the opposing magnetic pole 5 and the return yoke, carbon steel such as S55C, S50C, S40C, SKD
Die steels such as No. 11 and SKD61, other materials such as pamendur and pure iron can be used, but it is more advantageous to perform surface hardening treatment to improve wear resistance. Non-magnetic materials to fill around the magnetic poles include stainless steel, copper-beryllium alloy, high manganese steel, bronze, brass, and non-magnetic super steel N.
-7 and the like are advantageously suitable, and it is advantageous to subject these to surface hardening treatment if necessary to improve wear resistance.

【0012】0012

【実施例】図4に示した磁場配向成形金型を用い、図1
に示した形状でその寸法が幅:14mm, 厚さ:3m
m及び長さ:125mm になり、また作用域の幅が8
mmである長尺磁石を、以下の条件で成形した。 原料 ・磁粉粒子 磁粉A:フェライト磁粉(平均粒径 1.5μm のマ
グネトプランバイト系ストロンチウム系フェライト)磁
粉B:サマリウム−コバルト磁粉(Sm2Co17 系
;平均粒径  10μm ) ・合成樹脂:塩素化ポリエチレン ・可塑剤:DOP(ディオクチルフタレート)・その他
:ポリエチレン系ワックス TTS(イソプロピルトリイソステアロイルチタネート
[Example] Using the magnetic field orientation mold shown in Fig. 4,
It has the shape shown in , and its dimensions are width: 14mm, thickness: 3m
m and length: 125 mm, and the width of the action area is 8
A long magnet having a length of mm was molded under the following conditions. Raw materials/magnetic powder particles Magnetic powder A: Ferrite magnetic powder (magnetoplumbite strontium ferrite with average particle size of 1.5 μm) Magnetic powder B: Samarium-cobalt magnetic powder (Sm2Co17 type; average particle size of 10 μm) Synthetic resin: Chlorinated polyethylene/plastic Agent: DOP (dioctyl phthalate) / Others: polyethylene wax TTS (isopropyl triisostearoyl titanate)

【0013】配合 ・配合A(プラマグ配合) 磁粉A:61.5 vol% 塩素化ポリエチレン:25.5 vol%DOP:12
 vol% ポリエチレン系ワックス:0.5 vol%TTS:0
.5 vol% ・配合B(焼結配合) 磁粉:40  wt% 水  :60  wt%
Blend/Blend A (Plamag blend) Magnetic powder A: 61.5 vol% Chlorinated polyethylene: 25.5 vol% DOP: 12
vol% polyethylene wax: 0.5 vol%TTS: 0
.. 5 vol% ・Blend B (sintering mixture) Magnetic powder: 40 wt% Water: 60 wt%

【0014】成形条件 ・押出し成形条件 使用ペレット配合  :配合A 加熱筒温度:160 ℃ 吐出速度:2m/min  押出し機:フルフライト型 (シリンダー長)/(内径)=22 圧縮比3 励磁コイル起磁力:10000 A*ターンランド部磁
場印加幅:70mm ・圧縮成形条件    使用原料  :配合B成形方法
  :インジェクション方式 励磁方法  :竪磁場成形 成形温度  :20℃ 焼成温度  :1250℃
Molding conditions/extrusion molding conditions Pellet composition used: Composition A Heating cylinder temperature: 160°C Discharge speed: 2 m/min Extruder: Full flight type (cylinder length)/(inner diameter) = 22 Compression ratio 3 Excitation coil magnetomotive force : 10000 A*Turn land area magnetic field application width: 70mm ・Compression molding conditions Raw materials used: Mixture B molding method: Injection method excitation method: Vertical magnetic field molding Molding temperature: 20°C Firing temperature: 1250°C

【0015】かくして得られた長尺磁石の着磁後におけ
る表面磁界、さらに合成樹脂磁石は起動トルク(モータ
ー特性)について調べた。
The surface magnetic field after magnetization of the long magnet thus obtained and the starting torque (motor characteristics) of the synthetic resin magnet were investigated.

【0016】なおモーター特性の評価は、図6に示す偏
平型モータにおける、ステータ8に対向させて配置する
ロータ9として、上記に従って得られた可撓性の長尺磁
石を着磁後に、ロータヨーク10の内側に巻込んで配設
し、起動トルクの測定に供した。なお同図中、符号11
は上部ケース、12はバックヨーク、13はシャフト、
14はステータヨーク、15は下部ケースである。
The motor characteristics were evaluated using the rotor yoke 10 of the flat type motor shown in FIG. It was rolled up inside and used to measure the starting torque. In addition, in the same figure, the code 11
is the upper case, 12 is the back yoke, 13 is the shaft,
14 is a stator yoke, and 15 is a lower case.

【0017】また評価条件は次のとおりである。 ・マグネット    外径:40mm 内径:34mm 厚み:3mm 着磁:8極 ・駆動法        3相 電圧:12V 電流:200mA /相 8極The evaluation conditions are as follows. ・Magnet Outer diameter: 40mm Inner diameter: 34mm Thickness: 3mm Magnetization: 8 poles ・Drive method       3 phase Voltage: 12V Current: 200mA/phase 8 poles

【0018】また比較として、同様の外形寸法になるが
、磁粉粒子を集束配向した作用域のない厚み方向配向の
長尺磁石を製造し、同様の評価を行った。以上の各評価
結果を、表1に示す。
As a comparison, a long magnet with similar external dimensions but oriented in the thickness direction without an active area in which magnetic powder particles were focused and oriented was manufactured and evaluated in the same way. The above evaluation results are shown in Table 1.

【0019】[0019]

【表1】[Table 1]

【0020】表1より明らかなように、この発明に従っ
て得られた長尺磁石はいずれも、従来法に従い得られた
ものと比較して作用面における表面磁界が著しく向上し
、ま適用したモータのトルク特性も向上し得ることが確
かめられた。
As is clear from Table 1, all of the long magnets obtained according to the present invention have a significantly improved surface magnetic field on the working surface compared to those obtained according to the conventional method, and the long magnets obtained according to the present invention have a significantly improved surface magnetic field on the working surface. It was confirmed that torque characteristics could also be improved.

【0021】[0021]

【発明の効果】かくしてこの発明によれば、表面磁界の
格段に高い作用域を有する長尺磁石を提供でき、この種
磁石の適用範囲の拡大に大きく寄与する。
Thus, according to the present invention, it is possible to provide a long magnet having a much higher area of action of the surface magnetic field, which greatly contributes to expanding the range of application of this type of magnet.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明に従う長尺磁石の模式図である。FIG. 1 is a schematic diagram of a long magnet according to the present invention.

【図2】従来の長尺磁石の模式図である。FIG. 2 is a schematic diagram of a conventional elongated magnet.

【図3】長尺磁石の端面を示す模式図である。FIG. 3 is a schematic diagram showing an end face of a long magnet.

【図4】磁場配向成形金型の模式図である。FIG. 4 is a schematic diagram of a magnetic field orientation mold.

【図5】押出し成形の要領を示す模式図である。FIG. 5 is a schematic diagram showing the procedure for extrusion molding.

【図6】モータの模式図である。FIG. 6 is a schematic diagram of a motor.

【符号の説明】[Explanation of symbols]

1  長尺磁石 2  作用域 3  キャビティ 4  磁極 5  対向磁極 6  励磁コイル 7  リターンヨーク 8  ステータ 9  ロータ 10  ロータヨーク 11  上部ケース 12  バックヨーク 13  シャフト 14  ステータヨーク 15  下部ケース 1 Long magnet 2 Area of action 3 Cavity 4 Magnetic pole 5 Opposing magnetic poles 6 Excitation coil 7 Return yoke 8 Stator 9 Rotor 10 Rotor yoke 11 Upper case 12 Back yoke 13 Shaft 14 Stator yoke 15 Lower case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  長尺磁石の長手方向を横切る断面にお
ける輪郭線の部分に、磁粉粒子の配向方向が集束する作
用域を形成し、該作用域を上記長手方向に連ねてなる集
束配向型長尺磁石。
1. A focused and oriented magnet, in which an action area in which the orientation direction of the magnetic powder particles is focused is formed in a contour portion of a cross section that crosses the longitudinal direction of the elongated magnet, and the action areas are connected in the longitudinal direction. Measure magnet.
【請求項2】  可撓性の合成樹脂材料からなる、請求
項1に記載の集束配向型長尺磁石。
2. The focused orientation type elongated magnet according to claim 1, which is made of a flexible synthetic resin material.
JP3047473A 1991-02-21 1991-02-21 Focusing orientation type long magnet Expired - Lifetime JPH0787140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047473A JPH0787140B2 (en) 1991-02-21 1991-02-21 Focusing orientation type long magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047473A JPH0787140B2 (en) 1991-02-21 1991-02-21 Focusing orientation type long magnet

Publications (2)

Publication Number Publication Date
JPH04267309A true JPH04267309A (en) 1992-09-22
JPH0787140B2 JPH0787140B2 (en) 1995-09-20

Family

ID=12776114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047473A Expired - Lifetime JPH0787140B2 (en) 1991-02-21 1991-02-21 Focusing orientation type long magnet

Country Status (1)

Country Link
JP (1) JPH0787140B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143307A (en) * 1983-02-04 1984-08-16 Matsushita Electric Ind Co Ltd Manufacture of magnetic roll
JPS6359243A (en) * 1986-08-29 1988-03-15 Toshiba Corp Data communication equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143307A (en) * 1983-02-04 1984-08-16 Matsushita Electric Ind Co Ltd Manufacture of magnetic roll
JPS6359243A (en) * 1986-08-29 1988-03-15 Toshiba Corp Data communication equipment

Also Published As

Publication number Publication date
JPH0787140B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US5416457A (en) Lateral orientation anisotropic magnet
JP3007491B2 (en) Side-oriented anisotropic magnet
JP4478869B2 (en) Method for manufacturing anisotropic bonded magnet
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JPH0341965B2 (en)
JPH04267309A (en) Focused orientation long magnet
JPH05129127A (en) Anisotropic segment type magnet
JPH06349630A (en) Anisortopical magmet
JP3012077B2 (en) Anisotropic long magnet
JPH04267308A (en) Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JP2002134314A (en) Anisotropic segmental magnet and its molding die magnetic circuit device
JPS62282422A (en) Manufacture of magnet roll
JP3012051B2 (en) Anisotropic segment type magnet
JP2002134315A (en) Anisotropic cylindrical magnet and its molding die magnetic circuit device
JPH04244766A (en) Focus composite orientation disclike magnet and magnetic field orientation molding machine
JPS62156802A (en) Resin magnet and forming mold thereof
JPH04247606A (en) Focus-orientation type disk magnet and magnetic field orientation molding device
JP2002199668A (en) Manufacturing method of cylindrical-shaped magnet for polar magnetizing
JP2500270Y2 (en) Multi-pole anisotropic cylindrical or solid cylindrical magnet molding die
JPH04267506A (en) Anisotropic cylindrical magnet
JP2593252B2 (en) Focused orientation type outsert cylindrical magnet and magnetic field orientation mold
JP2005294757A (en) Anisotropy rare earth bond magnet
JP2725328B2 (en) Manufacturing method of magnet roll
JP2001185412A (en) Anisotropic bonded magnet