JP2002134315A - Anisotropic cylindrical magnet and its molding die magnetic circuit device - Google Patents

Anisotropic cylindrical magnet and its molding die magnetic circuit device

Info

Publication number
JP2002134315A
JP2002134315A JP2000328440A JP2000328440A JP2002134315A JP 2002134315 A JP2002134315 A JP 2002134315A JP 2000328440 A JP2000328440 A JP 2000328440A JP 2000328440 A JP2000328440 A JP 2000328440A JP 2002134315 A JP2002134315 A JP 2002134315A
Authority
JP
Japan
Prior art keywords
magnet
cylindrical magnet
circuit device
anisotropic
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000328440A
Other languages
Japanese (ja)
Inventor
Satoru Nakatsuka
哲 中塚
Itsuro Tanaka
逸郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2000328440A priority Critical patent/JP2002134315A/en
Publication of JP2002134315A publication Critical patent/JP2002134315A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic segmental magnet which is capable of alleviating cogging phenomenon, without reducing motor torque. SOLUTION: A bipolar cylindrical magnet is provided with the inner surface of its cylinder serving as a working surface and the outer surface and two edge faces of the cylinder serving as non-acting surfaces. The axis of easy magnetization of magnetic powder on the cross section of the magnet in the direction vertical to its length direction increases gradually in the opposite pole directional component, while decreasing in the radial component as they approach a middle point between two poles from the center of reference magnetic pole in the circumferential direction, conforms to the circumferential direction in the middle point between the poles, then gradually increases again in the opposite pole directional component beyond the middle point between the two poles, and re-conforms to the radial direction at the center of the opposite pole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は異方性円筒状磁石及
びその成形金型磁気回路装置に関し、更に詳しくは、特
にモーターの磁石ステーターやアウターローター等に使
用され、モーターのコギング現象及びこれに起因する振
動や騒音及び回転むらを防止するとともに、モータート
ルクを向上し得る異方性円筒状磁石及び該磁石を製造す
るための成形金型磁気回路装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic cylindrical magnet and a magnetic circuit device for molding the same, and more particularly, to a cogging phenomenon of a motor used for a magnet stator and an outer rotor of a motor. The present invention relates to an anisotropic cylindrical magnet capable of preventing the resulting vibration, noise, and rotation unevenness, and improving a motor torque, and a molding die magnetic circuit device for manufacturing the magnet.

【0002】[0002]

【従来の技術】従来、この種の磁石としては、等方性の
円筒状磁石や、図8に示すようなアキシャル配向型の円
筒状磁石、図9に示すようなラジアル配向型の円筒状磁
石が使用され、更に、モータートルクを向上させるため
に、特開平5−144632号公報には、図10に示す
ように、磁粉粒子の磁化容易軸が作用面の中央域に対称
的に集束配向してなる異方性円筒状磁石が提案されてい
る。
2. Description of the Related Art Conventionally, as this kind of magnet, an isotropic cylindrical magnet, an axially oriented cylindrical magnet as shown in FIG. 8, and a radially oriented cylindrical magnet as shown in FIG. In order to further improve the motor torque, Japanese Unexamined Patent Publication No. 5-144632 discloses that the axis of easy magnetization of magnetic powder particles is symmetrically focused and oriented in the central region of the working surface as shown in FIG. Anisotropic cylindrical magnets have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、アキシ
ャル配向型円筒状磁石はコギングの点では良好であるが
トルクが小さいという問題があり、ラジアル配向型円筒
状磁石はトルクは良好であるがローター回転方向でのギ
ャップ磁束密度の変化率が大き過ぎるためコギングの点
で不良であるという問題を孕んでいる。更にアキシャル
配向型、ラジアル配向型のいずれの円筒状磁石もロータ
ーと対向しない両端部は有効に利用されないという問題
もある。一方、上記の対称集束配向円筒状磁石ではコギ
ングの問題は改善されるものの、その改善は僅かであ
り、更なる高速回転時において、騒音、振動を惹き起こ
すという問題を含んでいる。本発明は上記の課題を解決
し、コギング又はモータートルクとコギングをともに改
善し得る異方性円筒状磁石及びこれを製造する成形金型
磁気回路装置を提供するものである。
However, the axially-oriented cylindrical magnet is good in terms of cogging, but has a problem in that the torque is small. The radially-oriented cylindrical magnet has a good torque, but the rotational direction of the rotor is small. In this case, the rate of change in the gap magnetic flux density is too large, and the cogging is poor. Further, there is a problem that neither the axially oriented type nor the radially oriented type cylindrical magnet is effectively used at both ends which are not opposed to the rotor. On the other hand, although the problem of cogging is improved in the above-mentioned symmetrically focused orientated cylindrical magnet, the improvement is slight, and there is a problem that noise and vibration are caused at a higher rotation speed. SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and provides an anisotropic cylindrical magnet capable of improving both cogging or motor torque and cogging, and a molding die magnetic circuit device for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決するべく鋭意研究の結果、磁石の長手方向に対し垂
直方向の断面における磁性粉の磁化容易軸を特定の方向
に配向することにより、反対極に切り替わる近傍におけ
るローター回転方向でのギャップ磁束密度の変化率を小
さくでき、コギングを改善できるとともに、長手方向断
面を集束配とすることにより、ローターと磁石ステータ
ーとの間のギャップ磁場を増加することができ、モータ
ーのトルクを同時に改善できることを見出し、本発明に
到達するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and have found that the easy axis of magnetization of magnetic powder in a section perpendicular to the longitudinal direction of the magnet is oriented in a specific direction. In this way, the rate of change of the gap magnetic flux density in the direction of rotor rotation in the vicinity of switching to the opposite pole can be reduced, cogging can be improved, and the longitudinal magnetic section is focused and arranged, so that the gap magnetic field between the rotor and the magnet stator can be improved. Was found to be able to be increased and the torque of the motor could be improved at the same time, leading to the present invention.

【0005】即ち、本発明の請求項1は、円筒の内周面
を作用面とし外周面及び両端面を非作用面とする2極円
筒状磁石であって、該磁石の長手方向に対し垂直方向の
断面における磁性粉の磁化容易軸の方向が、基準磁極中
央部から周回方向に2極の極間に近づくに従い放射方向
成分から少しづつ反対極方向成分を増し、極間で周回方
向となり、極間を越えてから再び反対極方向成分を増
し、反対極中央で放射方向成分に戻ることを特徴とする
異方性円筒状磁石を内容とする。
That is, a first aspect of the present invention is a two-pole cylindrical magnet having an inner peripheral surface of a cylinder as an active surface and an outer peripheral surface and both end surfaces as non-active surfaces, the magnet being perpendicular to the longitudinal direction of the magnet. As the direction of the axis of easy magnetization of the magnetic powder in the cross section of the direction approaches the distance between the two poles in the circumferential direction from the center of the reference magnetic pole, the component of the opposite pole direction gradually increases from the radial direction component, and becomes the circumferential direction between the poles. The anisotropic cylindrical magnet is characterized in that the component in the opposite pole direction increases again after the gap between the poles, and returns to the radial component at the center of the opposite pole.

【0006】好ましい態様として請求項2は、長手方向
断面における磁性粉の磁化容易軸の方向が、該断面の非
作用面から凸状に湾曲しながら作用面の中央域に向かっ
て集束している請求項1記載の異方性円筒状磁石であ
る。
In a preferred embodiment, the direction of the axis of easy magnetization of the magnetic powder in the longitudinal section is converged toward the central region of the working surface while being convexly curved from the non-working surface of the cross section. An anisotropic cylindrical magnet according to claim 1.

【0007】好ましい態様としての請求項3は、磁性粉
と合成樹脂を主成分とする請求項1又は2記載の異方性
円筒状磁石である。
According to a third aspect of the present invention, there is provided the anisotropic cylindrical magnet according to the first or second aspect, comprising magnetic powder and a synthetic resin as main components.

【0008】上記異方性円筒状磁石を製造するための成
形金型磁気回路装置である請求項4は、円筒の内周面を
作用面とし外周面及び両端面を非作用面とする2極円筒
状磁石用成形金型磁気回路装置において、円筒状キャビ
ティの内側に永久磁石を配設したことを特徴とする異方
性円筒状磁石用成形金型磁気回路装置を内容とする。
A fourth aspect of the present invention is a molding die magnetic circuit device for manufacturing the anisotropic cylindrical magnet, wherein a two-pole having an inner peripheral surface of the cylinder as an active surface and an outer peripheral surface and both end surfaces as non-active surfaces. A magnetic circuit device for a molding die for a cylindrical magnet, wherein a permanent magnet is disposed inside a cylindrical cavity, and a magnetic circuit device for a molding die for an anisotropic cylindrical magnet is described.

【0009】好ましい態様としての請求項5は、円筒状
キャビティの内側に永久磁石を配設するとともに、該キ
ャビティの両側に強磁性体部を配設した請求項4記載の
異方性円筒状磁石用成形金型磁気回路装置である。
In a preferred embodiment, the permanent magnet is disposed inside the cylindrical cavity, and the ferromagnetic portions are disposed on both sides of the cavity. This is a magnetic circuit device for molding dies.

【0010】好ましい態様としての請求項6は、円筒状
キャビティの内側に永久磁石を配設するとともに、該キ
ャビティの両側と外側に強磁性体部を配設した請求項4
記載の異方性円筒状磁石用成形金型磁気回路装置であ
る。
In a preferred embodiment, a permanent magnet is provided inside the cylindrical cavity, and ferromagnetic portions are provided on both sides and outside the cavity.
It is a shaping | molding metal mold magnetic circuit apparatus of the described anisotropic cylindrical magnet.

【0011】好ましい態様としての請求項7は、円筒状
キャビティの内側に配設する永久磁石が、(BH)max
で26 MGOe 以上で且つiHcで15000 Oe 以上で
ある請求項4〜6のいずれか1項に記載の異方性円筒状
磁石用成形金型磁気回路装置である。
According to a preferred embodiment, the permanent magnet disposed inside the cylindrical cavity has (BH) max
The molding die magnetic circuit device for an anisotropic cylindrical magnet according to any one of claims 4 to 6, wherein the magnetic circuit device has a pressure of 26 MGOe or more and an iHc of 15000 Oe or more.

【0012】好ましい態様としての請求項8は、永久磁
石の代わりに電磁石を用いた請求項4〜7のいずれか1
項に記載の異方性円筒状磁石用成形金型磁気回路装置で
ある。
In a preferred embodiment, an electromagnet is used instead of a permanent magnet.
It is a molding die magnetic circuit device for an anisotropic cylindrical magnet described in the paragraph.

【0013】[0013]

【発明の実施の形態】本発明に係る異方性円筒状磁石
は、図1(A)〜図3(A)に示す如く、円筒の内周面
を作用面1とし外周面及び両端面を非作用面2とする2
極円筒状磁石であって、該磁石の長手方向に対し垂直方
向の断面における磁性粉の磁化容易軸の方向が基準磁極
(例えばN極)中央部から周回方向にS,N2極の極間
Mに近づくに従い放射方向成分から少しづつ反対極方向
成分を増し、極間Mで周回方向となり、該極間Mを越え
てから再び反対極方向成分を増し、反対極(例えばS
極)中央で放射方向成分に戻ることを特徴とする異方性
円筒状磁石である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIGS. 1A to 3A, an anisotropic cylindrical magnet according to the present invention has an inner peripheral surface as a working surface 1 and an outer peripheral surface and both end surfaces. Inactive surface 2 2
A pole-cylindrical magnet, wherein the direction of the axis of easy magnetization of the magnetic powder in a cross section perpendicular to the longitudinal direction of the magnet is the distance between the S and N2 poles in the circumferential direction from the center of the reference magnetic pole (eg, N pole). , The opposite pole direction component is gradually increased from the radial direction component, becomes a circulating direction at the gap M, and after passing the gap M, the opposite pole direction component is increased again to the opposite pole (for example, S
(Pole) An anisotropic cylindrical magnet characterized by returning to a radial component at the center.

【0014】円筒状磁石の長手方向断面における磁性粉
の磁化容易軸の方向は、図1(B)に示すようなラジア
ル方向でもよいが、例えばモーターに組み込んだ際に、
磁石両端部の領域の表面磁界を有効に利用する観点から
は、図2(B)、図3(B)に示すように、上記断面の
非作用面2から凸状に湾曲しながら作用面1の中央域に
向かって集束しているものが好ましい。
The direction of the axis of easy magnetization of the magnetic powder in the longitudinal section of the cylindrical magnet may be a radial direction as shown in FIG. 1 (B).
From the viewpoint of effectively utilizing the surface magnetic field in the regions at both ends of the magnet, as shown in FIGS. 2 (B) and 3 (B), the working surface 1 is curved from the non-working surface 2 of the cross section in a convex shape. Are preferably converged toward the central region.

【0015】本発明の異方性円筒状磁石は、合成樹脂磁
石及び焼結磁石のいずれでもよいが、合成樹脂磁石の方
が、焼結時の割れ、欠け、反りを伴わず、また寸法安定
性に優れている点で好ましい。合成樹脂磁石及び焼結磁
石における磁性粉としては、フエライト系磁扮、アルニ
コ系磁性粉及びサマリウム−コバルト系磁性粉やネオジ
ム−鉄−ボロン系磁性粉、サマリウム−鉄−窒素系磁性
粉等の希土類系磁性粉など、従来公知の異方化磁性粉が
使用できる。
The anisotropic cylindrical magnet of the present invention may be either a synthetic resin magnet or a sintered magnet, but the synthetic resin magnet is free from cracks, chips and warpage during sintering, and is dimensionally stable. It is preferable in that it has excellent properties. As the magnetic powder in the synthetic resin magnet and the sintered magnet, rare earths such as ferrite magnetic powder, alnico magnetic powder and samarium-cobalt magnetic powder, neodymium-iron-boron magnetic powder, and samarium-iron-nitrogen magnetic powder Conventionally known anisotropic magnetic powders such as a system magnetic powder can be used.

【0016】バインダーとしての合成樹脂についても、
従来公知のものいずれもが使用できる。その代表例を示
すと、ポリアミド6、ポリアミド12、ポリアミド66
などのポリアミド系合成樹脂;ポリ塩化ビニル,塩化ビ
ニル−酢酸ビニル共重合体、ポリメチルメタクリレー
ト、ポリスチレン、ポリエチレン及びポリプロピレンな
どを単独又は共重合したビニル系合成樹脂;ポリウレタ
ン、シリコーン、ポリカーボネート、PBT、PETな
どのポリエステル、ポリエーテルエーテルケトン、PP
S、塩素化ポリエチレン、クロロスルホン化ポリエチレ
ン(デュポン社の商品名「ハイパロン」)などの合成樹
脂;イソプレン、ネオプレン、スチレン・ブタジエン、
ブタジエン、アクリロニトリル・ブタジエンなどのゴ
ム;エポキシ系樹脂,フエノール系合成樹脂等が使用で
きる。これらは単独で又は必要により2種以上混合して
用いられる。
As for the synthetic resin as the binder,
Any conventionally known one can be used. Typical examples are polyamide 6, polyamide 12, and polyamide 66.
Polyamide-based synthetic resin such as polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, polystyrene, polyethylene and polypropylene; homo- or copolymerized vinyl-based resin; polyurethane, silicone, polycarbonate, PBT, PET Polyester, polyetheretherketone, PP
Synthetic resins such as S, chlorinated polyethylene, chlorosulfonated polyethylene (trade name “Hypalon” of DuPont); isoprene, neoprene, styrene-butadiene,
Rubbers such as butadiene and acrylonitrile / butadiene; epoxy resins, phenolic synthetic resins and the like can be used. These may be used alone or as a mixture of two or more if necessary.

【0017】磁性粉とバインダーとしての合成樹脂との
配合割合は、磁性粉が40〜70vol%、合成樹脂が60
〜30vol%の範囲が好ましい。磁性粉が40vol%未満で
は磁気特性が不十分で、一方、70vol%を越えると成形
性が悪くなる傾向がある。なお、その他にも、従来から
常用される可塑剤や抗酸化剤、表面処理剤などを目的に
応じて使用できることはいうまでもない。
The mixing ratio of the magnetic powder to the synthetic resin as the binder is 40 to 70 vol% for the magnetic powder and 60 for the synthetic resin.
A range of -30 vol% is preferred. If the magnetic powder is less than 40 vol%, the magnetic properties are insufficient, while if it exceeds 70 vol%, the moldability tends to be poor. In addition, it goes without saying that a plasticizer, an antioxidant, a surface treatment agent, and the like conventionally used conventionally can be used according to the purpose.

【0018】本発明の異方性円筒状磁石は、円筒の内周
面を作用面とし外周面及び両端面を非作用面とする2極
円筒状磁石用成形金型磁気回路装置において、円筒状キ
ャビティの内側に永久磁石を配設したことを特徴とする
異方性円筒状磁石用成形金型磁気回路装置により容易に
製造することができる。
An anisotropic cylindrical magnet according to the present invention is a magnetic circuit device for a two-pole cylindrical magnet, wherein the inner peripheral surface of the cylinder is an active surface and the outer peripheral surface and both end surfaces are non-active surfaces. It can be easily manufactured by a magnetic circuit device for forming a mold for an anisotropic cylindrical magnet, wherein a permanent magnet is provided inside the cavity.

【0019】以下、本発明の成形金型磁気回路装置の実
施態様を射出成形を例に挙げて説明する。図4の磁気回
路装置では、円筒状キャビティ3の内側に該キャビティ
3の長さよりも大きい永久磁石4が配設されている。こ
のような構成とすることにより、長手方向断面における
磁性粉の磁化容易軸の方向が一様に配向された円筒状磁
石が得られる(図1(A)、(B)参照)。このような
磁石は磁石巾とローター巾とが略等しい場合に有効であ
る。
An embodiment of the magnetic circuit device of the present invention will be described below by taking injection molding as an example. In the magnetic circuit device of FIG. 4, a permanent magnet 4 larger than the length of the cylindrical cavity 3 is disposed inside the cylindrical cavity 3. With such a configuration, a cylindrical magnet in which the direction of the axis of easy magnetization of the magnetic powder in the longitudinal section is uniformly oriented can be obtained (see FIGS. 1A and 1B). Such a magnet is effective when the magnet width and the rotor width are substantially equal.

【0020】また、図5の磁気回路装置では、円筒状キ
ャビティ3の内側に該キャビティ3の長さよりも短かい
永久磁石4が配設されるとともに該キャビティ3の長手
方向の両側に強磁性体部8が配設されている。このよう
な構成とすることにより、長手方向断面における磁性粉
の磁化容易軸の方向が該断面の非作用面から凸状に湾曲
しながら作用面の中央域に向かって集束配向した円筒状
磁石が得られる(図2(A)、(B)参照)。
In the magnetic circuit device shown in FIG. 5, a permanent magnet 4 shorter than the length of the cavity 3 is disposed inside the cylindrical cavity 3 and a ferromagnetic material is provided on both sides of the cavity 3 in the longitudinal direction. A part 8 is provided. With such a configuration, the cylindrical magnet that is focused and oriented toward the central region of the working surface while the direction of the axis of easy magnetization of the magnetic powder in the longitudinal cross section curves convexly from the non-working surface of the cross section. (See FIGS. 2A and 2B).

【0021】更に、図6の磁気回路装置では、該キャビ
ティ3の長手方向の両側のみならず外側にも強磁性体部
8が配設され、このような構成とすることにより、図4
の磁気回路装置に比べて、長手方向に対する垂直方向断
面における磁性粉の磁化容易軸の方向が、ややラジアル
方向に近いものとなり(図3(A)参照)、また長手方
向断面においては、凸状の湾曲度の小さい集束配向の円
筒状磁石が得られる(図3(B)参照)。
Further, in the magnetic circuit device of FIG. 6, the ferromagnetic portions 8 are provided not only on both sides in the longitudinal direction of the cavity 3 but also on the outside.
Compared with the magnetic circuit device of the above, the direction of the axis of easy magnetization of the magnetic powder in the cross section perpendicular to the longitudinal direction is slightly closer to the radial direction (see FIG. 3A), and the convex shape in the longitudinal cross section. Thus, a cylindrical magnet having a small degree of curvature and a focused orientation can be obtained (see FIG. 3B).

【0022】図2、図3のような磁石は、ローター巾が
磁石巾に比べて狭い場合に有効で、ローター巾/磁石巾
の比に応じて適宜設計される。また、キャビティ3の長
さと永久磁石4の長さとの関係は、ローター巾/磁石巾
の比、集束配向の角度等により適宜決定される。
The magnets shown in FIGS. 2 and 3 are effective when the rotor width is narrower than the magnet width, and are appropriately designed according to the ratio of the rotor width / magnet width. The relationship between the length of the cavity 3 and the length of the permanent magnet 4 is appropriately determined by the rotor width / magnet width ratio, the angle of focusing orientation, and the like.

【0023】図中、8は強磁性体部、5はスプルー、6
はランナー、7は突出しピンである。斜線部は強磁性体
部、点描部は非磁性体部である。強磁性体材料として
は、S55C、S50C、S45C、S40C等の炭素
鋼、SKD11、SKD61等のダイス鋼、パーメンジ
ュール、純鉄等が用いられ、一方、非磁性体材料として
は、ステンレス鋼、銅ベリリウム合金、高マンガン鋼Y
HD50、青銅、真鍮、非磁性超鋼N−7等が用いられ
る。
In the figure, reference numeral 8 denotes a ferromagnetic portion, 5 denotes a sprue, 6
Is a runner, and 7 is a projecting pin. The hatched portion is a ferromagnetic portion, and the stippled portion is a non-magnetic portion. As the ferromagnetic material, carbon steel such as S55C, S50C, S45C, and S40C, die steel such as SKD11 and SKD61, permendur, pure iron, and the like are used. On the other hand, as the nonmagnetic material, stainless steel, Copper beryllium alloy, high manganese steel Y
HD50, bronze, brass, non-magnetic super steel N-7 and the like are used.

【0024】また、永久磁石としては、ネオジム−鉄−
ボロン系焼結磁石、サマリウム−コバルト系焼結磁石等
の既に知られた希土類系焼結磁石等の高エネルギー積磁
石が好適である。永久磁石は(BH)max で26 MGOe
以上で且つiHcで15000 Oe 以上のものが好適で
ある。
As the permanent magnet, neodymium-iron-
A high energy product magnet such as a known rare earth sintered magnet such as a boron sintered magnet or a samarium-cobalt sintered magnet is suitable. Permanent magnet is 26 MGOe at (BH) max
Those having the above and iHc of 15000 Oe or more are preferable.

【0025】更に、永久磁石の代わりに電磁石を用いて
もよく、軟磁性部材とコイルによる従来知られた電磁石
が使用できる。軟磁性部材は飽和の磁束密度が1500
0ガウス以上のものが好ましく、20000ガウス以上
のものがより好ましい。
Further, an electromagnet may be used instead of the permanent magnet, and a conventionally known electromagnet using a soft magnetic member and a coil can be used. The soft magnetic member has a saturation magnetic flux density of 1500
Those having 0 gauss or more are preferable, and those having 20,000 gauss or more are more preferable.

【0026】成形方法は合成樹脂磁石の場合、上記した
射出成形の他、圧縮成形等の既に知られた方法が使用で
き、焼結磁石の場合も既に知られた湿式成形、乾式成形
がグリーン作成方法として使用できる。
In the case of a synthetic resin magnet, in addition to the above-described injection molding, known methods such as compression molding can be used. In the case of a sintered magnet, well-known wet molding and dry molding are used to form a green. Can be used as a method.

【0027】上記射出成形用磁気回路を設定した金型に
より本発明の異方性円筒状磁石を製造するには、磁性粉
と合成樹脂とを主成分とする樹脂磁石組成物をスプルー
5、ランナー6を経由して円筒状キャビティ3内に充填
し、図4の場合は、矢示した如く磁力線に沿って磁性粉
粒子の磁化容易軸が略ラジアルに近い状態に配向され、
図1(A)、(B)に示す如き異方性円筒状磁石が得ら
れる。一方、図5、図6の場合は、それぞれ矢示した如
く、磁性粉粒子の磁化容易軸がN極側では作用面から非
作用面に発散するように配向され、S極側では非作用面
から作用面の中央域に集束するように配向され、図2
(A)、(B)又は図3(A)、(B)に示す如き異方
性円筒状磁石が得られる。尚、スプルー5、ランナー6
を加熱するには、これらの近傍にヒーター等を配すれば
よい。また、圧縮成形機、押出成形機も公知のものが使
用でき、射出成形用金型と同様の磁気回路を組めばよ
い。
In order to manufacture the anisotropic cylindrical magnet of the present invention using a mold in which the above-described magnetic circuit for injection molding is set, a sprue 5 and a runner 5 are made of a resin magnet composition containing magnetic powder and synthetic resin as main components. 4, the magnetic powder particles are filled in the cylindrical cavity 3 along the lines of magnetic force, and in the case of FIG.
An anisotropic cylindrical magnet as shown in FIGS. 1A and 1B is obtained. On the other hand, in the cases of FIGS. 5 and 6, as shown by arrows, the easy axis of magnetization of the magnetic powder particles is oriented so as to diverge from the working surface to the non-working surface on the N pole side, and to the non-working surface on the S pole side. FIG. 2 is oriented to focus on the central region of the working surface from FIG.
An anisotropic cylindrical magnet as shown in FIGS. 3A and 3B or FIGS. 3A and 3B is obtained. In addition, sprue 5, runner 6
Can be heated by disposing a heater or the like in the vicinity thereof. In addition, well-known compression molding machines and extrusion molding machines can be used, and a magnetic circuit similar to that of the injection molding mold may be assembled.

【0028】本発明の異方性円筒状磁石は、該磁石の長
手方向に対し垂直方向の断面における磁性粉の磁化容易
軸の方向が基準磁極中央部から周回方向に2極の極間に
近づくに従い放射方向成分から少しづつ反対極方向成分
を増し、極間で周回方向となり、極間を越えてから再び
反対極方向成分を増し、反対極中央で放射方向成分に戻
るように配向されているので、ローター回転方向でのギ
ャップ磁束密度の変化率が小さくなり、コギングが大巾
に改善される。
In the anisotropic cylindrical magnet according to the present invention, the direction of the axis of easy magnetization of the magnetic powder in the cross section perpendicular to the longitudinal direction of the magnet approaches between the two poles in the circumferential direction from the center of the reference magnetic pole. Is gradually oriented from the radial direction component to the opposite pole direction component, becomes a circulating direction between the poles, and after passing the gap, increases the opposite pole direction component again, and is oriented to return to the radial direction component at the center of the opposite pole. Therefore, the rate of change of the gap magnetic flux density in the rotor rotation direction is reduced, and cogging is greatly improved.

【0029】更に、長手方向断面において、磁性粉の磁
化容易軸の方向が非作用面から凸状に湾曲しながら大き
い角度で集束配向された場合には、両端部も有効利用す
ることができ、即ち、ローター巾と磁石ステーター巾の
比に応じ、長手方向断面の集束配向を適用した場合に
は、ローターと磁石ステーターとの間のギャップ磁場を
増加することができ、モーターのトルクの向上を図るこ
とができる。かくして、本発明の円筒状磁石はモーター
用の磁石ステーターやアウターローターとして有用であ
る。
Further, in the longitudinal section, when the direction of the axis of easy magnetization of the magnetic powder is focused and oriented at a large angle while being convexly curved from the non-working surface, both ends can be effectively used, That is, when the focusing orientation of the longitudinal section is applied according to the ratio between the rotor width and the magnet stator width, the gap magnetic field between the rotor and the magnet stator can be increased, and the torque of the motor is improved. be able to. Thus, the cylindrical magnet of the present invention is useful as a magnet stator or outer rotor for a motor.

【0030】図7は、本発明の異方性円筒状磁石(図
中、図2の磁石を示す)をステーターとして使用したモ
ーターを示す概略図である。図中、強磁性体ケース9、
磁石ステーター10と、シャフト11を介して軟磁性ロ
ーター12を具備してなり、該磁石ステーター10とし
て本発明により得られる異方性円筒状磁石13が使用さ
れている。図7中、14はローター励磁コイル、15は
ブラシ、16はワッシャー、17は軸受け、18はリー
ド線である。
FIG. 7 is a schematic diagram showing a motor using the anisotropic cylindrical magnet of the present invention (the magnet of FIG. 2 is shown in the figure) as a stator. In the figure, the ferromagnetic case 9,
It comprises a magnet stator 10 and a soft magnetic rotor 12 via a shaft 11, and the anisotropic cylindrical magnet 13 obtained by the present invention is used as the magnet stator 10. 7, 14 is a rotor excitation coil, 15 is a brush, 16 is a washer, 17 is a bearing, and 18 is a lead wire.

【0031】[0031]

【実施例】以下、本発明を実施例、比較例を挙げて更に
詳細に説明するが、これらは本発明を何ら制限するもの
ではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but these do not limit the present invention at all.

【0032】実施例1〜3、比較例1〜2 表1に示した磁気回路を設定した射出成形金型を用い
て、それぞれ図1〜図3(実施例1〜3)又は図9、図
10(比較例1、2)に示した如き異方性円筒状磁石を
下記の製造条件により製造した。尚、キャビティを構成
する金型材料として、強磁性体としてはS45Cを、非
磁性体として高マンガン鋼YHD50(日立金属株式会
社製)を用いた。
Examples 1 to 3 and Comparative Examples 1 and 2 FIGS. 1 to 3 (Examples 1 to 3) or FIGS. 9 and 9 were used, respectively, by using an injection mold in which the magnetic circuits shown in Table 1 were set. An anisotropic cylindrical magnet as shown in No. 10 (Comparative Examples 1 and 2) was manufactured under the following manufacturing conditions. As a mold material for forming the cavity, S45C was used as a ferromagnetic material, and high manganese steel YHD50 (manufactured by Hitachi Metals, Ltd.) was used as a nonmagnetic material.

【0033】次いで、上記異方性円筒状磁石をステータ
ーとして用いて、それぞれ図7に示す如きモーターを組
み立てた。実施例1〜3及び比較例1〜2の異方性円筒
状磁石を組み込んだモーターについて、モータートルク
及びコギングを評価した。評価結果を表1に示す。尚、
モータートルクの評価は、比較例1の場合を100とし
た相対比較で示した。また、コギングの測定は、異方性
円筒状磁石をモーターに組み込み、通電しない状態でゆ
っくりシャフトを手で回した時の回転方向への抵抗感に
より下記の基準により3段階評価した。 ◎:抵抗感が殆どない。 ○:やや抵抗感がある。 △:かなり抵抗感がある。 ×:相当抵抗感がある。
Next, motors as shown in FIG. 7 were assembled using the anisotropic cylindrical magnet as a stator. The motors incorporating the anisotropic cylindrical magnets of Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated for motor torque and cogging. Table 1 shows the evaluation results. still,
The evaluation of the motor torque was shown by a relative comparison with the case of Comparative Example 1 being 100. In addition, the cogging was evaluated in three steps based on the following criterion based on the sense of resistance in the rotating direction when the shaft was slowly turned by hand in a state in which no current was supplied with an anisotropic cylindrical magnet incorporated in the motor. A: Almost no resistance. :: There is some resistance. Δ: There is considerable resistance. X: There is considerable resistance.

【0034】 (配合) 磁性粉:フェライト磁粉(平均粒径1.5μmのマグネトプランバイト型スト ロンチウム系フェライト) 68vol% 合成繊脂:ポリアミド12 36vol% 可塑剤:TTS(イソプロピルトリイソステアロイルチタネート) 1vol%(Blending) Magnetic powder: Ferrite magnetic powder (magnet plumbite-type strontium ferrite having an average particle diameter of 1.5 μm) 68 vol% Synthetic fat: Polyamide 12 36 vol% Plasticizer: TTS (isopropyl triisostearoyl titanate) 1 vol %

【0035】(成形条件) 射出成形条件(日本製鋼所製:J−50M磁場配向射出
成形機使用) 射出シリンダー温度:280℃ 金型温度:100℃ 射出圧力:1500kg/cm2 冷却時間:25秒 射出サイクル:40秒
(Molding conditions) Injection molding conditions (Nippon Steel Works: J-50M magnetic orientation injection molding machine used) Injection cylinder temperature: 280 ° C Mold temperature: 100 ° C Injection pressure: 1500 kg / cm 2 Cooling time: 25 seconds Injection cycle: 40 seconds

【0036】[0036]

【表1】 [Table 1]

【0037】表1より明らかなように、本発明の異方性
円筒状磁石は、コギングのみならずモータートルクを改
善することができることがわかる。
As is clear from Table 1, the anisotropic cylindrical magnet of the present invention can improve not only cogging but also motor torque.

【0038】[0038]

【発明の効果】叙上のとおり、本発明の異方性円筒状磁
石は、長手方向に対し垂直方向の断面における磁性粉の
磁化容易軸の方向が基準磁極中央部から周回方向に2極
の極間に近づくに従い放射方向成分から少しづつ反対極
方向成分を増し、極間で周回方向となり、極間を越えて
から再び反対極方向成分を増し、反対極中央で放射方向
成分に戻るように配向されているので、ローターが回転
してステーターが形成する磁界を横切る際に、その磁界
におけるギャップ磁束密度の変化率が小さくなるため、
例えばモーターに装着した場合、コギングを一層効果的
に改善することができる。また、長手方向断面を集束配
向とすることによりローターと磁石ステーターとの間の
ギャップ磁場を増加することができるので、モータート
ルクも同時に改善することが可能である。
As described above, in the anisotropic cylindrical magnet of the present invention, the direction of the axis of easy magnetization of the magnetic powder in the cross section perpendicular to the longitudinal direction has two poles in the circumferential direction from the center of the reference magnetic pole. As the distance between the poles increases, the opposite pole direction component gradually increases from the radial direction component, gradually becomes the circulating direction between the poles, and after passing the gap, the opposite pole direction component increases again and returns to the radial direction component at the center of the opposite pole. Because it is oriented, when the rotor rotates and crosses the magnetic field formed by the stator, the rate of change of the gap magnetic flux density in that magnetic field decreases,
For example, when mounted on a motor, cogging can be more effectively improved. Further, since the gap magnetic field between the rotor and the magnet stator can be increased by setting the longitudinal section to the convergent orientation, the motor torque can be simultaneously improved.

【0039】また、本発明の異方性円筒状磁石は内磁型
磁気回路装置により容易に製造され、外磁型磁気回路装
置の場合のように電流磁界が発生しないので、集束角度
が大きく且つ凸状に湾曲しながら集束した磁石となり、
上記の如き作用効果を発揮することが可能である。
Further, the anisotropic cylindrical magnet of the present invention is easily manufactured by the inner magnetic circuit device and does not generate a current magnetic field as in the case of the outer magnetic circuit device. It becomes a magnet that is focused while convexly curved,
It is possible to exhibit the above-described effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方性円筒状磁石の一例を示す概略断
面図で、(A)は長手方向に対し垂直方向における磁性
粉の磁化容易軸の集束配向状態を示し、(B)は長手方
向の磁性粉の磁化容易軸の集束配向状態を示す。
FIG. 1 is a schematic cross-sectional view showing an example of the anisotropic cylindrical magnet of the present invention, wherein (A) shows a focused orientation state of an easy axis of magnetization of magnetic powder in a direction perpendicular to a longitudinal direction, and (B) 3 shows a focused orientation state of an axis of easy magnetization of a magnetic powder in a longitudinal direction.

【図2】本発明の異方性円筒状磁石の他の例を示す概略
断面図で、(A)は長手方向に対し垂直方向における磁
性粉の磁化容易軸の集束配向状態を示し、(B)は長手
方向の磁性粉の磁化容易軸の集束配向状態を示す。
FIG. 2 is a schematic cross-sectional view showing another example of the anisotropic cylindrical magnet of the present invention, in which (A) shows a focused orientation state of an axis of easy magnetization of magnetic powder in a direction perpendicular to a longitudinal direction, and (B). () Shows the focused orientation state of the easy axis of the magnetic powder in the longitudinal direction.

【図3】本発明の異方性円筒状磁石の更に他の例を示す
概略断面図で、(A)は長手方向に対し垂直方向におけ
る磁性粉の磁化容易軸の集束配向状態を示し、(B)は
長手方向の磁性粉の磁化容易軸の集束配向状態を示す。
FIG. 3 is a schematic cross-sectional view showing still another example of the anisotropic cylindrical magnet of the present invention, wherein (A) shows a focused orientation state of an easy axis of magnetization of a magnetic powder in a direction perpendicular to a longitudinal direction, B) shows the focused orientation state of the easy axis of the magnetic powder in the longitudinal direction.

【図4】本発明の異方性円筒状磁石を製造するための成
形用金型磁気回路装置の一例を示す概略断面図である。
FIG. 4 is a schematic sectional view showing an example of a molding die magnetic circuit device for producing the anisotropic cylindrical magnet of the present invention.

【図5】本発明の異方性円筒状磁石を製造するための成
形用金型磁気回路装置の他の例を示す概略断面図であ
る。
FIG. 5 is a schematic cross-sectional view showing another example of a molding magnetic circuit device for producing the anisotropic cylindrical magnet of the present invention.

【図6】本発明の異方性円筒状磁石を製造するための成
形用金型磁気回路装置の更に他の例を示す概略断面図で
ある。
FIG. 6 is a schematic sectional view showing still another example of a molding die magnetic circuit device for producing the anisotropic cylindrical magnet of the present invention.

【図7】本発明の異方性円筒状磁石を組み込んだモータ
ーを示す概略断面図である。
FIG. 7 is a schematic sectional view showing a motor incorporating the anisotropic cylindrical magnet of the present invention.

【図8】従来の異方性円筒状磁石(アキシャル配向)を
示す概略断面図である。
FIG. 8 is a schematic sectional view showing a conventional anisotropic cylindrical magnet (axial orientation).

【図9】従来の異方性円筒状磁石(ラジアル配向)を示
す概略断面図である。
FIG. 9 is a schematic sectional view showing a conventional anisotropic cylindrical magnet (radial orientation).

【図10】従来の異方性円筒状磁石(対称集束配向)を
示す概略断面図である。
FIG. 10 is a schematic sectional view showing a conventional anisotropic cylindrical magnet (symmetric focusing orientation).

【図11】従来の異方性円筒状磁石(ラジアル配向)を
製造するための成形用金型磁気回路装置を示す概略断面
図である。
FIG. 11 is a schematic sectional view showing a molding die magnetic circuit device for producing a conventional anisotropic cylindrical magnet (radial orientation).

【図12】従来の異方性円筒状磁石(対称集束配向)を
製造するための成形用金型磁気回路装置を示す概略断面
図である。
FIG. 12 is a schematic sectional view showing a molding die magnetic circuit device for producing a conventional anisotropic cylindrical magnet (symmetric focusing orientation).

【符号の説明】[Explanation of symbols]

1 作用面 2 非作用面 3 円筒状キャビティ 4 永久磁石 5 スプルー 6 ランナー 7 突出ピン 8 強磁性体部 9 強磁性体ケース 10 磁石ステ
ーター 11 シャフト 12 軟磁性ロ
ーター 13 異方性円筒状磁石 14 ローター
励磁コイル 15 ブラシ 16 ワッシャ
ー 17 軸受け 18 リード線
DESCRIPTION OF SYMBOLS 1 Working surface 2 Non-working surface 3 Cylindrical cavity 4 Permanent magnet 5 Sprue 6 Runner 7 Protruding pin 8 Ferromagnetic part 9 Ferromagnetic case 10 Magnet stator 11 Shaft 12 Soft magnetic rotor 13 Anisotropic cylindrical magnet 14 Rotor excitation Coil 15 Brush 16 Washer 17 Bearing 18 Lead wire

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 円筒の内周面を作用面とし外周面及び両
端面を非作用面とする2極円筒状磁石であって、該磁石
の長手方向に対し垂直方向の断面における磁性粉の磁化
容易軸の方向が、基準磁極中央部から周回方向に2極の
極間に近づくに従い放射方向成分から少しづつ反対極方
向成分を増し、極間で周回方向となり、極間を越えてか
ら再び反対極方向成分を増し、反対極中央で放射方向成
分に戻ることを特徴とする異方性円筒状磁石。
1. A two-pole cylindrical magnet having an inner peripheral surface as a working surface and an outer peripheral surface and both end surfaces as non-working surfaces, the magnetization of a magnetic powder in a cross section perpendicular to the longitudinal direction of the magnet. As the direction of the easy axis approaches the distance between the two poles in the circumferential direction from the center of the reference magnetic pole, the opposite pole direction component gradually increases from the radial direction component, becomes the circumferential direction between the poles, and reverses again after crossing the poles. An anisotropic cylindrical magnet characterized by increasing the polar component and returning to the radial component at the center of the opposite pole.
【請求項2】 長手方向断面における磁性粉の磁化容易
軸の方向が、該断面の非作用面から凸状に湾曲しながら
作用面の中央域に向かって集束している請求項1記載の
異方性円筒状磁石。
2. The method according to claim 1, wherein the direction of the axis of easy magnetization of the magnetic powder in the longitudinal section is focused toward the central region of the working surface while being convexly curved from the non-working surface of the cross section. Isotropic cylindrical magnet.
【請求項3】 磁性粉と合成樹脂を主成分とする請求項
1又は2記載の異方性円筒状磁石。
3. The anisotropic cylindrical magnet according to claim 1, which comprises magnetic powder and a synthetic resin as main components.
【請求項4】 円筒の内周面を作用面とし外周面及び両
端面を非作用面とする2極円筒状磁石用成形金型磁気回
路装置において、円筒状キャビティの内側に永久磁石を
配設したことを特徴とする異方性円筒状磁石用成形金型
磁気回路装置。
4. A permanent magnet is disposed inside a cylindrical cavity in a two-pole cylindrical magnet forming mold magnetic circuit device having a cylindrical inner peripheral surface as an active surface and an outer peripheral surface and both end surfaces as non-active surfaces. A molding die magnetic circuit device for an anisotropic cylindrical magnet, characterized in that:
【請求項5】 円筒状キャビティの内側に永久磁石を配
設するとともに、該キャビティの両側に強磁性体部を配
設した請求項4記載の異方性円筒状磁石用成形金型磁気
回路装置。
5. The molding die magnetic circuit device for an anisotropic cylindrical magnet according to claim 4, wherein a permanent magnet is disposed inside the cylindrical cavity, and ferromagnetic portions are disposed on both sides of the cavity. .
【請求項6】 円筒状キャビティの内側に永久磁石を配
設するとともに、該キャビティの両側と外側に強磁性体
部を配設した請求項4記載の異方性円筒状磁石用成形金
型磁気回路装置。
6. The molding die magnet for an anisotropic cylindrical magnet according to claim 4, wherein a permanent magnet is disposed inside the cylindrical cavity, and ferromagnetic portions are disposed on both sides and outside of the cavity. Circuit device.
【請求項7】 円筒状キャビティの内側に配設する永久
磁石が、(BH)ma x で26 MGOe 以上で且つiHcで
15000 Oe 以上である請求項4〜6のいずれか1項
に記載の異方性円筒状磁石用成形金型磁気回路装置。
7. A permanent magnet disposed inside the cylindrical cavity, (BH) different according to any one of claims 4-6 in ma x at 26 MGOe or more and and iHc at 15000 Oe or more Magnetic circuit device for forming mold for isotropic cylindrical magnet.
【請求項8】 永久磁石の代わりに電磁石を用いた請求
項4〜7のいずれか1項に記載の異方性円筒状磁石用成
形金型磁気回路装置。
8. The molding die magnetic circuit device for an anisotropic cylindrical magnet according to claim 4, wherein an electromagnet is used instead of the permanent magnet.
JP2000328440A 2000-10-27 2000-10-27 Anisotropic cylindrical magnet and its molding die magnetic circuit device Withdrawn JP2002134315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000328440A JP2002134315A (en) 2000-10-27 2000-10-27 Anisotropic cylindrical magnet and its molding die magnetic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000328440A JP2002134315A (en) 2000-10-27 2000-10-27 Anisotropic cylindrical magnet and its molding die magnetic circuit device

Publications (1)

Publication Number Publication Date
JP2002134315A true JP2002134315A (en) 2002-05-10

Family

ID=18805295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000328440A Withdrawn JP2002134315A (en) 2000-10-27 2000-10-27 Anisotropic cylindrical magnet and its molding die magnetic circuit device

Country Status (1)

Country Link
JP (1) JP2002134315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803459A (en) * 2016-12-30 2017-06-06 上海三环磁性材料有限公司 A kind of bipolar oriented moulding mould of anisotropic bonded magnet one side
JP7453684B2 (en) 2020-09-17 2024-03-21 テスラム株式会社 Ring-shaped magnet, method for manufacturing ring-shaped magnet, and mold used therein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803459A (en) * 2016-12-30 2017-06-06 上海三环磁性材料有限公司 A kind of bipolar oriented moulding mould of anisotropic bonded magnet one side
JP7453684B2 (en) 2020-09-17 2024-03-21 テスラム株式会社 Ring-shaped magnet, method for manufacturing ring-shaped magnet, and mold used therein

Similar Documents

Publication Publication Date Title
JP3864986B2 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
WO2005101614A1 (en) Rotor and process for manufacturing the same
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JP4029679B2 (en) Bond magnet for motor and motor
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP2769061B2 (en) Extremely anisotropically oriented magnet
JP4478869B2 (en) Method for manufacturing anisotropic bonded magnet
JP2002134315A (en) Anisotropic cylindrical magnet and its molding die magnetic circuit device
JP2002134314A (en) Anisotropic segmental magnet and its molding die magnetic circuit device
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JP2002209364A (en) Cup-shaped magnet for motor, and its molding die magnetic circuit device
JP3012049B2 (en) Anisotropic segment type magnet
JP4569139B2 (en) Rotor for IPM motor, method for manufacturing rotor for IPM motor using the same, and IPM motor therefor.
JP2002110417A (en) Anisotropic segmental magnet and motor provided therewith
JP2001068333A (en) Anisotropic cylindrical magnet and motor using same
JP3012051B2 (en) Anisotropic segment type magnet
JP2593252B2 (en) Focused orientation type outsert cylindrical magnet and magnetic field orientation mold
JP3049134B2 (en) 2-pole cylindrical magnet
JPH04267308A (en) Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold
JP2003332128A (en) Mold for manufacturing magnet, method for manufacturing magnet, anisotropic magnet, and permanent magnet
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JPH04244766A (en) Focus composite orientation disclike magnet and magnetic field orientation molding machine
JP2769062B2 (en) Notched anisotropic cylindrical magnet
JP3012066B2 (en) Extremely anisotropically oriented magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108