JPH04265855A - Method and apparatus for evaluating bonded state of ceramics metal laminated substrate - Google Patents

Method and apparatus for evaluating bonded state of ceramics metal laminated substrate

Info

Publication number
JPH04265855A
JPH04265855A JP3026082A JP2608291A JPH04265855A JP H04265855 A JPH04265855 A JP H04265855A JP 3026082 A JP3026082 A JP 3026082A JP 2608291 A JP2608291 A JP 2608291A JP H04265855 A JPH04265855 A JP H04265855A
Authority
JP
Japan
Prior art keywords
amplitude
boundary
transmitted
bonding
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3026082A
Other languages
Japanese (ja)
Inventor
Hajime Takada
一 高田
Fumihiko Ichikawa
文彦 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3026082A priority Critical patent/JPH04265855A/en
Publication of JPH04265855A publication Critical patent/JPH04265855A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To evaluate the bonded state of two surfaces of three-layer laminated substrate composed of a ceramics plate and metal plates by an ultrasonic wave. CONSTITUTION:An ultrasonic wave 13 is transmitted to a three-layer substrate 1 wherein metal plates 2 and a ceramics plate 3 are bonded from a transmitter- receiver 11 and the reflected wave 14 from a boundary surface 4 is detected by the transmitter-receiver 11 and the transmitted wave 15 transmitted through boundary surfaces 4, 5 is detected by a detector 12 and those waves are operated to make it possible to detect the bonding inferiority of two boundary surfaces 4, 5 by one measurement.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高度集積回路、パワー
エレクトロニクス回路などの基板として用いられるセラ
ミックスと金属とを積層した基板におけるセラミックス
と金属との接合部の接合状態の良否を非破壊で評価する
方法及びその装置に関する。
[Industrial Application Field] The present invention non-destructively evaluates the quality of the joint between ceramic and metal in a ceramic-metal laminated substrate used as a substrate for highly integrated circuits, power electronics circuits, etc. The present invention relates to a method and an apparatus for the same.

【0002】0002

【従来の技術】高度集積回路、パワーエレクトロニクス
回路などの発熱性の高い回路では熱伝導性、放射性のよ
いセラミックスと金属とを積層した基板が用いられる。 セラミックス金属積層基板の断面構造の一例を図5に示
した。この基板1は2枚の金属板2にセラミックスの板
3が挟み込まれた構造となっている。このセラミックス
板3と金属板2との境界には接合層が存在するが、接合
が十分になされていない部分、即ち、接合不良があると
、次のような問題が発生する。 (1)金属板の引き剥し強度(ピール強度)が低下し、
回路素子の実装時に剥がれが生ずる。 (2)回路素子の発熱により加熱されたとき、金属板2
のみが大きく膨張して塑性変形が生じ、金属板2がセラ
ミックス板3から浮き上がってしまう。 (3)接合不良それ自体または接合不良による剥がれも
しくは浮き上がりは、金属板2からセラミックス板3へ
の熱伝導を阻害して、この基板の特徴である熱伝導性・
放熱性の高さが失われてしまう。
2. Description of the Related Art In highly heat-generating circuits such as highly integrated circuits and power electronics circuits, substrates made of laminated ceramics and metals with good thermal conductivity and radiation properties are used. FIG. 5 shows an example of the cross-sectional structure of the ceramic-metal laminate substrate. This substrate 1 has a structure in which a ceramic plate 3 is sandwiched between two metal plates 2. A bonding layer exists at the boundary between the ceramic plate 3 and the metal plate 2, but if there is a portion where the bond is not sufficiently bonded, that is, if there is a defective bond, the following problems will occur. (1) The peel strength of the metal plate decreases,
Peeling occurs when circuit elements are mounted. (2) When the metal plate 2 is heated by the heat generated by the circuit element,
The metal plate 2 expands greatly and undergoes plastic deformation, causing the metal plate 2 to rise from the ceramic plate 3. (3) The bonding defect itself or peeling or lifting due to the bonding defect impedes heat conduction from the metal plate 2 to the ceramic plate 3, and reduces the thermal conductivity, which is a characteristic of this substrate.
The high heat dissipation properties will be lost.

【0003】以上の問題点に鑑み、接合不良のない基板
を製作するすること、製作された基板における接合不良
の有無を非破壊検出することは、セラミックス金属積層
基板の製作上、重要な事項である。この接合不良を検出
するには超音波探傷法の適用が有効である。従来、超音
波探傷法としては、例えば次の透過法や境界反射法が知
られている。例えば図6のように基板1を水浸して送信
子31から超音波を送信し、受信子32にて、セラミッ
クス金属積層基板1を透過した超音波を受信する。基板
1の金属板2とセラミックス板3との境界に接合不良が
存在すると、超音波パルスの進行が妨げられるため、こ
の方法では、接合不良が超音波パルス透過強度の低下と
して観察される(例えば、高田ら、非破壊検査、vol
.39,No.2A,(1990),p.139 参照
)。また、図7のように送受信子33から基板1に向け
て超音波パルスを送信して、金属板2とセラミックス板
3との境界からの反射波を送受信子33にて受信する。 健全な接合部ではセラミックス板3と金属板2との音響
インピーダンスの違いに応じて一定の高さの反射波が受
信される。接合不良部では到達した超音波のエネルギー
がほぼ100%反射されるため、送受信子33には健全
部よりも高い振幅の反射波が受信される。このように、
この方法では接合不良が境界からの反射波の振幅の増大
として検出される。(例えば、廣瀬ら、非破壊検査、v
ol.39,No.2A,(1990),p.141 
参照)。
[0003] In view of the above problems, it is important to fabricate a substrate with no bonding defects and to non-destructively detect the presence or absence of bonding defects in the fabricated substrates in the production of ceramic-metal laminated substrates. be. Application of ultrasonic flaw detection is effective in detecting this bonding failure. Conventionally, as ultrasonic flaw detection methods, for example, the following transmission method and boundary reflection method are known. For example, as shown in FIG. 6, the substrate 1 is immersed in water, the transmitter 31 transmits ultrasonic waves, and the receiver 32 receives the ultrasonic waves that have passed through the ceramic-metal laminated substrate 1. If a bonding defect exists at the boundary between the metal plate 2 and the ceramic plate 3 of the substrate 1, the progress of the ultrasonic pulse is hindered, so in this method, the bonding defect is observed as a decrease in the transmitted intensity of the ultrasonic pulse (e.g. , Takada et al., Nondestructive Testing, vol.
.. 39, No. 2A, (1990), p. 139). Further, as shown in FIG. 7, an ultrasonic pulse is transmitted from the transceiver 33 toward the substrate 1, and the reflected wave from the boundary between the metal plate 2 and the ceramic plate 3 is received by the transceiver 33. At a healthy joint, a reflected wave of a certain height is received depending on the difference in acoustic impedance between the ceramic plate 3 and the metal plate 2. Since nearly 100% of the energy of the ultrasonic wave that reaches the defective joint is reflected, the transceiver 33 receives a reflected wave with a higher amplitude than that in the healthy portion. in this way,
In this method, a bonding failure is detected as an increase in the amplitude of the reflected wave from the boundary. (For example, Hirose et al., Nondestructive Testing, v
ol. 39, No. 2A, (1990), p. 141
reference).

【0004】0004

【発明が解決しようとする課題】このセラミックス金属
積層基板の接合不良の検出では、単に不良品を排除する
だけではなく、製造方法の改善のため、製造条件との対
応を調査することが必要である。このため接合不良が2
つの境界面のうちのどの境界面に存在するのかという情
報も付帯して検出することが必要である。これに関して
、前記した2つの方法には以下の問題点がある。 (1)透過法では2つの境界面にある接合不良を一括し
て検出できるが、どの境界面の接合不良かを識別するこ
とができない。 (2)境界反射波法では一度には片方の境界面の接合不
良しか検出できず、2つの境界面の接合不良の検出には
、2回の測定が必要であり、処理能力が低い。本発明は
このような事情に鑑みてなされたものであり、1回の測
定にて2つの境界面の接合不良を独立して検出する方法
及びその方法の実施に用いる装置を提供するものである
[Problem to be Solved by the Invention] In detecting bonding defects in ceramic-metal laminated substrates, it is necessary not only to eliminate defective products, but also to investigate correspondence with manufacturing conditions in order to improve manufacturing methods. be. Therefore, there are 2 bonding defects.
It is also necessary to detect information on which of the two boundary surfaces the object exists on. In this regard, the two methods described above have the following problems. (1) Although the transmission method can detect bonding defects at two interfaces at once, it is not possible to identify which interface has the bonding defect. (2) In the boundary reflected wave method, only one boundary surface defect can be detected at a time, and two measurements are required to detect a bond defect between two boundary surfaces, resulting in low throughput. The present invention has been made in view of these circumstances, and provides a method for independently detecting bonding defects between two interfaces in one measurement, and an apparatus used to implement the method. .

【0005】[0005]

【課題を解決するための手段】本発明は、セラミックス
と金属の三層互層積層体に超音波を送信し、積層の第1
の境界の反射波及び積層の第1の境界と第2の境界とを
透過した透過波を検出し、前記反射波の増大から、第1
の境界における接合不良を検出し、前記透過波の振幅の
低下から第1及び第2の境界を合わせた接合不良を検出
し、これから第1の境界の接合不良を差引いて、第2の
境界における接合不良を検出することを特徴とするセラ
ミックス金属積層基板の接合状態評価方法である。
[Means for Solving the Problems] The present invention transmits ultrasonic waves to a three-layer alternating laminate of ceramics and metal, and
A reflected wave from the boundary and a transmitted wave transmitted through the first boundary and the second boundary of the stack are detected, and from the increase in the reflected wave, the first
Detect a bonding defect at the boundary of This is a method for evaluating the bonding state of a ceramic-metal laminate substrate, which is characterized by detecting bonding defects.

【0006】本発明において、セラミックスと金属との
三層互層積層体は、金属板が2枚で1枚のセラミックス
板を挟んだ積層体でもよく、セラミックス板が2枚で1
枚の金属板を挟んだ積層体でもよい。上記本発明方法を
好適に実施することのできる本発明の装置は、超音波を
発生させる発信回路と、この超音波を送信し被検体の反
射波を受信する送受信子と、前記超音波の被検体透過波
を受信する受信子と、反射波を増幅しその振幅を検出す
る第1の振幅検出回路と、透過波を増幅しその振幅を検
出する第2の振幅検出回路と、この反射波の振幅と透過
波の振幅を演算処理する演算回路と、演算結果を表示す
る表示器とから構成されていることを特徴とするセラミ
ックス金属積層基板の接合状態評価装置である。
In the present invention, the three-layer alternating laminate of ceramics and metal may be a laminate in which two metal plates sandwich one ceramic plate, or two ceramic plates sandwich one ceramic plate.
It may also be a laminate sandwiching two metal plates. The apparatus of the present invention, which can suitably carry out the method of the present invention described above, includes a transmitting circuit that generates ultrasonic waves, a transceiver that transmits the ultrasonic waves and receives reflected waves from a subject, and a receiver of the ultrasonic waves. A receiver that receives the sample transmitted wave, a first amplitude detection circuit that amplifies the reflected wave and detects its amplitude, a second amplitude detection circuit that amplifies the transmitted wave and detects its amplitude, and a receiver that receives the reflected wave. This is a bonding state evaluation device for ceramic-metal laminated substrates, characterized in that it is comprised of an arithmetic circuit that arithmetic processes the amplitude and the amplitude of a transmitted wave, and a display that displays the arithmetic results.

【0007】[0007]

【作用】図1に本発明における超音波測定系の構成を示
す。超音波送受信子11は超音波13を発信し、金属板
2とセラミックス板3との第1の境界面4からの反射波
14を受信する。受信子12は基板1を透過した透過波
15を受信する。第1の境界面4に接合不良が存在する
場合には、送受信子11にとらえられた第1の境界面4
からの反射波14の振幅に増大が生じ、受信子12にと
らえられた透過波15の振幅に低下が生ずる。透過波1
5の振幅を観測するだけでは、この振幅の低下を引き起
こした接合不良が境界面4と境界面5のどちらの境界に
存在するか判らないが、第1の境界面4からの反射波1
4の振幅の増大によって、接合不良は第1の境界面4に
存在することがわかる。第2の境界面5に接合不良が存
在する場合には、第1の境界面4からの反射波14の振
幅には変化が起こらず、透過波15の振幅には低下が生
ずる。この場合には、第1の境界面4からの反射波14
の振幅には変化がないことから、接合不良は第2の境界
面5に存在することがわかる。
[Operation] FIG. 1 shows the configuration of the ultrasonic measuring system according to the present invention. The ultrasonic transceiver 11 emits ultrasonic waves 13 and receives reflected waves 14 from the first interface 4 between the metal plate 2 and the ceramic plate 3. The receiver 12 receives the transmitted wave 15 that has passed through the substrate 1 . If a bonding defect exists on the first interface 4, the first interface 4 caught by the transmitter/receiver 11
The amplitude of the reflected wave 14 from the receiver 12 increases, and the amplitude of the transmitted wave 15 captured by the receiver 12 decreases. Transmitted wave 1
By simply observing the amplitude of the first boundary surface 5, it is not possible to tell which boundary, the boundary surface 4 or the boundary surface 5, the bonding defect that caused this decrease in amplitude exists.
It can be seen from the increase in the amplitude of 4 that a bonding failure exists at the first interface 4. If a bonding defect exists on the second interface 5, the amplitude of the reflected wave 14 from the first interface 4 does not change, and the amplitude of the transmitted wave 15 decreases. In this case, the reflected wave 14 from the first boundary surface 4
Since there is no change in the amplitude of , it can be seen that the bonding defect exists at the second interface 5.

【0008】[0008]

【実施例】以下に、この発明の実施例について図面を参
照して詳しく説明する。図2は、この発明の方法の実施
に用いるセラミックス金属積層基板の接合不良の検出を
行う装置の構成を示す一部断面図を含むブロック図であ
る。図2において超音波送受信子11と受信子12は被
検材であるセラミックス金属積層基板1(以下単に基板
1と略す)を挟んで、対向して配置されている。電気パ
ルス送信回路21にはクロック回路が内蔵されており、
一定の時間間隔をおいて、この電気パルス送信回路21
から電気パルスが送信され、超音波送受信子11に内蔵
された超音波振動子に印加されて、超音波が送信される
。送信された超音波は基板1の表面に達すると、水と金
属板2の音響インピーダンスの相違に応じて一定の割合
にて金属板2に入射する。金属板2とセラミックス板3
との境界(第1の境界面4)に達した超音波は、金属板
2とセラミックス板3あるいは金属板2と接合不良部と
の音響インピーダンスの相違に応じて一定の割合にて反
射され、金属板2と水との界面を経て超音波送受信子1
1に受信される。金属板2とセラミックス板3との第1
の境界面4を透過した超音波パルスは、セラミックス板
3と金属板2との第2の境界面5に達し、セラミックス
板3と金属板2あるいはセラミックス板3と接合不良部
との音響インピーダンスの相違に応じて一定の割合にて
金属板2へ透過し、金属板2と水との境界を経て受信子
12に受信される。超音波送受信子11に受信された第
1の境界面4からの反射波14は、受信増幅回路22A
にて増幅され、振幅検出回路23Aに出力される。振幅
検出回路23Aでは入力された信号から第1の境界面4
にて反射された超音波の振幅AA が検出され、演算処
理回路24に出力される。受信子12に受信された透過
波15は、受信増幅回路22Bにて増幅され、振幅検出
回路23Bに出力される。振幅検出回路23Bでは入力
された信号から透過波15の振幅AB が検出され、演
算処理回路24に出力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a block diagram, including a partial cross-sectional view, showing the configuration of an apparatus for detecting bonding defects in ceramic-metal laminated substrates used to implement the method of the present invention. In FIG. 2, an ultrasonic transmitter/receiver 11 and a receiver 12 are placed facing each other with a ceramic metal laminated substrate 1 (hereinafter simply referred to as substrate 1) being interposed therebetween. The electric pulse transmission circuit 21 has a built-in clock circuit.
At regular intervals, this electric pulse transmitting circuit 21
Electric pulses are transmitted from the ultrasonic transmitter/receiver 11 and applied to the ultrasonic transducer built in the ultrasonic transceiver 11, thereby transmitting ultrasonic waves. When the transmitted ultrasonic waves reach the surface of the substrate 1, they enter the metal plate 2 at a constant rate depending on the difference in acoustic impedance between the water and the metal plate 2. Metal plate 2 and ceramic plate 3
The ultrasonic waves that have reached the boundary (first interface 4) are reflected at a certain rate depending on the difference in acoustic impedance between the metal plate 2 and the ceramic plate 3, or between the metal plate 2 and the defective joint. Ultrasonic transmitter/receiver 1 via the interface between metal plate 2 and water
1 received. The first of the metal plate 2 and the ceramic plate 3
The ultrasonic pulse that has passed through the interface 4 reaches the second interface 5 between the ceramic plate 3 and the metal plate 2, and the acoustic impedance between the ceramic plate 3 and the metal plate 2 or between the ceramic plate 3 and the defective joint is changed. The light passes through the metal plate 2 at a fixed rate depending on the difference, and is received by the receiver 12 through the boundary between the metal plate 2 and water. The reflected wave 14 from the first boundary surface 4 received by the ultrasonic transceiver 11 is transmitted to the receiving amplifier circuit 22A.
The signal is amplified and output to the amplitude detection circuit 23A. The amplitude detection circuit 23A detects the first boundary surface 4 from the input signal.
The amplitude AA of the ultrasonic wave reflected at is detected and output to the arithmetic processing circuit 24. The transmitted wave 15 received by the receiver 12 is amplified by the reception amplifier circuit 22B and output to the amplitude detection circuit 23B. The amplitude detection circuit 23B detects the amplitude AB of the transmitted wave 15 from the input signal and outputs it to the arithmetic processing circuit 24.

【0009】演算処理回路24においては、入力された
第1の境界面4からの反射波14の振幅AA 及び透過
波15の振幅AB から、以下のように接合不良の有無
を判定し、表示器25はその結果を表示する。TA 及
びTB は、接合不良の有無の判定のために振幅に対し
て適宜設定されるしきい値である。 (1)AA ≧TA かつAB ≦TB のとき、第1
の境界面に接合不良が存在 (2)AA <TA かつAB ≦TB のとき、第2
の境界面に接合不良が存在 (3)AA <TA かつAB >TB のとき、接合
不良はなし 図3は図2に示した装置の送受信子11及び受信子12
を、基板1に対して図4に示すように全面走査して得ら
れた測定結果の一例を示したものであり、第1の境界面
及び第2の境界面の接合不良が明瞭に分離され検出され
ている。
[0009] The arithmetic processing circuit 24 determines the presence or absence of a bonding defect from the input amplitude AA of the reflected wave 14 and the amplitude AB of the transmitted wave 15 from the first boundary surface 4 as follows, and displays the display on the display. 25 displays the results. TA and TB are thresholds that are appropriately set for the amplitude in order to determine the presence or absence of a bonding defect. (1) When AA ≧TA and AB ≦TB, the first
(2) When AA < TA and AB ≤ TB, the second
(3) When AA < TA and AB > TB , there is no joining defect.
Figure 4 shows an example of the measurement results obtained by scanning the entire surface of the substrate 1 as shown in Figure 4. Detected.

【0010】0010

【発明の効果】以上説明したように、本発明によればセ
ラミックス金属積層基板の2つの接合面の接合不良を一
度の測定にて独立して検出できるので、本発明方法及び
装置はセラミックス金属積層基板の品質の非破壊検査に
極めて有効に利用することができる。
As explained above, according to the present invention, bonding defects between two bonding surfaces of a ceramic-metal laminated substrate can be independently detected in one measurement. It can be used extremely effectively for non-destructive inspection of board quality.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるセラミックス金属積層基板の接合
不良の検出方法を示す説明図である。
FIG. 1 is an explanatory diagram showing a method for detecting bonding defects in a ceramic-metal laminate substrate according to the present invention.

【図2】本発明の方法の実施に用いるセラミックス金属
積層基板の接合不良の検出を行う装置の構成を示す一部
断面図を含むブロック図である。
FIG. 2 is a block diagram including a partial cross-sectional view showing the configuration of an apparatus for detecting bonding defects in ceramic-metal laminated substrates used in carrying out the method of the present invention.

【図3】送受信子及び受信子をセラミックス金属積層基
板に対して走査して得られた接合不良の検出結果を示す
画像図である。
FIG. 3 is an image diagram showing a detection result of a bonding failure obtained by scanning a transmitting/receiving element and a receiving element with respect to a ceramic-metal laminated substrate.

【図4】図3における送受信子及び受信子の走査方法を
示す説明図である。
FIG. 4 is an explanatory diagram showing a method of scanning the transmitter/receiver and receiver in FIG. 3;

【図5】セラミックス金属積層基板の構造の例を示す断
面図である。
FIG. 5 is a cross-sectional view showing an example of the structure of a ceramic-metal laminate substrate.

【図6】従来からの透過法によるセラミックス金属積層
基板の接合不良の検出方法を示す説明図である。
FIG. 6 is an explanatory diagram showing a conventional method for detecting bonding defects in ceramic-metal laminated substrates using a transmission method.

【図7】従来からの境界反射法によるセラミックス金属
積層基板の接合不良の検出方法を示す説明図である。
FIG. 7 is an explanatory diagram illustrating a method for detecting bonding defects in ceramic-metal laminated substrates using a conventional boundary reflection method.

【符号の説明】[Explanation of symbols]

1    セラミックス金属積層基板      2 
   金属板3    セラミックス板       
         4    第1の境界面 5    第2の境界面              
    11  送受信子12  受信子      
                  13  送信波
14  第1の境界面からの反射波      15 
 透過波21  電気パルス送信回路        
    22A,22B  受信増幅回路 23A,23B  振幅検出回路        24
  演算処理回路
1 Ceramic metal laminate substrate 2
Metal plate 3 Ceramic plate
4 First boundary surface 5 Second boundary surface
11 Transmitter/receiver 12 Receiver
13 Transmitted wave 14 Reflected wave from the first boundary surface 15
Transmitted wave 21 Electric pulse transmission circuit
22A, 22B Reception amplifier circuit 23A, 23B Amplitude detection circuit 24
Arithmetic processing circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  セラミックスと金属の三層互層積層体
に超音波を送信し、積層の第1の境界の反射波及び積層
の第1の境界と第2の境界とを透過した透過波を検出し
、該反射波から第1の境界における接合不良を検出し、
前記透過波と前記反射波から第2の境界における接合不
良を検出することを特徴とするセラミックス金属積層基
板の接合状態評価方法。
Claim 1: Sending ultrasonic waves to a three-layer alternating laminate of ceramics and metal, and detecting waves reflected from a first boundary of the laminate and transmitted waves that passed through the first boundary and second boundary of the laminate. and detecting a bonding defect at the first boundary from the reflected wave,
A method for evaluating a bonding state of a ceramic-metal laminated substrate, comprising detecting a bonding failure at a second boundary from the transmitted wave and the reflected wave.
【請求項2】  超音波を発生させる発信回路と、該超
音波を送信し被検体の反射波を受信する送受信子と、該
超音波の被検体透過波を受信する受信子と、前記反射波
を増幅してその振幅を検出する第1の振幅検出回路と、
前記透過波を増幅してその振幅を検出する第2の振幅検
出回路と、前記反射波の振幅と前記透過波の振幅を演算
処理する演算回路と、演算結果を表示する表示器とから
なることを特徴とするセラミックス金属積層基板の接合
状態評価装置。
2. A transmitting circuit that generates ultrasonic waves, a transceiver that transmits the ultrasonic waves and receives reflected waves from a subject, a receiver that receives waves transmitted through the subject of the ultrasonic waves, and the reflected waves. a first amplitude detection circuit that amplifies and detects the amplitude;
consisting of a second amplitude detection circuit that amplifies the transmitted wave and detects its amplitude; an arithmetic circuit that arithmetic processes the amplitude of the reflected wave and the amplitude of the transmitted wave; and a display that displays the calculation results. A bonding condition evaluation device for ceramic-metal laminated substrates, which is characterized by:
JP3026082A 1991-02-20 1991-02-20 Method and apparatus for evaluating bonded state of ceramics metal laminated substrate Pending JPH04265855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3026082A JPH04265855A (en) 1991-02-20 1991-02-20 Method and apparatus for evaluating bonded state of ceramics metal laminated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3026082A JPH04265855A (en) 1991-02-20 1991-02-20 Method and apparatus for evaluating bonded state of ceramics metal laminated substrate

Publications (1)

Publication Number Publication Date
JPH04265855A true JPH04265855A (en) 1992-09-22

Family

ID=12183707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3026082A Pending JPH04265855A (en) 1991-02-20 1991-02-20 Method and apparatus for evaluating bonded state of ceramics metal laminated substrate

Country Status (1)

Country Link
JP (1) JPH04265855A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010662A (en) * 2004-06-22 2006-01-12 Creative Technology:Kk Inspection method for electrostatic chuck
JP2008180523A (en) * 2007-01-23 2008-08-07 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and ultrasonic inspection device
WO2010113651A1 (en) * 2009-03-31 2010-10-07 住友金属工業株式会社 Method for evaluating connection state of pipe thread coupling, method for pipe thread coupling connection, and device for evaluating connection state of pipe thread coupling
CN101929983A (en) * 2010-08-24 2010-12-29 深南电路有限公司 Detection method for interlayer combination of PCB product with metal base
JP2015010944A (en) * 2013-06-28 2015-01-19 株式会社豊田中央研究所 Bondability evaluation device and bondability evaluation method
JP2017173175A (en) * 2016-03-24 2017-09-28 三菱マテリアル株式会社 Power module substrate ultrasonic inspection device and power module substrate ultrasonic inspection method
CN108318582A (en) * 2017-12-26 2018-07-24 中国航空工业集团公司基础技术研究院 A kind of signal acquisition method for the transmission parallel detection of sandwich structure ultrasonic reflection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010662A (en) * 2004-06-22 2006-01-12 Creative Technology:Kk Inspection method for electrostatic chuck
JP2008180523A (en) * 2007-01-23 2008-08-07 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and ultrasonic inspection device
WO2010113651A1 (en) * 2009-03-31 2010-10-07 住友金属工業株式会社 Method for evaluating connection state of pipe thread coupling, method for pipe thread coupling connection, and device for evaluating connection state of pipe thread coupling
JP2010237084A (en) * 2009-03-31 2010-10-21 Sumitomo Metal Ind Ltd Method for evaluating connection state of pipe screw joint, method for connecting pipe screw joint, and device for evaluating connection state of pipe screw joint
US8438926B2 (en) 2009-03-31 2013-05-14 Nippon Steel & Sumitomo Metal Corporation Method of evaluating fastening state of threaded joint of pipes or tubes, method for fastening threaded joint of pipes or tubes, and apparatus for evaluating fastening state of threaded joint of pipes or tubes
CN101929983A (en) * 2010-08-24 2010-12-29 深南电路有限公司 Detection method for interlayer combination of PCB product with metal base
JP2015010944A (en) * 2013-06-28 2015-01-19 株式会社豊田中央研究所 Bondability evaluation device and bondability evaluation method
JP2017173175A (en) * 2016-03-24 2017-09-28 三菱マテリアル株式会社 Power module substrate ultrasonic inspection device and power module substrate ultrasonic inspection method
CN108318582A (en) * 2017-12-26 2018-07-24 中国航空工业集团公司基础技术研究院 A kind of signal acquisition method for the transmission parallel detection of sandwich structure ultrasonic reflection
CN108318582B (en) * 2017-12-26 2021-04-20 中国航空工业集团公司基础技术研究院 Signal acquisition method for ultrasonic reflection and transmission parallel detection of sandwich structure

Similar Documents

Publication Publication Date Title
Blomme et al. Air-coupled ultrasonic NDE: experiments in the frequency range 750 kHz–2 MHz
US6070466A (en) Device for ultrasonic inspection of a multi-layer metal workpiece
JPH04265853A (en) Method and apparatus for identifying flaw depth in checking of tubular product
CN108225632A (en) A kind of residual stress non-linear ultrasonic detection method
JPH09243584A (en) Apparatus and method for performing test and inspection of one area of structure
JPH04265855A (en) Method and apparatus for evaluating bonded state of ceramics metal laminated substrate
US6839640B2 (en) Method and apparatus for diagnosing damages of conductive materials
JP2001021541A (en) Inspection method of multilayer member
JP2009145229A (en) Method and device for testing interface
Greenhall et al. Nonlinear acoustic crack detection in thermoelectric wafers
JP2012068209A (en) Material diagnostic method and apparatus using ultrasonic wave
JP3793873B2 (en) Apparatus for measuring elastic parameters of material surfaces and coating layers
Dixon et al. The analysis of adhesive bonds using electromagnetic acoustic transducers
JPS591980B2 (en) Ultrasonic inspection device
US20180364199A1 (en) Method and device for determining quality of a bond
US5046363A (en) Apparatus for rapid non-destructive measurement of die attach quality in packaged integrated circuits
CN108732246B (en) Design of receiving and transmitting integrated array sensor for detecting weld joint through ultrasonic guided wave
JP3459982B2 (en) Damage sensing sheet
Farlow et al. Advances in air coupled NDE for rapid scanning applications
Dixon et al. Considerations for the ultrasonic inspection of metal-adhesive bonds using EMATs
JP7273375B2 (en) Deterioration measurement device and deterioration measurement method for adhesive joints
JP2739972B2 (en) Ultrasonic flaw detector
España et al. Peniel method for the automation of the ultrasonic monitoring based on the acoustic impedance
JP2701581B2 (en) Layer thickness measurement method
Canumalla Thin layer acoustic image interpretation and metrology for microelectronics using a broadband model