JPH0426535A - Cement admixture and polymer cement composition - Google Patents

Cement admixture and polymer cement composition

Info

Publication number
JPH0426535A
JPH0426535A JP13031990A JP13031990A JPH0426535A JP H0426535 A JPH0426535 A JP H0426535A JP 13031990 A JP13031990 A JP 13031990A JP 13031990 A JP13031990 A JP 13031990A JP H0426535 A JPH0426535 A JP H0426535A
Authority
JP
Japan
Prior art keywords
cement
polymer
admixture
weight
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13031990A
Other languages
Japanese (ja)
Inventor
Etsuro Sakai
悦郎 坂井
Keiichi Kosuge
啓一 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP13031990A priority Critical patent/JPH0426535A/en
Publication of JPH0426535A publication Critical patent/JPH0426535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To improve initial shrinkage by adding a cement admixture based on an expandable admixture having a specified specific surface area and a polymer to cement. CONSTITUTION:An expandable admixture having >=2m<2>/g specific surface area obtd. by crushing materials such as hauyne and calcium oxide and an emulsion of synthetic resin such as an ethylene-vinyl acetate copolymer and/or latex of synthetic rubber such as a styrene-butadiene copolymer are used as principal components and 1-5 pts.wt. defoaming agent such as alcohol based on 100 pts.wt. solid matter of the polymer and a dispersant such as a salt of a naphthalenesulfonic acid-formaldehyde condensation product are added to the principal components to prepare a cement admixture. This cement admixture is added to cement such as Portland cement so as to regulate the amt. of the expandable admixture to 1-25 pts.wt. per 100 pts.wt. of the cement, that of the emulsion and/or the latex to 1-25 pts.wt. and that of the dispersant to 0.02-5 pts.wt. They are kneaded and a polymer cement compsn. having improved initial shrinkability is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、初期収縮の改善されたポリマーセメント用の
セメント混和材とそれを使用したポリマーセメント組成
物に関し、詳しくは、一般に利用されている壁材、補修
材及び防水材等の他、高品質や高耐久性のコンクリート
やグラウト材、あるいは、建材など多岐にわたって使用
される、ポリマーセメント用のセメント混和材とそれを
使用したポリマーセメント組成物に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a cement admixture for polymer cement with improved initial shrinkage and a polymer cement composition using the same. Cement admixtures for polymer cement and polymer cement compositions using the same are used in a wide variety of applications, including wall materials, repair materials, waterproofing materials, high-quality and highly durable concrete and grout materials, and building materials. Regarding.

(従来の技術及びその課題) 従来より、接着性や作業性あるいはひび割れ抵抗性など
を改善する目的でポリマーセメントは広範囲に利用され
てきている。
(Prior art and its problems) Polymer cement has been widely used for the purpose of improving adhesiveness, workability, cracking resistance, etc.

しかしながら、これらのうち、特に、親水性のある七ツ
マ−を共重合体組成物中に含んだポリマーを添加した場
合には、初期に急激な収縮が生じ、また、コンクリート
やグラウト材においては、透き間を生じたりして、健全
な構造体が得られないという課題があった。
However, among these, when a polymer containing a hydrophilic 7-mer in the copolymer composition is added, rapid shrinkage occurs at the initial stage, and in concrete and grout materials, There was a problem that a sound structure could not be obtained due to the occurrence of gaps.

ポリマーセメントは、緻密性とひび割れ抵抗性が優れて
いることにより、最近、新しい技術として耐久性の強い
コンクリートや締め固めが不用なコンクリートであるハ
イパーフォーマンスコンクリートなどへの応用が検討さ
れているが、これらの分野への展開を考えると、この初
期の収縮を改善して不等沈下などを生じないようにする
ことが切望されている。
Due to its excellent density and cracking resistance, polymer cement has recently been considered as a new technology for use in highly durable concrete and hyper-performance concrete, which does not require compaction. Considering the development in these fields, it is strongly desired to improve this initial shrinkage and prevent uneven settlement.

本発明者らは、前記の課題を解決すべく種々検討を加え
た結果、特定の膨張性混和材を使用することにより前記
課題を解決し、初期収縮の少ないセメント組成物の提供
が可能であることを知見し本発明を完成するに至った。
The present inventors conducted various studies to solve the above-mentioned problems, and as a result, it was possible to solve the above-mentioned problems by using a specific expandable admixture, and to provide a cement composition with less initial shrinkage. Having discovered this, we have completed the present invention.

(課題を解決するための手段) 即ち、本発明は、比表面積が2rrf/g以上の膨張性
混和材と、ポリマーとを主成分とするセメント混和材で
あり、さらに、セメント質物質と該セメント混和材とを
含有してなるポリマーセメント組成物である。
(Means for Solving the Problems) That is, the present invention is a cement admixture mainly comprising an expandable admixture having a specific surface area of 2rrf/g or more and a polymer, and further comprising a cementitious substance and the cement. A polymer cement composition comprising an admixture.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係る膨張性混和材とは、成分的には、アライン
鉱物系、酸化カルシウム系、仮焼ミゴウバン系、結晶性
や非晶質性の、あるいは両者の混合物であるカルシウム
アルミネート−CaSO,系及びCaSO4系等のよう
に、反応により膨張性水和物であるエトリンガイトやC
a (OH) zを生成するものであり、また、鉄粉な
どのように水酸化物を生成するものも含まれる。このう
ち、膨張材として通常使用されている、アライン鉱物系
及び酸化カルシウム系の使用が、その安全性の面から好
ましく、各々、電気化学工業■製部品名[デンカ−C5
AJや小野田セメント■製画品名[オノダーエクスバン
]などとして市販されているものが成分的に使用可能で
ある。
In terms of components, the expandable admixture according to the present invention includes align mineral-based, calcium oxide-based, calcined mineral-based calcium aluminate-CaSO, which is crystalline or amorphous, or a mixture of both. Ettringite and C, which are expandable hydrates by reaction, such as CaSO4 and CaSO4
It generates a (OH) z, and also includes those that generate hydroxides such as iron powder. Among these, it is preferable to use Align mineral type and calcium oxide type, which are commonly used as expansion materials, from the viewpoint of safety.
Commercially available products such as AJ and Onoda Cement Product Name [Onoda Exban] can be used as ingredients.

本発明に係る膨張性混和材は、粉砕して、比表面積を大
としたものである。通常、市販の膨張材のガス吸着法に
よる比表面積は、2rrf/gを越えることはないが、
本発明に係る膨張性混和材の比表面積は2 rd/g以
上であり、4 rrT/g以上が好ましい。
The expandable admixture according to the present invention is pulverized to have a large specific surface area. Normally, the specific surface area of commercially available inflatable materials measured by gas adsorption method does not exceed 2rrf/g.
The specific surface area of the expandable admixture according to the present invention is 2 rd/g or more, preferably 4 rrT/g or more.

膨張性混和材の使用量は、ポリマーの使用量と連動して
おり、通常、ポリマーの使用量が増加すると増加する。
The amount of expandable admixture used is linked to the amount of polymer used, and typically increases as the amount of polymer used increases.

一般には、セメント質物1100重量部に対して、1〜
25重量部程度が好ましい。1重量部以下では収縮を低
減する効果は少なく、25重量部を越えると、長期にお
いて膨張破壊を生じる可能性がある。
Generally, 1 to 1 to 100 parts by weight of cementitious material
About 25 parts by weight is preferred. If it is less than 1 part by weight, the effect of reducing shrinkage is small, and if it exceeds 25 parts by weight, expansion and destruction may occur over a long period of time.

本発明で使用するセメント質物質としては、普通・早強
・超早強・耐硫酸塩及び白色等の各種ポルトランドセメ
ント、これらポルトランドセメントにポゾラン物質を混
合した各種混合セメント、アルミナセメント、さらには
、低発熱や超低発熱セメント等が挙げられる。
Cementitious substances used in the present invention include various types of Portland cement such as normal, early strength, super early strength, sulfate resistant, white, etc., various mixed cements made by mixing these Portland cements with pozzolan substances, alumina cement, and Examples include low heat generation cement and ultra-low heat generation cement.

セメント質物質としてアルミナセメントを使用する際、
アルミナセメントの硬化調整剤として、各種硫酸塩、硝
酸塩、炭酸塩及びリチウム塩等の無機塩や、CaC1z
、Ca (OH) z、ホウ砂及びホウ酸等の無機物、
さらに、クエン酸、トリボIJ IJ :/[、ビロリ
ン酸、酒石酸及びグルコン酸等の有機酸又はそれらの塩
のうち一種又は二種以上が使用可能である。
When using alumina cement as a cementitious material,
As a hardening regulator for alumina cement, inorganic salts such as various sulfates, nitrates, carbonates, and lithium salts, as well as CaC1z
, Ca (OH) z, inorganic substances such as borax and boric acid,
Furthermore, one or more organic acids or salts thereof such as citric acid, triboIJ IJ :/[, birophosphoric acid, tartaric acid, and gluconic acid can be used.

硬化調整剤の使用量は、アルミナセメントを主成分とす
るセメント質物t100重量部に対して、0.005〜
2重量部が好ましい。
The amount of hardening modifier used is 0.005 to 100 parts by weight of cementitious material whose main component is alumina cement.
2 parts by weight is preferred.

また、前記セメント質物質に、さらに、超微粉と、ナフ
タレンスルホン酸ホルマリン縮合物やメラミン樹脂スル
ホン酸塩あるいは精製リグニンスルホン酸塩等を主成分
とする分散剤を併用することも可能である。
Further, it is also possible to use the above-mentioned cementitious material together with an ultrafine powder and a dispersant whose main components are a naphthalene sulfonic acid formalin condensate, a melamine resin sulfonate, a purified lignin sulfonate, or the like.

一般には、セメント質物質の平均粒径はIOμ程度であ
る。超微粉は、そのセメント質物質と比較して少なくと
もlオーダー小さいものであり、シリカヒユーム、高炉
スラグやフライアッシュなどの微粉砕品などを使用する
ことは経済性の面から好ましい。
Generally, the average particle size of cementitious materials is on the order of IOμ. The ultrafine powder is at least one order of magnitude smaller than the cementitious material, and it is preferable from an economic point of view to use finely pulverized products such as silica fume, blast furnace slag, and fly ash.

セメント質物質、超微粉及び分散剤を使用する場合、セ
メント質物質100重量部に対して、分散剤を1〜3重
量部添加すると、使用水量がセメント質物質100重量
部に対して、40重量部以下としても、非常に良好な流
動性を確保することが可能である。
When using a cementitious material, ultrafine powder, and a dispersant, if 1 to 3 parts by weight of the dispersing agent is added to 100 parts by weight of the cementitious material, the amount of water used will be 40 parts by weight per 100 parts by weight of the cementitious material. It is possible to ensure very good fluidity even if the amount is less than 30%.

また、一般に使用されている高炉スラグやフライアッシ
ュなどを主成分とする混和材や、その他凝結遅延剤や促
進剤などの混和剤を併用することも可能である。
It is also possible to use commonly used admixtures mainly composed of blast furnace slag and fly ash, as well as other admixtures such as setting retarders and accelerators.

本発明に係るポリマーは、主としてセメント混和用に開
発されたものであれば特に制限されるものではなく、粉
状又は液状のいずれも使用可能である。
The polymer according to the present invention is not particularly limited as long as it is primarily developed for mixing with cement, and either powder or liquid form can be used.

本発明では、合成樹脂エマルシラン及び/又は合成ゴム
ラテックスを使用する。
In the present invention, synthetic resin emulsilane and/or synthetic rubber latex are used.

本発明は、さらに、膨張性混和材を併用し、従来のポリ
マーセメント系の特徴であるひび割れ抵抗性や接着性を
維持させ、かつ、初期の大きな収縮を改善するものであ
る。
The present invention further uses an expandable admixture to maintain the crack resistance and adhesion properties characteristic of conventional polymer cement systems, and to improve initial large shrinkage.

合成樹脂エマルジョンとは、一般にビニルポリマーを示
し、エチレン−酢酸ビニル共重合体系、塩化ビニリデン
系、アクリル系及び塩化ビニル系等が挙げられる。
The synthetic resin emulsion generally refers to vinyl polymers, and examples include ethylene-vinyl acetate copolymer systems, vinylidene chloride systems, acrylic systems, and vinyl chloride systems.

また、合成ゴムラテックスとは、一般にジエンモノマー
から合成された合成ゴム質のもので、スチレン−ブタジ
ェン共重合体系(SBR)、アクリロニトリル−ブタジ
ェン共重合系(NB)、メチルメタクリレート−ブタジ
ェン共重合体系(M8)、ポリブタジェン系及びポリク
ロロプレン系等が挙げられる。
Synthetic rubber latex is generally a synthetic rubber compound synthesized from diene monomers, including styrene-butadiene copolymer (SBR), acrylonitrile-butadiene copolymer (NB), and methyl methacrylate-butadiene copolymer (NB). M8), polybutadiene type, polychloroprene type, etc.

このうち、特に、親水性の高い七ツマ−1例えば、酢酸
ビニルなどをその共重合体組成に含むポリマーなどは、
注水直後の初期の収縮が著しく大きい。
Among these, polymers containing highly hydrophilic hetamine-1, such as vinyl acetate, etc., in their copolymer composition are particularly
The initial shrinkage immediately after water injection is extremely large.

この理由は定かではないが、残存モノマーの溶出か、あ
るいは、浸透圧効果によるポリマーの収縮が原因である
と推察している。
Although the reason for this is not certain, it is assumed that the cause is elution of the remaining monomer or contraction of the polymer due to osmotic pressure effects.

通常、これら合成樹脂エマルジョンや合成ゴムラテック
スを乳化重合により製造する際、乳化安定剤として、保
護コロイドの作用をする水溶性高分子を使用することが
可能である。
Usually, when these synthetic resin emulsions and synthetic rubber latexes are produced by emulsion polymerization, it is possible to use a water-soluble polymer that acts as a protective colloid as an emulsion stabilizer.

ここで、水溶性高分子としてはポリビニルアルコール(
PVA)やヒドロキシエチルセルロース(HEC)など
が挙げられる。
Here, polyvinyl alcohol (
PVA) and hydroxyethyl cellulose (HEC).

また、本発明において、分散剤を併用する場合には、こ
れら水溶性高分子を乳化安定剤として使用すると流動性
に悪影響をおよぼす傾向がある。
Furthermore, in the present invention, when a dispersant is used in combination, the use of these water-soluble polymers as emulsion stabilizers tends to have an adverse effect on fluidity.

また、これら水溶性高分子を保護コロイドとして使用し
ない場合は、乳化安定剤として界面活性剤を使用するこ
とや、重合過程で形成される水溶性オリゴマーが乳化安
定剤として働くため重合開始剤濃度を高くするように、
重合開始剤を使用することが好ましい。
In addition, when these water-soluble polymers are not used as protective colloids, it is necessary to use a surfactant as an emulsion stabilizer, or to control the polymerization initiator concentration because the water-soluble oligomers formed during the polymerization process act as emulsion stabilizers. To make it higher,
Preference is given to using a polymerization initiator.

界面活性剤としては、アニオン性、カチオン性及びノニ
オン性のものが使用可能である。
As the surfactant, anionic, cationic and nonionic surfactants can be used.

アニオン性界面活性剤としては、ビニルスルホン酸ソー
ダ、スチレンスルホン酸ソーダ、2−スルホエチルメタ
クリレートソーダ、アリルアルキルスルホコハク酸ソー
ダ、高級アルコール硫酸エステルソーダ塩及びポリオキ
シエチレンアルキルフェニルエーテルサルフェートアン
モニウム塩等が挙げられる。
Examples of anionic surfactants include sodium vinyl sulfonate, sodium styrene sulfonate, sodium 2-sulfoethyl methacrylate, sodium allyl alkyl sulfosuccinate, higher alcohol sulfate ester sodium salt, and polyoxyethylene alkylphenyl ether sulfate ammonium salt. It will be done.

また、カチオン性界面活性荊としては、2−アミノエチ
ルメタクリレート塩酸塩や2−ヒドロキン−3−トリメ
チルアミノプロピルメタクリレトクロライドなどが挙げ
られる。
Further, examples of the cationic surfactant include 2-aminoethyl methacrylate hydrochloride and 2-hydroquine-3-trimethylaminopropyl methacrylate chloride.

さらに、ノニオン性界面活性剤としては、ポリオキシエ
チレンメタクリレート、ポリオキシエチレンポリオキシ
プロビルエーテル、ポリオキシエチレンノニルフェニル
エーテル及びポリオキシエチレンスチリルフェニルエー
テル等が挙げられる。
Furthermore, examples of nonionic surfactants include polyoxyethylene methacrylate, polyoxyethylene polyoxypropyl ether, polyoxyethylene nonylphenyl ether, and polyoxyethylene styryl phenyl ether.

界面活性剤の使用量は、ポリマーの固形分100重量部
に対して、0.O1〜10重量部程度が好ましい。
The amount of surfactant used is 0.00 parts by weight per 100 parts by weight of the solid content of the polymer. About 1 to 10 parts by weight of O is preferable.

0.01重量部未満では乳化重合を行なうことは困難で
あり、10重量部を越えると、ポリマーの耐候性、耐ア
ルカリ性及び耐水性等に悪影響をおよぼす傾向がある。
If it is less than 0.01 parts by weight, it is difficult to carry out emulsion polymerization, and if it exceeds 10 parts by weight, it tends to have an adverse effect on the weather resistance, alkali resistance, water resistance, etc. of the polymer.

重合開始剤としては、電解基として過硫酸カリウム等の
過硫酸塩、カルボキシル基を有する2、4゛アゾビスー
シアノハレリンクアシソドやアミノ基を有する2、2”
−アゾビスイソブチルアミデイン塩などが挙げられる。
Examples of polymerization initiators include persulfates such as potassium persulfate as electrolytic groups, 2,4'azobis-cyanohaleric acid having a carboxyl group, and 2,2'' having an amino group.
-Azobisisobutyramideine salts and the like.

重合開始剤の使用量は、ポリマーの固形分100重量部
に対して、0.01〜1重量部程度が好ましい。
The amount of the polymerization initiator used is preferably about 0.01 to 1 part by weight based on 100 parts by weight of the solid content of the polymer.

0.01重量部未満では乳化重合を行なうことが難しく
、1重量部を越えると、これらポリマーの耐候性、耐ア
ルカリ性及び耐水性等に悪影響をおよぼす傾向がある。
If it is less than 0.01 part by weight, it is difficult to carry out emulsion polymerization, and if it exceeds 1 part by weight, it tends to have an adverse effect on the weather resistance, alkali resistance, water resistance, etc. of these polymers.

このようにして得られたポリマーの固形分の粒径は、0
.05〜5μ程度である。
The particle size of the solid content of the polymer thus obtained is 0.
.. It is about 05 to 5μ.

これらのポリマーに流動性を与えるため、他のコモノマ
ーを共重合させることは好ましい。
In order to impart fluidity to these polymers, it is preferred to copolymerize with other comonomers.

これらコモノマーとしては、ビニルプロピオネト、ビニ
ルカブリレート、ビニルエステル、バーサチック酸ビニ
ル、ジブチルマレエート、ジエチルへキシルアクリレー
ト、エチルアクリレート(EA)、ブチルアクリレート
(BA)及びエチルへキシルアクリレート(EHA)等
のアクリルなどが挙げられる。
These comonomers include vinyl propionate, vinyl cabrylate, vinyl ester, vinyl versatate, dibutyl maleate, diethylhexyl acrylate, ethyl acrylate (EA), butyl acrylate (BA), and ethylhexyl acrylate (EHA). Examples include acrylic.

なお、これらコモノマーを組み合わせて共重合すること
も当然可能である。
Note that it is naturally possible to copolymerize a combination of these comonomers.

これらコモノマーの使用量は、ポリマー100重量部に
対して、10〜80重量部が好ましい。
The amount of these comonomers used is preferably 10 to 80 parts by weight per 100 parts by weight of the polymer.

エチレン−酢酸ビニル共重合体系においては、接着性や
ひび割れ抵抗性を得るために、酢酸ビニルを、ポリマー
100重量部に対して、20〜80重量部使用すること
が好ましい。20重量部未満では接着強度やひび割れ抵
抗性は劣り、80重量部を越えると耐アルカリ性に劣る
傾向がある。
In the ethylene-vinyl acetate copolymer system, it is preferable to use 20 to 80 parts by weight of vinyl acetate per 100 parts by weight of the polymer in order to obtain adhesive properties and crack resistance. If it is less than 20 parts by weight, adhesive strength and cracking resistance tend to be poor, and if it exceeds 80 parts by weight, alkali resistance tends to be poor.

ポリマーの使用量は、セメント質物質100重量部に対
して、固形分で1〜25重量部が好ましく、2〜20重
量部がより好ましい。1重量部以下では接着性やひび割
れ抵抗性に劣り、25重量部を越えると力学的性状が劣
る傾向がある。
The amount of the polymer used is preferably 1 to 25 parts by weight, more preferably 2 to 20 parts by weight, based on solid content, based on 100 parts by weight of the cementitious material. If it is less than 1 part by weight, the adhesion and cracking resistance tend to be poor, and if it exceeds 25 parts by weight, the mechanical properties tend to be poor.

膨張性混和材とポリマーの混合方法は、特に制限される
ものではなく、あらかじめプレミックスしておく方法で
もよく、また、モルタルやコンクリート製造時に添加す
る方法でもよく、その混合順序も特に制限されるもので
はない。
The method of mixing the expandable admixture with the polymer is not particularly limited; it may be premixed in advance, or it may be added during mortar or concrete production, and the mixing order is also not particularly limited. It's not a thing.

なお、ポリマーをセメント質物質に添加すると気泡が連
行され、その硬化体の強度や緻密性が低下するため、こ
れらに消泡剤などを併用することは好ましい。
Note that when a polymer is added to a cementitious material, air bubbles are entrained and the strength and density of the cured product are reduced, so it is preferable to use an antifoaming agent or the like in combination with the polymer.

消泡剤としては、ごま油などの油脂系、ステアリン酸な
どの脂肪酸系、オクチルアルコールなどのアルコール系
、ソルビタン脂肪酸エステルなどの多価アルコールと脂
肪酸の部分エステル系、ポリオキシエチレンポリオキシ
プロピレンエーテル系、パラフィン系及びシリコーン系
等が挙げられる。具体的には、アルコール系では、三洋
化成工業■製商品名「カラリン302」などが、また、
ポリオキシエチレンポリオキシプロピレンエーテル系で
は、東邦化学■製画品名「プロナール502」や花王製
製部品名FアンチホームE−20Jなどが、さらに、シ
リコーン系では東芝シリコーン■製商品名rTSA 7
32Jなどが挙げられる。
Antifoaming agents include oils and fats such as sesame oil, fatty acids such as stearic acid, alcohols such as octyl alcohol, partial esters of polyhydric alcohols and fatty acids such as sorbitan fatty acid ester, polyoxyethylene polyoxypropylene ether, Examples include paraffin type and silicone type. Specifically, alcohol-based products include "Karalin 302" manufactured by Sanyo Chemical Industries, Ltd.;
Polyoxyethylene polyoxypropylene ether-based products include Toho Chemical's product name "Pronal 502" and Kao's product name F-Antihome E-20J, and silicone-based products include Toshiba Silicone's product name rTSA 7.
Examples include 32J.

消泡剤の使用量は、ポリマーの固形分100重量部に対
して、1〜531量部程度が好ましい。
The amount of antifoaming agent used is preferably about 1 to 531 parts by weight based on 100 parts by weight of the solid content of the polymer.

さらに、乳化安定剤として水溶性ポリマーを含有しない
ポリマーに、分散剤を併用することにより水セメント比
を低くしても流動性を損なうことなく、接着性、緻密性
及びひび割れ抵抗性等に優れ、耐久性も向上した高強度
ポリマーセメント組成物とすることも可能である。
Furthermore, by using a dispersant in combination with a polymer that does not contain a water-soluble polymer as an emulsion stabilizer, fluidity is not impaired even when the water-cement ratio is lowered, and the product has excellent adhesion, denseness, and cracking resistance. It is also possible to create high strength polymer cement compositions with improved durability.

分散剤としては、ナフタレンスルホン酸ホルマリン縮合
物の塩、メラミンスルホン酸ホルムアルデヒド縮金物の
塩、リグニンスルホン酸塩、高分子量りゲニンスルホン
酸塩及びポリカルボン酸塩等があり、具体的には、ナフ
タレンスルホン酸ホルマリン縮合物の塩としては、電気
化学工業■製[デンカPT−500Jや第一工業製薬■
製商品名「セルフロー110PJなどが、メラミンスル
ホン酸ホルムアルデヒド縮金物の塩としては、日本シー
カ■製画品名[シーカメントFPJや昭和電工■製部品
名「メルメント」などが、リグニンスルホン酸塩として
は、重陽国策バルブ■製部品名FサンフローXJや神戸
材料■製画品名「リグナールG」などが、高分子■リグ
ニンスルホン酸塩としては、ポルガード社製商品名[ウ
ルトラジン]などが、ポリカルボン酸塩としては、カル
ボキシル基含有重合体にアルキレンイミン及び/又はア
ルキレンオキサイドを付加反応した、日本触媒化学工業
■製画品名r600sJ、オレフィンとエチレン性不飽
和ジカルボン酸無水物を共重合したものの加水分解物で
ある日本ゼオン■製画品名[ワーク500]やrM40
J、オレフィンと無水マレイン酸との共重合体やスチレ
ン、あるいは、他の共重合性モノマーと無水マレイン酸
との共重合体などの加水分解物及び無水物でセメントか
らのアルカリにより徐々に加水分解により流動性を示す
徐放型のもの等が挙げられ、これらを二種以上併用して
も当然流動性改善の効果は得られる。
Examples of dispersants include salts of naphthalene sulfonic acid formaldehyde condensates, salts of melamine sulfonic acid formaldehyde condensates, lignin sulfonates, high molecular weight lignin sulfonates, and polycarboxylic acid salts.Specifically, naphthalene As the salt of sulfonic acid formalin condensate, Denka Kagaku Kogyo ■ [Denka PT-500J and Daiichi Kogyo Seiyaku ■]
Product names such as ``Cellflow 110PJ'' manufactured by Nihon Sika Corporation are used as the salts of melamine sulfonic acid formaldehyde condensed metals, while product names manufactured by Nippon Sika FPJ and product names manufactured by Showa Denko ``Melment'' are used as lignin sulfonate salts. National Policy Valve ■Product name F Sunflow Examples include Nippon Shokubai Chemical Co., Ltd. product name r600sJ, which is an addition reaction of alkylene imine and/or alkylene oxide to a carboxyl group-containing polymer, and a hydrolyzate of a copolymer of olefin and ethylenically unsaturated dicarboxylic acid anhydride. A Nippon Zeon product name [Work 500] and rM40
J. Hydrolysates and anhydrides such as copolymers of olefins and maleic anhydride, styrene, or copolymers of other copolymerizable monomers and maleic anhydride, which are gradually hydrolyzed by alkali from cement. Examples include sustained-release types that exhibit fluidity due to the above-mentioned properties, and even if two or more of these are used in combination, the effect of improving fluidity can naturally be obtained.

分散剤は、粉体で添加される他、液体で添加されること
も当然可能である。
In addition to being added in the form of a powder, the dispersant can also be added in the form of a liquid.

分散剤の使用量は、水セメント比にもよるが、セメント
質物質100重量部に対して、0,02〜5重量部が好
ましく、0.2〜4重量部がより好ましい。
The amount of the dispersant to be used depends on the water-cement ratio, but is preferably 0.02 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, based on 100 parts by weight of the cementitious material.

0.02重量部未満では良好な流動性を得ること難しく
、5重量部を越えてもより以上の流動性は得られにくい
If it is less than 0.02 parts by weight, it is difficult to obtain good fluidity, and even if it exceeds 5 parts by weight, it is difficult to obtain better fluidity.

本発明において、前記各種の材料より大きな粒径を持つ
骨材を加えることが可能である。
In the present invention, it is possible to add aggregate having a larger particle size than the various materials mentioned above.

骨材とは、本発明では100μを越える粒径のものをい
い、一般の砂、砂利及び軽量骨材等が使用可能であり、
さらに、モース硬度6以上又はヌブ圧子硬度700kg
f/a+m2以上の基準で選定された硬質骨材を使用す
ることももちろん可能である。
In the present invention, aggregate refers to one with a particle size exceeding 100μ, and general sand, gravel, lightweight aggregate, etc. can be used.
Furthermore, Mohs hardness is 6 or more or Nubu indenter hardness is 700 kg.
Of course, it is also possible to use hard aggregate selected on the basis of f/a+m2 or higher.

その他、ガラスや金属なども骨材として用いることが可
能である。
In addition, glass, metal, etc. can also be used as aggregates.

骨材の使用量は、通常セメント質物譬1ooi量部に対
して、1 、000重量部程度までが好ましい。
The amount of aggregate used is preferably up to about 1,000 parts by weight per 100 parts of the cementitious material.

ただし、プレパックド工法やポストパックド工法などの
特殊な工法においてはこの限りではない。
However, this does not apply to special construction methods such as pre-packed construction methods and post-packed construction methods.

各材料の練り混ぜ方法や投入順序は、各材料が均一に混
練されれば特に制限はない。
There are no particular restrictions on the mixing method and order of addition of each material as long as each material is kneaded uniformly.

H物の成形方法なども、通常のセメント系建材やモルタ
ルコンクリートなどに利用されている成形方法や施工方
法などが利用できる。
As for the molding method of the H product, the molding method and construction method used for ordinary cement-based building materials, mortar concrete, etc. can be used.

さらに、本発明では、前記各材料を鉄骨、鉄筋及びFR
Pロンド等の補強材や繊維などと併用することもでき、
引張り強度や曲げ強度などの補強をすることも可能であ
る。
Furthermore, in the present invention, the above-mentioned materials are steel frames, reinforcing bars, and FR.
It can also be used in conjunction with reinforcing materials and fibers such as P-Rondo.
It is also possible to reinforce tensile strength, bending strength, etc.

補強材としては、従来より用いられている鋼棒やアルミ
ナ繊維による成型体などを用いることも可能であり、特
に、大型のものにはこれら補強材がしばしば必要となる
As the reinforcing material, it is also possible to use conventionally used steel rods, molded bodies made of alumina fiber, etc., and these reinforcing materials are often necessary, especially for large-sized products.

繊維の例としては、鋳鉄のびびり切削法による繊維、ス
チール繊維及びステンレス繊維等の金属繊維、石綿、セ
ラミックファイバー、ポリプロピレンなどの合成樹脂繊
維及びアルミナ繊維等の各種天然又は合成鉱物繊維、炭
素繊維、及び、ガラス繊維等が挙げられる。
Examples of fibers include fibers produced by chatter cutting of cast iron, metal fibers such as steel fibers and stainless steel fibers, various natural or synthetic mineral fibers such as asbestos, ceramic fibers, synthetic resin fibers such as polypropylene, and alumina fibers, carbon fibers, and glass fiber.

このように各材料を混練して得られたセメント混練物の
養生条件は、特に制限されるものではないが、膨張性混
和材の反応の面から、初期に湿潤養生をすることが好ま
しい。
The curing conditions for the cement mixture obtained by kneading each material in this way are not particularly limited, but from the viewpoint of the reaction of the expandable admixture, it is preferable to perform wet curing at the initial stage.

以上の方法により製造したセメント製品の用途は高品質
、高耐久性コンクリート構造物やバイパフォーマンスコ
ンクリート、あるいは、コンクリート構造物の層剥離部
分のグラウトや腐食した鉄筋の防錆コーティングなどの
補修材、道路などの舗装材、床材や屋根スラブなどの防
水材、タイル用などの接着材、化粧仕上げ材、化学工場
床や耐酸タイルの目地材などの防食材、デソキカハーリ
ング材及び各種建材等多岐にわたる。
Cement products manufactured by the above method are used for high quality, highly durable concrete structures, bi-performance concrete, repair materials such as grouting for delaminated parts of concrete structures and anti-corrosion coating for corroded reinforcing bars, and roads. Our products cover a wide range of products, including paving materials, waterproofing materials for flooring and roof slabs, adhesives for tiles, decorative finishing materials, anti-corrosion materials such as joint materials for chemical factory floors and acid-resistant tiles, desokika herring materials, and various building materials.

(実施例) 以下、実施例により本発明をさらに説明する。(Example) The present invention will be further explained below with reference to Examples.

実施例1 自動硬化収縮測定装置(東京理工製)を用い、初期の硬
化収縮を測定した。
Example 1 Initial curing shrinkage was measured using an automatic curing shrinkage measuring device (manufactured by Tokyo Riko).

即ち、一定温度になるように混練したモルタルを薄膜の
ゴム袋(岡本理研ゴム製)に80g程度入れ封をし、水
の満たされた300ccの密閉容器中に入れ、内径15
a+mのキャピラリーとチューブで接続した。ゴム袋中
のモルタルが膨脹や収縮をするとキャピラリー中の水の
界面が上下するので、これを光センサーにより感知し、
自動的にその動きを検出することにより、膨脹や収縮を
測定した。
That is, about 80 g of mortar, which has been kneaded to a constant temperature, is placed in a thin film rubber bag (manufactured by Okamoto Riken Rubber), sealed, and placed in a 300 cc airtight container filled with water.
It was connected to the a+m capillary with a tube. When the mortar in the rubber bag expands or contracts, the water interface in the capillary moves up and down, which is detected by an optical sensor.
Inflation and deflation were measured by automatically detecting their movements.

使用した配合は、セメント質物質83重量部、超微粉1
7重量部、減水剤1.5重量部、砂122重量部、ポリ
マー10重量部、消泡剤0.3重量部及び水35重量部
で、ブリージングなどの影響が低減するように低水セメ
ント比とした。結果を表−1に示す。
The composition used was 83 parts by weight of cementitious material, 1 part by weight of ultrafine powder.
7 parts by weight, 1.5 parts by weight of water reducing agent, 122 parts by weight of sand, 10 parts by weight of polymer, 0.3 parts by weight of antifoaming agent, and 35 parts by weight of water, to reduce the effects of breathing etc. And so. The results are shown in Table-1.

く使用材料〉 セメント質物質:秩父セメント社製白色ポルトランドセ
メント、比重3,15 超微粉  二日本重化製シリカヒユーム、比重2.1分
散剤  ;第一工業製薬製部品名Fセルフロー110P
J砂    :珪砂7号、比重2.6 消泡剤  :東邦化学製商品名「プロナール503]ポ
リマーA:エチレン/酢酸ビニル/ノーマルブチルアク
リレ−) = 16/42/42、ノニオン系乳化安定
剤のポリオキシエチレンフェニルエーテルを七ツマー1
oo重1部に対して、8重量部添加し、ステンレス製オ
ートクレーブに水、酢酸ビニル、ノーマルブチルアクリ
レート及び乳化安定剤を仕込み、攪拌しながら温度60
°Cに昇温後、エチレンを所定量圧入した。次いで過硫
酸アンモニウムを添加して重合を開始し、残存モノマー
が0.5重量%以下となるまで重合を行った後、冷却し
た。
Materials used: Cementitious material: White Portland cement manufactured by Chichibu Cement Co., Ltd., specific gravity 3.15 Ultra-fine powder Silica hume manufactured by Nippon Chemical Co., Ltd., specific gravity 2.1 Dispersant; Part name F Cellflow 110P manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
J sand: Silica sand No. 7, specific gravity 2.6 Antifoaming agent: Toho Chemical product name "Pronal 503" Polymer A: ethylene/vinyl acetate/normal butyl acrylate) = 16/42/42, nonionic emulsion stabilizer of polyoxyethylene phenyl ether
Add 8 parts by weight to 1 part by weight of OO, charge water, vinyl acetate, normal butyl acrylate, and emulsion stabilizer into a stainless steel autoclave, and heat to 60°C while stirring.
After raising the temperature to °C, a predetermined amount of ethylene was injected under pressure. Next, ammonium persulfate was added to start polymerization, and the polymerization was carried out until the residual monomer amount was 0.5% by weight or less, and then cooled.

膨張性混和材a:電電気化学工業調製商品名デンカC3
AJ、湯浅アイオニックス■製表面積測定装置を用い、
ガス吸着法による比表面積1.3ボ/g b:膨張性混和材aの粉砕品、比表面積2.5rd/g C:膨張性混和材aの粉砕品、比表面積4.5が7g 表 (発明の効果) 従来より、ポリマーセメントの有していた耐ひび割れ抵
抗性や接着性を損なうことなく、初期収縮の著しく改善
されたセメント混和材及びポリマーセメント組成物の提
供が可能となった。
Expandable admixture a: manufactured by Dendenki Kagaku Kogyo, trade name Denka C3
Using a surface area measurement device manufactured by AJ and Yuasa Ionics,
Specific surface area 1.3 rd/g by gas adsorption method B: Pulverized product of expandable admixture a, specific surface area 2.5rd/g C: Pulverized product of expandable admixture a, specific surface area 4.5 is 7g Table ( Effects of the Invention) It has become possible to provide a cement admixture and a polymer cement composition that have significantly improved initial shrinkage without impairing the cracking resistance and adhesiveness that polymer cements have conventionally had.

Claims (2)

【特許請求の範囲】[Claims] (1)比表面積が2m^2/g以上の膨張性混和材と、
ポリマーとを主成分とするセメント混和材。
(1) An expandable admixture with a specific surface area of 2 m^2/g or more,
Cement admixture whose main component is polymer.
(2)セメント質物質と請求項1記載のセメント混和材
とを含有してなるポリマーセメント組成物。
(2) A polymer cement composition comprising a cementitious material and the cement admixture according to claim 1.
JP13031990A 1990-05-22 1990-05-22 Cement admixture and polymer cement composition Pending JPH0426535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13031990A JPH0426535A (en) 1990-05-22 1990-05-22 Cement admixture and polymer cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13031990A JPH0426535A (en) 1990-05-22 1990-05-22 Cement admixture and polymer cement composition

Publications (1)

Publication Number Publication Date
JPH0426535A true JPH0426535A (en) 1992-01-29

Family

ID=15031490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13031990A Pending JPH0426535A (en) 1990-05-22 1990-05-22 Cement admixture and polymer cement composition

Country Status (1)

Country Link
JP (1) JPH0426535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063918A1 (en) * 2007-11-13 2009-05-22 Tosoh Corporation Copolymer and process for production thereof
WO2020049819A1 (en) * 2018-09-06 2020-03-12 デンカ株式会社 Slurry-type expansion material composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063918A1 (en) * 2007-11-13 2009-05-22 Tosoh Corporation Copolymer and process for production thereof
WO2020049819A1 (en) * 2018-09-06 2020-03-12 デンカ株式会社 Slurry-type expansion material composition
CN112218838A (en) * 2018-09-06 2021-01-12 电化株式会社 Slurry-like expandable material composition

Similar Documents

Publication Publication Date Title
EP0431600B1 (en) Cement admixture and cement composition
CA3124895C (en) Highly water-resistant, flexible cementitious coating
DE102011078531A1 (en) Gypsum-containing building materials
JP4937650B2 (en) Hydraulic composition
JP2022069599A (en) Polymer cement mortar
AU647476B2 (en) Cement based compositions having elastomeric properties, and method of manufacture
JP3986709B2 (en) Grout material composition, cured product and construction method thereof
JP2951374B2 (en) Cement admixture and cement composition
US20220340497A1 (en) Process for the waterproofing of porous construction materials
JPH08208285A (en) High-strength, self leveling cement composition
CA1244489A (en) Utilization of latexes with hydraulic cement and gypsum compositions
JP3976951B2 (en) Grout material composition, cured product and construction method thereof
JPH1095652A (en) Grouting composition
JP4357929B2 (en) Concrete floor structure and construction method thereof
JPH0426535A (en) Cement admixture and polymer cement composition
JP3014108B2 (en) Cement admixture and polymer cement composition
JP4380306B2 (en) Concrete floor structure and construction method thereof
JPH04164848A (en) Polymer cement mortar composition
JP4001404B2 (en) Cement admixture and casting concrete placement method
JPS5945626B2 (en) Cement-based self-leveling flooring
JP2005272173A (en) Self-flowable hydraulic composition
JP2005281036A (en) Polymer cement-based mortar for use in tile joint and manufacturing method therefor
JP2002012832A (en) Water-based coating material
JP4108165B2 (en) Resin mortar composition
JP2688373B2 (en) Cement admixture and polymer / cement composition