JP3986709B2 - Grout material composition, cured product and construction method thereof - Google Patents

Grout material composition, cured product and construction method thereof Download PDF

Info

Publication number
JP3986709B2
JP3986709B2 JP19671499A JP19671499A JP3986709B2 JP 3986709 B2 JP3986709 B2 JP 3986709B2 JP 19671499 A JP19671499 A JP 19671499A JP 19671499 A JP19671499 A JP 19671499A JP 3986709 B2 JP3986709 B2 JP 3986709B2
Authority
JP
Japan
Prior art keywords
weight
cement
parts
amount
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19671499A
Other languages
Japanese (ja)
Other versions
JP2001019528A5 (en
JP2001019528A (en
Inventor
征雄 小坂
洋彦 水戸
光浩 角田
勲 田代
次男 戸村
洋一 川崎
功 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Showa Kde Co Ltd
Original Assignee
Showa Kde Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Kde Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Showa Kde Co Ltd
Priority to JP19671499A priority Critical patent/JP3986709B2/en
Publication of JP2001019528A publication Critical patent/JP2001019528A/en
Publication of JP2001019528A5 publication Critical patent/JP2001019528A5/ja
Application granted granted Critical
Publication of JP3986709B2 publication Critical patent/JP3986709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00706Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like around pipelines or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軽量性、ポンプ圧送性、流動性、材料分離抵抗性、耐薬品性、接着性、耐久性、耐体積収縮性に優れたグラウト材組成物、施工方法、及びその硬化物に関する。
【0002】
【従来の技術】
一般に流動性グラウト材は、多量のセメントを使用して材料分離抵抗性を確保し、減水剤や流動化剤により流動性を付与することによって製造されている。この場合、粉体としてセメントのみではグラウト材の粘性が高くなりすぎて、練り混ぜやポンプ圧送の施工性に問題を生ずること等の理由から、セメントに比べて活性の低い高炉スラグ微粉末やフライアッシュ、あるいはほとんど活性のない石灰石粉等の鉱物質微粉末をセメントに置換して使用するのが一般的である。
【0003】
しかしながら、現状では通常のセメントモルタル材に比べ粉体量、および混和剤量が多いため、コスト、材料供給体制、製造設備などの制約から、現場施工や2次製品工場への適用はほとんどなされておらず、大規模工事の適用に限られている。
【0004】
一方で、セメント粉体量をやや少なくし、高分子系の増粘剤を使用することにより粘性を上げて材料分離抵抗性を付与し、減水剤と組み合わせて流動性を付与したグラウト材組成物についての提案がある。(特開平9−110503号公報)この場合には、フレッシュモルタル中に粗大気泡を巻き込み易く、それが硬化物の表面状態を悪くするばかりか硬化物の強度、耐久性の面でも問題を生じさせる。また、凝結硬化が遅くなるという問題もある。
【0005】
さらに増粘剤を使用したグラウト材組成物は、ミキサーあるいはトラックアジテーターへの付着量が多いと共に、洗浄しにくいという難点があり実際の適用はほとんどなされていない。
【0006】
例えば、特開昭60−215564号公報には、セメント、細骨材、樹脂エマルジョン、消泡剤、及びセピオライトからなるスプレー成形用セメントモルタル組成物が知られているが、このものはアスベストの使用されるスプレー成形用である為、長距離ポンプ圧送性、流動性、細部充填性等のグラウト材としての性能を充分満足できるものではなかった。
【0007】
即ち、現代の土木建設分野で使用されるグラウト材組成物であっても、トンネル工事等土木建設構造物に対応できるような長距離のポンプ圧送性のみを満足させる流動性はあるが、強度、耐久性、耐薬品性、軽量性までを満足するものはなかった。しかも、屋外工事においては年間を通して温度差が激しい条件下での流動性、材料分離抵抗性の問題を解決させるには限度があり、実際の施工には対処しきれないという問題を有していた。
【0008】
【発明が解決しようとする課題】
本発明の課題は、軽量性、ポンプ圧送性、流動性(フロー)、材料分離抵抗性、耐薬品性、接着性、耐久性、耐体積収縮性、硬化物の強度に優れたグラウト材組成物にある。こうしたものは事実上ないに等しく、例えば、既設管渠内周面補修用グラウト材の実現が強く待たれている。本発明は、こうした課題を解決するため、特にポンプ圧送性、流動性(フロー)、材料分離抵抗性に優れ、その上で土木建設分野に必要な強度と軽量性を持ったグラウト硬化物を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべくグラウト材組成物について鋭意研究した結果、特定の組成物で解決出来ることを見出し本発明に到った。
【0010】
即ち、本発明は、(A)セメント、(B)ホルマイト鉱物、(C)軽量骨材、及び(D)α,β−エチレン性不飽和単量体を乳化重合して得られるエマルジョン系混和剤、を含有すること、(C)軽量骨材が、かさ比重0.01〜0.7であり、かつ、粒度が8〜12メッシュであること、及び、(B)ホルマイト鉱物:(C)軽量骨材の(重量比)が、1:1〜30であることを特徴とするグラウト材組成物、好ましくはホルマイト鉱物(B)の配合量が、セメント100重量部に対して0.1〜5重量部であること、好ましくは軽量骨材(C)の配合量が、セメント100重量部に対して0.5〜40重量部であること、好ましくは混和剤(D)の配合量が、セメント100重量部に対して1〜30固形分重量部配合されること、このグラウト材組成物を硬化させてなる硬化物及び施工方法を提供するものである。
【0011】
【発明実施の形態】
本発明のグラウト材組成物は、特にセメントモルタル材として現代の土木建築分野で使用できるものであればいずれの方法でも使用可能であるが、特にポンプを使用する分野でグラウト材を長距離圧送し、打設する施工方法において有用である。ポンプを使用する工法としては、例えば地下に埋没された水道管、下水管の既設管渠内周面ライニング工法やトンネル工事等土木建設構造物のグラウト材、シールド工法、吹き付け工法等が挙げられる。こうした工法では、ポンプ圧送性と共に材料分離抵抗性、流動性に優れることが重要である。
【0012】
本発明で使用するセメント(A)は、硬化発現材としての必須成分であり、代表的なものの例を挙げれば普通ポルトランドセメント、早強ポルトランドセメント、白色セメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、低熱ポルトランドセメント、超早強ポルトランドセメント(ジェットセメント、スーパーセメント、SQセメント)などのポルトランドセメント、シリカセメント、高炉セメント、フライアッシュセメント等各種混合セメント、或いはアルミナセメント、膨張セメント等特殊セメントがある。好ましくは市販普通ポルトランドセメントである。セメント(A)は、グラウト材中に好ましくは40〜70重量%用いられる。
【0013】
本発明で使用するホルマイト鉱物(B)は、繊維状のα型、粉末状、粒状、板状など不定形のβ型、それぞれが天然に存在する複鎖構造型粘土鉱物で、好ましくは繊維状粘土鉱物で、内部構造がタルクの小片をレンガ積みしたような構造となっているものである。ホルマイト鉱物は、ケイ酸マグネシウムを主成分とする天然産の繊維状無機粘土鉱物で、好ましくは繊維長が5〜20μm、好ましくは繊維厚み(径)が0.01〜0.3μm、好ましくはアスペクト比が20〜200のものである。ホルマイト鉱物は、内部に水を吸収・保持する性質を有しており、繊維構造であることで揺変性(チキソトロピー)を付与できることから、ブリーディングや骨材分離抵抗を防止せしめるための必須成分である。具体的には、セピオライト、アタパルジャイト、パリゴルスカイト等である。好ましくはセピオライトである。
【0014】
セピオライトは、天然に存在するセピオライトを適度に粉砕するか、加水混合・撹拌して解繊し、所望のセピオライトを得る。市販品としては、ミルコン(昭和鉱業株式会社製品)等が使用できる。
【0015】
このホルマイト鉱物(B)を配合したグラウト材組成物にあってはホルマイト鉱物(B)の吸水性によってブリーディングの発生が防止され、またホルマイト鉱物のチキソトロピー性によって保形性、可塑性が付与されることになる。ホルマイト鉱物(B)の配合量は、セメント(A)100重量部に対して0.1〜5重量部が好ましい。配合量がこれより少ないと配合による効果が充分に得られず、配合量がこれより多いとグラウト材組成物の流れが悪くなりすぎて複雑な形状へのモルタル充填が困難になる。
【0016】
本発明で使用する軽量骨材(C)とは、かさ比重が、好ましくは0.01〜0.7のもので、例えば、発泡ポリスチレン、発泡ポリスチレン減容物(発泡ポリスチレン粒を加熱により一部溶融し体積を減らしたもの)、パーライト、バーミュキライト、シラスバルーン、発泡ガラス等が挙げられる。パーライトとは、黒曜石、真珠岩の粒状物を焼成発泡したものである。軽量骨材(C)の粒度は、8〜12メッシュである。(C)成分は、軽量化、流動性及び付着性のための必須成分である。軽量骨材(C)の使用量は、好ましくはセメント100重量部に対して、好ましくは0.5〜40重量部である。
【0017】
本発明では、ホルマイト鉱物(B)と軽量骨材(C)との添加量が、(B):(C)=1:1〜30(重量比)である。この範囲を外れると、材料分離抵抗性、流動性が劣るものとなる。
【0018】
本発明では、軽量骨材(C)以外の通常の骨材も少し添加しても良い。従来のグラウト材料に用いるものであれば種類を問わず、本発明の効果(流動性、ポンプ圧送性等)を損なわない範囲で使用できるが、代表的なものの例を挙げれば川砂、硅砂、海砂、山砂などの細骨材が挙げられ、JIS G 5901-1968で規定される1〜7号珪砂も使用できる。その使用量は、セメント(A)100重量部に対して、1〜30重量部が好ましい。配合量がこれより少ないと細骨材の効果が充分に得られず、配合量がこれより多いとグラウト材組成物の流動性、軽量性が悪くなりすぎる等の弊害があるため好ましくない。
【0019】
ホルマイト鉱物(B)、軽量骨材(C)の混合のみではグラウト材の流動性、強度、耐久性、既設構造物その他接触基材に対する接着性が充分に改善されないので、これらを改善するためにエマルジョン系混和剤(D)を混合、使用する。混和剤(D)は、セメント100重量部に対し、好ましくは1〜30固形分重量部配合される。
【0020】
本発明で使用する混和剤(D)のエマルジョンとは、常圧又は加圧下で、α,β−エチレン性不飽和単量体類を乳化剤の存在下に乳化重合を行うことによって得られるもので、その形態は水中に重合体が分散している形のもの、或いは水を除いた粉末状のものである。その乳化重合時の成分であるα,β−エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸-ラウリルなどの(メタ)アクリル酸エステル類;マレイン酸、フマル酸、イタコン酸の各エステル類、;アクリル酸、メタクリル酸、ビニルスルフォン酸、ビニルトルエンスルホン酸等の一塩基酸及びこれらの塩類;イタコン酸、フマル酸、マレイン酸等不飽和二塩基酸及びこれらの半エステル、塩類;アクリルアミド、メタクリルアミド、マレイン酸アミド等のα,β−エチレン性不飽和酸のアミド類;N-メチロールアクリルアミド、又はメタクリルアミド、ジアセトンアクリルアミド等不飽和カルボン酸の置換アミド;酢酸ビニル、プロピオン酸ビニル、第3級カルボン酸ビニル等のビニルエステル類;スチレン、ビニルトルエンの如き芳香族ビニル化合物、ビニルピロリドンの如き複素環式ビニル化合物;塩化ビニル、アクリロニトリル、ビニルエーテル、ビニルケトン、ビニルアミド等;塩化ビニリデン、フッ化ビニリデン等ハロゲン化ビニリデン化合物;エチレン、プロピレン等のα−オレフィン類;ブタジエンの如きジエン類;ジアリルフタレート、ジビニルベンゼン、アリルアクリレート、トリメチロールプロパントリメタクリレートの如き1分子中に2個以上の不飽和結合を有する単量体、などが挙げられ、これらの1種もしくは2種以上の混合物が用いられる。
【0021】
これら単量体の組み合わせによりいわゆるアクリル系、アクリル−スチレン系、SBR系、酢酸ビニル系、及び酢酸ビニルの耐鹸化性をエチレン、(メタ)アクリル酸エステル、バーサチック酸ビニルエステル等を共重合して改善した変性酢酸ビニル系などの各種エマルジョンが得られる。
【0022】
これらのエマルジョン系混和剤(D)は、常圧又は加圧下に乳化剤、保護コロイドの存在下で前記単量体を乳化重合することによって得られる。この重合時に使用される乳化剤としては、公知のアニオン型乳化剤、非イオン型乳化剤、カチオン型乳化剤などが挙げられる。又、保護コロイドとしては、ポリビニルアルコール、ヒドロキシエチルセルロースなどの非イオン性水溶性高分子や、高分子電解質が挙げられる。これら乳化剤、保護コロイドはそれぞれ1種もしくは2種以上の混合物として使用されるが、その使用量は、セメントに混和した際の発泡性や融着性を考慮すると出来る限り少量の使用とすることが望ましく、エマルジョン固形分当たり0.1〜8重量%程度が好ましい。
【0023】
また、重合時には重合開始剤が用いられ、これに特に制限はないが、代表的なものを挙げれば水溶性無機過酸化物、過硫酸塩、有機過酸化物、アゾ化合物などである。
【0024】
エマルジョン系混和剤(D)は、粒子の電荷により、アニオン型、ノニオン型、カチオン型に大別される。本発明で使用上の混和性を考慮するとアニオン型、ノニオン型のものが好ましい。
【0025】
これらのエマルジョン混和剤(D)の粒子径は、特に限定されないが、本発明で使用する組成物の混和性を考慮すると50nm〜500nmのものが好ましい。エマルジョンの粒子径が50nmより小さい場合、エマルジョンの安定性が低下するのみならず、エマルジョン系混和剤(D)を混和して成るグラウト材組成物の流動性も劣る等の弊害があるため好ましくない。エマルジョンの粒子径が、500nmより大きい場合、エマルジョンの沈降が発生しやすくなる等の弊害があるため好ましくない。
【0026】
エマルジョン系混和剤(D)の市販品としては、代表的なもののみを挙げれば、「ボンコート9185」、「ボンコート4001」、「ボンコートTD−3137」、「ボンコート550」、「ボンコート510」、「ボンコート515」(登録商標、大日本インキ化学工業株式会社製品)などが挙げられる。
【0027】
本発明では、混和剤として重量平均分子量100,000未満の高分子減水剤を必要により添加しても良い。高分子減水剤はモルタルの流動性、とりわけ低温時における流動性、圧縮強度、分散性アップ、ポットライフを向上させる。高分子減水剤の分子量はゲルパーミエ−ションクロマトグラフィー(カラムはWaters社製Ultrahydrogel、標準物質はポリスチレンスルホン酸ナトリウムを標準物質とする)で測定した重量平均分子量が100,000未満であることを意味する。これより大きいと流動性に問題が生じる。
【0028】
高分子減水剤としては、水溶液状、或いは粉末状の高分子物質であり、例えば、メラミンスルホン酸塩のホルムアルデヒド縮合物、ナフタレンスルホン酸塩のホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩のホルムアルデヒド縮合物、リグニンスルホン酸塩、変性リグニンスルホン酸塩系化合物、高縮合トリアジン系縮合物、ポリカルボン酸塩、ポリカルボン酸塩系誘導体、オキシカルボン酸塩、オキシカルボン酸塩系誘導体、アミノスルホン酸塩系高分子化合物、イソプレン系化合物、ポリアルキル無水カルボン酸塩等が挙げられる。
【0029】
本発明では、石膏を添加した方がよい。石膏は、セメント中のアルミとの反応によるエトリングナイト生成物により低収縮剤となるセメント収縮緩和作用があるため重要である。モルタル補修箇所において優れたモルタル充填性を付与せしめる。石膏は、好ましくは無水物であるが、特にこれに限定するものではなく、天然に産出する天然無水石膏、半水石膏や二水石膏等も使用できる。又、これらを熱処理して得られる無水石膏、及び工業副産物として発生する無水石膏等の使用が可能である。石膏の粒度は、ブレーン値で2,500cm/g以上が好ましく、4,000cm/g以上がより好ましい。2,500cm/g未満では、長期材令において、未水和の残存石膏により膨張破壊が発生するおそれがある。石膏の使用量は、好ましくはセメント(A)100重量部に対して、0.5〜10重量部であり、より好ましくは1〜5重量部である。0.5重量部未満では初期強度の発現性が悪く、10重量部を超えると長期材令において、未水和の残存石膏により膨張破壊が発生するおそれがある。市販品の収縮低減材としては、例えば、CSA(デンカ(株)、膨張混和剤)等が挙げられる。
【0030】
本発明では、発泡剤、起泡剤を添加した方がよい。発泡剤とは、例えば、アルミニウム粉末、過酸化水素と次亜塩素酸カルシウム、塩酸と重炭酸ナトリウム等挙げられ、この添加量は、本発明の組成物中に好ましくは0.0001〜0.05重量%である。起泡剤とは、各種界面活性剤、例えば、シリコーン系界面活性剤、スルホン酸系界面活性剤、ポリオキシアルキレンエーテル系界面活性剤、高級アルキルエーテル硫酸エステル系界面活性剤、アルキルベンゼンスルホン酸系界面活性剤等が挙げられ、この添加量は、本発明の組成物中に好ましくは0.001〜0.01重量%である。
【0031】
その他砕石、砂利等の粗骨材、フライアッシュ、CSA(デンカ社製品)の如き収縮緩和剤、カルシウムサルホアルミネート等の膨張剤、メチルセルロース等の保水剤、ポリビニルアルコール繊維や炭素繊維、スチール繊維の如き繊維、他のセメント添加剤(材)、例えば公知のAE剤(空気連行剤)、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤、セルロース誘導体等の増粘剤、促進剤、早強剤、急結剤、遅延剤、消泡剤、保水剤、促進剤、セルフレベリング剤、防錆剤(例えば、リン酸塩類、アミン類、亜硝酸塩類)、着色剤、ひび割れ低減剤、界面活性剤、水溶性高分子など本発明の長所を著しく阻害しない限り全て使用可能である。
【0032】
【作用】
本発明は、セメント(A)、ホルマイト鉱物(B)、軽量骨材(C)及び混和剤(D)を必須成分とし、混和剤(D)成分はα,β−エチレン性不飽和単量体を乳化重合して得られるエマルジョン系混和剤(D)で、(B)ホルマイト鉱物と()軽量骨材とが特定量配合されるものである。該グラウト材組成物は、各特性、即ち、軽量性、ポンプ圧送性、流動性、材料分離抵抗性、耐薬品性、接着性、耐久性、耐体積収縮性に優れ、強度、軽量性がバランスよく引き出され、これが現代の土木建設分野で使用されるグラウト材組成物に要求される性能を満足するものである。
【0033】
本発明のグラウト材組成物は、特にセメントモルタルとして現代の土木建築分野で使用できる施工方法であればいずれの方法でも使用可能であるが、特にポンプを使用して打設する施工方法に有用である。ポンプを使用する施工方法としては、例えば、地下に埋没された農業用水路管渠、下水管の既設水路管渠内周面ライニング工法やトンネル工事等の土木建設構造物のグラウト材、シールド工法等が挙げられる。
【0034】
【実施例】
以下に本発明を実施例により詳細に説明するが、「%、部」は、重量基準であるものとする。
【0035】
実施例1(EPSモルタル調整)
普通ポルトランドセメント(A)(宇部興産株式会社製)100重量部、セピオライト B (昭和鉱業株式会社製、ミルコンSP)0.6重量部、軽量骨材EPS(C)(かさ比重0.02)1.7重量部を卓上ミキサーに投入し、低速で30秒間空練りした後混練してミキサーを停止した。エマルジョン系混和剤(D)としては市販品のボンコート4001(固形分50%、大日本インキ化学工業株式会社製)、高分子減水剤として市販品のウオーターゾールHM−350T(固形分35%、大日本インキ化学工業株式会社製)を使用した。ボンコート4001を3.1重量部とウオーターゾールHM−350Tを2.0重量部および水34.2重量部をミキサーに投入し、低速で30秒間混練して一旦ミキサーを停止した。ミキサー内壁に付着したモルタルをさじで30秒間かき落とした後、さらに60秒間低速で混練した。練り鉢をミキサーから取り外し、練り上がったモルタルを素早く、フロー試験に供し、材料分離抵抗を評価した。評価結果は表1に示した。また、練り上がり温度は23℃、容重(練り上がり後の比重)は1.15であった。
【0036】
<フロー試験>
JIS R5201「セメントの物理試験方法」に規定されているフローコーンを用いて、コーンを抜き取って、打撃を与える前のフローを測定した。底板には平滑度の良好な鉄板を使用した。
【0037】
<材料分離抵抗性>
フロー測定時に目視により次の5段階で評価した。
◎ :分離が全く認められない。
○ :わずかな分離が認められる。
△ :モルタル上面に浮き水が認められる。
× :流動したモルタル先端に水(ペースト層)が分離して生じている。
××:モルタル中央部に細骨材が流動せずに山状に残っている。
【0038】
<ポンプ圧送性>
モルタル調整により得られたモルタルをスクイーズポンプ(MM105型、新明和社製)で50L/分の量をポンプ圧送した時の圧送ポンプ吐出状態を以下の評価基準で判定した。
◎ :極めて良好
○ :良好
△ :やや吐出困難
× :吐出困難(骨材分離などによる)
××:全く吐出せず
【0039】
<圧縮強度>
JIS R 5201「セメントの物理試験方法」に準じて成形、24時間、20℃、90%RH以上で湿空養生し、脱型した後、材齢28日で20℃の水中養生を行って測定した。
【0040】
<接着強度>
JIS A 6203「セメント混和用ポリマーディスパージョン及び再乳化形粉末樹脂」に準じて成形、供試体を温度20℃の水中に18時間浸せきした後、直ちに−20℃の恒温基器中に3時間冷却し、次いで50℃の恒温器中で3時間加温する1サイクルを24時間とする温冷繰り返し操作を10回繰り返した。その後、試験室に2時間静置した後、基盤に達するように、ポリマーセメントモルタル周辺のエポキシ樹脂塗料に切り込みを入れ、接着強さ試験を行った。
【0041】
(耐薬品性)
円筒型供試体(φ10×20cm)を作成し、材冷28日間、20℃の気中養生をした。次いで70リットルポリバケツ内に入れ、2%塩酸水溶液(PH=1.4)を供試体が全部隠れるまで浸漬した。浸漬1ヶ月、3ヶ月、6ヶ月後各供試体の表面残澄を取り除き、変化状態を観察し、以下の評価基準で判定した。塩酸水溶液は1ヶ月ごとに新しい溶液に入れ替えた。
[評価基準]
◎ :外観の変化無し
○ :外観殆ど変化無し
△ :外観表面にざらつきあり
× :外観表面のざらつき大
××:外観の破壊大
【0042】
実施例2〜5(EPSモルタル調整)
ホルマイト鉱物のセピオライト(B)、軽量骨材EPS(C)、エマルジョン系混和剤(D)、高分子減水剤、水の使用量および室温を表1に記載の量に変えた他は、実施例1と同様にしてモルタルを作成し、評価した。その結果を表1に示した。
【0043】
【表1】
(配合量はセメント100重量部に対する添加量・重量部)

Figure 0003986709
【0044】
<実現場での圧送性能>
表1実施例に準じ下記の配合のセメントモルタルを用いて現場にてその効果を確認した。
【0045】
(配合)
普通ポルトランドセメント 848kg/m3
軽量骨材EPS 14kg/m3
セピオライト 5kg/m3
エマルジョン系混和剤 26kg/m3
高分子減水剤 17kg/m3
アニオン系界面活性剤(起泡剤) 515g/m3
アルミ粉末(発泡剤) 21.6g/m3
水 290kg/m3
上記配合のセメントを用いた結果、200mポンプ圧送性に問題はなかった。
【0046】
実施例6(パーライトモルタル調整)
普通ポルトランドセメント(A)(宇部興産株式会社製)100重量部、セピオライト(B)(昭和鉱業株式会社製、ミルコンSP)0.8重量部、軽量骨材パーライト(C)(芙蓉パーライト製芙蓉パーライト1号)16.8重量部を順次卓上ミキサー(ケンミックス社、ケンミックス)に投入し、低速で30秒間空練りした後混練してミキサーを停止した。エマルジョン系混和剤(D)には市販品のエマルジョン、ボンコート9185(固形分48%、大日本インキ化学工業株式会社製)を使用した。ボンコート9185を6.2重量部と水42.5重量部をミキサーに投入し、低速で30秒間混練して一旦ミキサーを停止した。ミキサー内壁に付着したモルタルをさじで30秒間かき落とした後、さらに60秒間低速で混練した。練り鉢をミキサーから取り外し、練り上がったモルタルを素早く、フロー試験に供し、材料分離抵抗を評価した。評価結果は表2に示した。
また練り上がり温度は21℃、容重(練り上がり後の比重)は1.25であった。
【0047】
(実施例7〜10)
ホルマイト鉱物であるセピオライト(B)、軽量骨材であるパーライト(C)、エマルジョン系混和剤(D)、水の使用量および室温を表2に記載の量に変えた他は、実施例1と同様にしてモルタルを作成し、評価した。その結果を表1に示した。
【0048】
【表2】
(配合量はセメント100重量部に対する添加量・重量部)
Figure 0003986709
【0049】
(現場での圧送性能)
表2実施例に準じ下記の配合のセメントモルタルを用いて現場にてその効果を確認した。
【0050】
(配 合)
普通ポルトランドセメント 672kg/m3
軽量骨材パーライト 113kg/m3
セピオライト 5kg/m3
エマルジョン系混和剤 41kg/m3
アルミ粉末(発泡剤) 27.6g/m3
水 286kg/m3
上記配合のセメントを用いた結果、200mポンプ圧送性に問題はなかった。
【0051】
比較例1〜5
セピオライト(B)、軽量骨材EPS(C)、エマルジョン系混和剤(D)、水の使用量および条件を表2に記載の量に変えた他は、実施例1と同様にしてモルタルを作成し、評価した。その結果を表3に示した。
【表3】
(配合量はセメント100重量部に対する添加量・重量部)
Figure 0003986709
【0052】
比較例1は、実施例1から必須成分であるセピオライトを除き、水量でフロー調整をしたものである。材料分離抵抗性、ポンプ圧送性とも悪かった。
比較例2は、実施例1から室温を30℃条件下に変更し、軽量骨材の量を減らし、水量でフロー調整をしたものである。材料分離抵抗性が悪かった。
【0053】
比較例3は、実施例1から軽量骨材の量を減らし、水量でフロー調整をしたものである。材料分離抵抗性が悪かった。
比較例4は、実施例1から室温を10℃条件下に変更し、軽量骨材の量を減らし、水量でフロー調整をしたものである。材料分離抵抗性、ポンプ圧送性とも悪かった。
【0054】
比較例5は、実施例1から必須成分である混和剤(D)成分であるアクリルエマルジョンを除き、水量でフロー調整をした。接着強度、耐薬品性が悪かった。
【0055】
比較例6〜9
セピオライト、軽量骨材パーライト、エマルジョン系混和剤、水の使用量および条件を表4に記載の量に変えた他は、実施例1と同様にしてモルタルを作成し、評価した。その結果を表4に示した。
【0056】
【表4】
(配合量はセメント100重量部に対する添加量・重量部)
Figure 0003986709
【0057】
比較例6は、実施例1から必須成分であるセピオライト(B)を除き、水量でフロー調整をしたものである。材料分離抵抗、ポンプ圧送性とも悪かった。
比較例7は、実施例1から必須成分である軽量骨材パーライト(C)の量をセピオライト1部に対し重量部で33部に増量配合したものである。材料分離抵抗、ポンプ圧送性とも悪かった。
比較例8は、実施例1から室温を10℃条件下に変更し、必須成分である軽量骨材(パーライト)(C)の量をセピオライト1部に対し重量部で33部に増量配合したものである。材料分離抵抗、ポンプ圧送性とも悪かった。
比較例9は実施例1から必須成分である混和剤を除き、水量でフロー調整をしたものである。材料分離抵抗、ポンプ圧送性とも悪かった。
【0058】
【発明の効果】
本発明のグラウト材組成物は、表1〜2からも明らかなように、軽量性、ポンプ圧送性、流動性、材料分離抵抗性、耐薬品性、接着性、耐久性、耐体積収縮性に優れ、特にポンプ圧送性、高流動性、材料分離抵抗性に優れ、従来のグラウト材組成物の難点を改良でき、耐薬品性、接着性、耐久性、軽量性と強度に優れた硬化物を得ることができるので、ポンプを使用する工法、例えば地下に埋没された水道管、下水管の既設管渠内周面ライニング工法やトンネル工事等土木建設構造物のグラウト材、シールド工法、吹き付け工法等に特に有効に使用される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grout material composition excellent in lightness, pumpability, fluidity, material separation resistance, chemical resistance, adhesion, durability, and volume shrinkage resistance, a construction method, and a cured product thereof.
[0002]
[Prior art]
Generally, a fluid grout material is manufactured by securing a material separation resistance using a large amount of cement and imparting fluidity with a water reducing agent or a fluidizing agent. In this case, if the cement alone is used as the powder, the viscosity of the grout material becomes too high, causing problems in the workability of mixing and pumping. It is common to use cement or fine mineral powder such as ash or limestone powder that has little activity.
[0003]
However, at present, the amount of powder and admixture is larger than that of ordinary cement mortar material, so it is mostly applied to on-site construction and secondary product factories due to restrictions on cost, material supply system, manufacturing equipment, etc. Not applicable to large-scale construction.
[0004]
On the other hand, a grout material composition in which the amount of cement powder is slightly reduced, viscosity is increased by using a polymer thickener, material separation resistance is imparted, and fluidity is imparted in combination with a water reducing agent. There are suggestions about. If (JP-9-110503 discloses) This is easily entrained coarse bubbles in fresh mortar, it causes a strength of only either the cured product to deteriorate the surface state, in terms of durability problems of the cured product . There is also a problem that the setting and hardening is delayed.
[0005]
Furthermore, a grout material composition using a thickener has a large amount of adhesion to a mixer or a track agitator and has a problem that it is difficult to clean, so that practical application has hardly been made.
[0006]
For example, JP-A-60-215564 discloses a cement mortar composition for spray molding comprising cement, fine aggregate, resin emulsion, antifoaming agent, and sepiolite. This is the use of asbestos. Therefore, the performance as a grout material such as long-distance pumping ability, fluidity, and fine filling properties was not sufficiently satisfied.
[0007]
In other words, even the grout material composition used in the modern civil engineering construction field has fluidity that satisfies only the long-distance pumping pumping capability that can be applied to civil engineering construction structures such as tunnel construction, None of them satisfied durability, chemical resistance, and light weight. Moreover, in outdoor construction, there was a limit to solve the problems of fluidity and material separation resistance under severe temperature differences throughout the year, and there was a problem that the actual construction could not be dealt with. .
[0008]
[Problems to be solved by the invention]
An object of the present invention is a grout material composition excellent in lightness, pumpability, fluidity (flow), material separation resistance, chemical resistance, adhesion, durability, volume shrinkage resistance, and strength of cured product. It is in. There is virtually no such thing, and for example, the realization of grout materials for repairing the inner peripheral surface of existing pipes is strongly awaited. In order to solve these problems, the present invention provides a grout cured product that is particularly excellent in pumpability, fluidity (flow), and material separation resistance, and has the strength and light weight necessary for the civil engineering construction field. There is to do.
[0009]
[Means for Solving the Problems]
As a result of intensive research on a grout material composition to solve the above-mentioned problems, the present inventors have found that the problem can be solved with a specific composition and have arrived at the present invention.
[0010]
That is, the present invention relates to an emulsion admixture obtained by emulsion polymerization of (A) cement, (B) holmite mineral, (C) lightweight aggregate, and (D) α, β-ethylenically unsaturated monomer. (C) The lightweight aggregate has a bulk specific gravity of 0.01 to 0.7 and a particle size of 8 to 12 mesh, and (B) holmite mineral: (C) lightweight The weight ratio of the aggregate is 1: 1 to 30, and the blending amount of the grout material composition, preferably holmite mineral (B) is 0.1 to 5 with respect to 100 parts by weight of cement. The blending amount of the light weight aggregate (C) is preferably 0.5 to 40 parts by weight with respect to 100 parts by weight of the cement, preferably the blending amount of the admixture (D). 1 to 30 parts by weight of solids per 100 parts by weight, The out material composition is intended to provide a cured product and construction methods by curing.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The grout material composition of the present invention can be used by any method as long as it can be used as a cement mortar material in the modern civil engineering and construction field. It is useful in the construction method of placing. The construction method using the pump includes, for example, a water pipe buried underground, a grouting material for a civil construction structure such as an existing pipe lining method of a sewer pipe, a tunnel construction, a shield method, and a spraying method. In such a construction method, it is important to have excellent material separation resistance and fluidity as well as pumpability.
[0012]
The cement (A) used in the present invention is an essential component as a hardening developing material, and typical examples include ordinary Portland cement, early-strength Portland cement, white cement, moderately hot Portland cement, sulfate-resistant Portland cement. Portland cement such as cement, low heat Portland cement, super early strength Portland cement (jet cement, super cement, SQ cement), etc. is there. Preferred is commercially available ordinary Portland cement. The cement (A) is preferably used in an amount of 40 to 70% by weight in the grout material.
[0013]
The holmite mineral (B) used in the present invention is a fibrous α-type, powdery, granular, plate-like amorphous β-type, each of which is a naturally occurring double-chain structure type clay mineral, preferably fibrous It is a clay mineral with an internal structure that is like a pile of small pieces of talc. The holmite mineral is a naturally occurring fibrous inorganic clay mineral mainly composed of magnesium silicate, preferably having a fiber length of 5 to 20 μm, preferably having a fiber thickness (diameter) of 0.01 to 0.3 μm, preferably an aspect. The ratio is 20-200. Formite mineral has the property of absorbing and retaining water inside, and because it has a fiber structure, it can impart thixotropy, so it is an essential component to prevent bleeding and aggregate separation resistance. . Specifically, sepiolite, attapulgite, palygorskite and the like. Sepiolite is preferable.
[0014]
Sepiolite is pulverized by moderately pulverizing naturally occurring sepiolite, or hydrated and stirred to obtain a desired sepiolite. As a commercial product, a millcon (product of Showa Mining Co., Ltd.) can be used.
[0015]
In the grout composition containing this holmite mineral (B), bleeding is prevented by the water absorption of the holmite mineral (B), and shape retention and plasticity are imparted by the thixotropic property of the holmite mineral. become. The blending amount of the holmite mineral (B) is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the cement (A). If the blending amount is less than this, the effect of blending cannot be sufficiently obtained, and if the blending amount is more than this, the flow of the grout material composition becomes too bad, and mortar filling into a complicated shape becomes difficult.
[0016]
The lightweight aggregate (C) used in the present invention has a bulk specific gravity of preferably 0.01 to 0.7. For example, expanded polystyrene, expanded polystyrene volume-reduced material (partially expanded polystyrene particles by heating). Melted and reduced in volume), perlite, vermiculite, shirasu balloon, foamed glass and the like. Perlite is obtained by firing and foaming obsidian and pearlite granules. The particle size of the lightweight aggregate (C) is 8-12 mesh. (C) component is an essential component for weight reduction, fluidity | liquidity, and adhesiveness. The amount of the lightweight aggregate (C) used is preferably 0.5 to 40 parts by weight with respect to 100 parts by weight of cement.
[0017]
In this invention, the addition amount of a holmite mineral (B) and a lightweight aggregate (C) is (B) :( C) = 1: 1-30 (weight ratio). Outside this range, the material separation resistance and fluidity will be poor.
[0018]
In the present invention, a little ordinary aggregate other than the lightweight aggregate (C) may be added. Any type of conventional grout material can be used as long as the effects of the present invention (fluidity, pumpability, etc.) are not impaired, but typical examples include river sand, dredged sand, sea Fine aggregates such as sand and mountain sand can be mentioned, and No. 1-7 silica sand defined by JIS G 5901-1968 can also be used. The amount used is preferably 1 to 30 parts by weight per 100 parts by weight of cement (A). If the blending amount is less than this, the effect of fine aggregate cannot be sufficiently obtained, and if the blending amount is more than this, it is not preferable because there are problems such as poor fluidity and light weight of the grout composition.
[0019]
In order to improve the fluidity, strength, durability, and adhesion to existing structures and other contact substrates, the grouting material cannot be improved sufficiently only by mixing the holmite mineral (B) and the lightweight aggregate (C). Emulsified admixture (D) is mixed and used. The admixture (D) is preferably blended in an amount of 1 to 30 parts by weight based on 100 parts by weight of cement.
[0020]
The emulsion of the admixture (D) used in the present invention is obtained by emulsion polymerization of α, β-ethylenically unsaturated monomers in the presence of an emulsifier under normal pressure or pressure. The form is a form in which a polymer is dispersed in water, or a powder form excluding water. Examples of the α, β-ethylenically unsaturated monomer that is a component during the emulsion polymerization include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, (meth) (Meth) acrylic acid esters such as iso-butyl acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic acid-lauryl; maleic acid, fumaric acid, itaconic acid esters; acrylic acid, methacrylic acid Monobasic acids such as acid, vinyl sulfonic acid and vinyl toluene sulfonic acid and salts thereof; unsaturated dibasic acids such as itaconic acid, fumaric acid and maleic acid, and half-esters and salts thereof; acrylamide, methacrylamide and maleic amide Amides of α, β-ethylenically unsaturated acids such as N-methylol acrylamide or methacrylamide, diacetone acrylate Substituted amides of unsaturated carboxylic acids such as amides; vinyl esters such as vinyl acetate, vinyl propionate and tertiary carboxylic acid vinyl; aromatic vinyl compounds such as styrene and vinyl toluene; heterocyclic vinyl compounds such as vinyl pyrrolidone; Vinyl chloride, acrylonitrile, vinyl ether, vinyl ketone, vinyl amide and the like; vinylidene chloride compounds such as vinylidene chloride and vinylidene fluoride; α-olefins such as ethylene and propylene; dienes such as butadiene; diallyl phthalate, divinylbenzene, allyl acrylate, tri Examples thereof include monomers having two or more unsaturated bonds in one molecule such as methylolpropane trimethacrylate, and one or a mixture of two or more thereof is used.
[0021]
By combining these monomers, the saponification resistance of so-called acrylic, acrylic-styrene, SBR, vinyl acetate, and vinyl acetate can be copolymerized with ethylene, (meth) acrylic acid ester, versatic acid vinyl ester, etc. Various emulsions such as improved modified vinyl acetate are obtained.
[0022]
These emulsion-based admixtures (D) can be obtained by emulsion polymerization of the above monomers in the presence of an emulsifier and a protective colloid under normal pressure or pressure. Examples of the emulsifier used in the polymerization include known anionic emulsifiers, nonionic emulsifiers, and cationic emulsifiers. Examples of protective colloids include nonionic water-soluble polymers such as polyvinyl alcohol and hydroxyethyl cellulose, and polymer electrolytes. These emulsifiers and protective colloids are each used as one or a mixture of two or more, but the amount used should be as small as possible in consideration of foamability and fusing properties when mixed with cement. Desirably, about 0.1 to 8% by weight per emulsion solid content is preferable.
[0023]
Moreover, a polymerization initiator is used at the time of polymerization, and there is no particular limitation on this, but typical examples include water-soluble inorganic peroxides, persulfates, organic peroxides, and azo compounds.
[0024]
The emulsion-based admixture (D) is roughly classified into an anionic type, a nonionic type, and a cationic type depending on the charge of the particles. In consideration of miscibility in use in the present invention, anionic and nonionic types are preferred.
[0025]
The particle size of these emulsion admixtures (D) is not particularly limited, but is preferably 50 nm to 500 nm in consideration of the miscibility of the composition used in the present invention. When the particle size of the emulsion is smaller than 50 nm, it is not preferable because not only the stability of the emulsion is lowered but also the fluidity of the grout material composition containing the emulsion admixture (D) is inferior. . When the particle diameter of the emulsion is larger than 500 nm, it is not preferable because there is a problem that the emulsion is likely to settle.
[0026]
Examples of commercially available emulsion-based admixtures (D) include “Boncoat 9185”, “Boncoat 4001”, “Boncoat TD-3137”, “Boncoat 550”, “Boncoat 510”, “ Boncoat 515 "(registered trademark, product of Dainippon Ink and Chemicals, Inc.).
[0027]
In the present invention, a polymer water reducing agent having a weight average molecular weight of less than 100,000 may be added as necessary as an admixture. The polymer water reducing agent improves mortar fluidity, particularly fluidity at low temperatures, compressive strength, increased dispersibility, and pot life. The molecular weight of the polymeric water reducing agent means that the weight average molecular weight measured by gel permeation chromatography (column is Ultrahydrogel manufactured by Waters, standard material is sodium polystyrene sulfonate is the standard material) is less than 100,000. . If it is larger than this, there will be a problem with fluidity.
[0028]
The polymer water reducing agent is an aqueous solution or powdery polymer substance, for example, a melamine sulfonate formaldehyde condensate, a naphthalene sulfonate formaldehyde condensate, an alkyl naphthalene sulfonate formaldehyde condensate, Lignin sulfonates, modified lignin sulfonate compounds, highly condensed triazine condensates, polycarboxylates, polycarboxylate derivatives, oxycarboxylates, oxycarboxylate derivatives, aminosulfonate salts Examples include molecular compounds, isoprene-based compounds, polyalkyl anhydride carboxylates, and the like.
[0029]
In the present invention, it is better to add gypsum. Gypsum is important because it has a cement shrinkage mitigating action that becomes a low shrinkage agent by an ettringite product produced by reaction with aluminum in the cement. Gives excellent mortar filling at mortar repair locations. The gypsum is preferably anhydrous, but is not particularly limited thereto, and naturally occurring anhydrous gypsum, hemihydrate gypsum, dihydrate gypsum, and the like can be used. In addition, anhydrous gypsum obtained by heat-treating these and anhydrous gypsum generated as an industrial by-product can be used. The particle size of the gypsum is preferably 2,500 cm 2 / g or more in Blaine value, 4,000 cm 2 / g or more is more preferable. If it is less than 2500 cm < 2 > / g, there exists a possibility that expansion | swelling destruction may generate | occur | produce by the unhydrated residual gypsum in a long-term material age. The amount of gypsum used is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of cement (A). If the amount is less than 0.5 parts by weight, the initial strength is poorly developed. If the amount exceeds 10 parts by weight, expansion failure may occur due to unhydrated residual gypsum in a long-term material age. Examples of commercially available shrinkage reducing materials include CSA (Denka Co., Ltd., expansion admixture).
[0030]
In the present invention, it is better to add a foaming agent and a foaming agent. Examples of the foaming agent include aluminum powder, hydrogen peroxide and calcium hypochlorite, hydrochloric acid and sodium bicarbonate, and the addition amount is preferably 0.0001 to 0.05% by weight in the composition of the present invention. . Foaming agents include various surfactants such as silicone surfactants, sulfonic acid surfactants, polyoxyalkylene ether surfactants, higher alkyl ether sulfate ester surfactants, alkylbenzene sulfonic acid interfaces. An active agent etc. are mentioned, This addition amount becomes like this. Preferably it is 0.001-0.01 weight% in the composition of this invention.
[0031]
Other coarse aggregates such as crushed stone, gravel, fly ash, shrinkage relaxation agents such as CSA (Denka products), swelling agents such as calcium sulfoaluminate, water retention agents such as methylcellulose, polyvinyl alcohol fibers, carbon fibers, steel fibers Such fibers, other cement additives (materials), for example, known AE agents (air entraining agents), AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, fluidizing agents, thickeners such as cellulose derivatives, Accelerator, early strength agent, quick setting agent, retarder, antifoaming agent, water retention agent, accelerator, self-leveling agent, rust preventive (eg phosphates, amines, nitrites), colorant, crack Any reducing agent, surfactant, water-soluble polymer, etc. can be used as long as the advantages of the present invention are not significantly impaired.
[0032]
[Action]
The present invention comprises cement (A), holmite mineral (B), lightweight aggregate (C) and admixture (D) as essential components, and the admixture (D) component is an α, β-ethylenically unsaturated monomer. Is an emulsion admixture (D) obtained by emulsion polymerization of (B) holmite mineral and ( C ) lightweight aggregate. The grout composition is excellent in various properties, that is, lightness, pumpability, fluidity, material separation resistance, chemical resistance, adhesiveness, durability, volume shrinkage resistance, and balance between strength and lightness. It is well drawn and satisfies the performance required for grout composition used in the modern civil engineering field.
[0033]
The grout material composition of the present invention can be used by any method as long as it is a construction method that can be used in the field of civil engineering and construction, particularly as cement mortar, but it is particularly useful for a construction method that uses a pump. is there. Construction methods using pumps include, for example, agricultural waterway pipes buried underground, grout materials for civil construction structures such as tunnel construction, and grouting materials for shields, shield methods, etc. Can be mentioned.
[0034]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. However, “%, part” is based on weight.
[0035]
Example 1 (EPS mortar adjustment)
Normal Portland cement (A) (manufactured by Ube Industries, Ltd.) 100 parts by weight, Sepiolite ( B ) (manufactured by Showa Mining Co., Ltd., Milcon SP), 0.6 parts by weight, lightweight aggregate EPS (C) (bulk specific gravity 0.02 ) 1.7 parts by weight was put into a tabletop mixer, kneaded at low speed for 30 seconds, and then kneaded to stop the mixer. As an emulsion-based admixture (D), a commercially available Boncoat 4001 (solid content 50%, manufactured by Dainippon Ink & Chemicals, Inc.), a commercially available water sol HM-350T (solid content 35%, large) Nippon Ink Chemical Co., Ltd.) was used. 3.1 parts by weight of Boncoat 4001, 2.0 parts by weight of Watersol HM-350T and 34.2 parts by weight of water were charged into the mixer, kneaded at a low speed for 30 seconds, and the mixer was once stopped. The mortar adhering to the inner wall of the mixer was scraped with a spoon for 30 seconds, and then kneaded at a low speed for 60 seconds. The kneading bowl was removed from the mixer, and the kneaded mortar was quickly subjected to a flow test to evaluate the material separation resistance. The evaluation results are shown in Table 1. The kneading temperature was 23 ° C., and the weight (specific gravity after kneading) was 1.15.
[0036]
<Flow test>
Using a flow cone defined in JIS R5201 “Physical Testing Method for Cement”, the cone was extracted and the flow before hitting was measured. An iron plate with good smoothness was used for the bottom plate.
[0037]
<Material separation resistance>
The following five stages were evaluated visually when measuring the flow.
(Double-circle): Separation is not recognized at all.
○: Slight separation is observed.
Δ: Floating water is observed on the top surface of the mortar.
X: Water (paste layer) is separated and formed at the tip of the flowed mortar.
XX: The fine aggregate does not flow in the central part of the mortar and remains in a mountain shape.
[0038]
<Pump pumpability>
The pumping pump discharge state when the mortar obtained by adjusting the mortar was pumped at a rate of 50 L / min with a squeeze pump (MM105 type, manufactured by Shin Meiwa Co., Ltd.) was determined according to the following evaluation criteria.
◎: Extremely good ○: Good △: Slightly difficult to eject ×: Difficult to eject (due to aggregate separation, etc.)
XX: Not discharged at all [0039]
<Compressive strength>
Molded according to JIS R 5201 “Cement physical test method”, measured for 24 hours at 20 ° C. and 90% RH or higher after wet-air curing, demolding, and then underwater curing at 20 ° C. at 28 days of age. did.
[0040]
<Adhesive strength>
Molded according to JIS A 6203 “Polymer dispersion for cement admixture and re-emulsified powder resin”, immersed in water at 20 ° C. for 18 hours, and immediately cooled in a constant temperature base at −20 ° C. for 3 hours. Then, a heating / cooling repeating operation in which one cycle of heating for 3 hours in a thermostat at 50 ° C. was set to 24 hours was repeated 10 times. Then, after leaving still in the test room for 2 hours, the epoxy resin coating around the polymer cement mortar was cut so as to reach the base, and an adhesion strength test was performed.
[0041]
(chemical resistance)
Cylindrical specimens (φ10 × 20 cm) were prepared and air-cured at 20 ° C. for 28 days for material cooling. Next, it was placed in a 70-liter plastic bucket and immersed in a 2% aqueous hydrochloric acid solution (PH = 1.4) until the specimen was completely hidden. After 1 month, 3 months, and 6 months of immersion, the surface residue of each specimen was removed, the state of change was observed, and the following evaluation criteria were used. The aqueous hydrochloric acid solution was replaced with a new solution every month.
[Evaluation criteria]
◎: No change in appearance ○: Almost no change in appearance △: Roughness on the appearance surface ×: Large roughness on the appearance surface ××: Large destruction of the appearance [0042]
Examples 2 to 5 (EPS mortar adjustment)
Example 1 except that the formite mineral sepiolite (B), lightweight aggregate EPS (C), emulsion admixture (D), polymer water reducing agent, amount of water used and room temperature were changed to the amounts shown in Table 1. A mortar was prepared and evaluated in the same manner as in 1. The results are shown in Table 1.
[0043]
[Table 1]
(The amount added is 100 parts by weight of cement and the amount by weight)
Figure 0003986709
[0044]
<Pumping performance at the realization site>
The effect was confirmed in the field using the cement mortar of the following mixing | blending according to Table 1 Example.
[0045]
(Combination)
Normal Portland cement 848kg / m 3
Lightweight aggregate EPS 14kg / m 3
Sepiolite 5kg / m 3
Emulsion-based admixture 26kg / m 3
Polymer water reducing agent 17kg / m 3
Anionic surfactant (foaming agent) 515 g / m 3
Aluminum powder (foaming agent) 21.6 g / m 3
Water 290kg / m 3
As a result of using the cement with the above composition, there was no problem in the pumpability of the 200 m pump.
[0046]
Example 6 (Perlite mortar adjustment)
Ordinary Portland cement (A) (manufactured by Ube Industries) 100 parts by weight, Sepiolite (B) (manufactured by Showa Mining Co., Ltd., Milcon SP) 0.8 parts by weight, lightweight aggregate perlite (C) 1) 16.8 parts by weight were sequentially added to a desktop mixer (Kenmix, Kenmix), kneaded at low speed for 30 seconds, and then kneaded to stop the mixer. As the emulsion admixture (D), a commercially available emulsion, Boncoat 9185 (solid content 48%, manufactured by Dainippon Ink & Chemicals, Inc.) was used. 6.2 parts by weight of Boncoat 9185 and 42.5 parts by weight of water were put into a mixer, kneaded at a low speed for 30 seconds, and the mixer was once stopped. The mortar adhering to the inner wall of the mixer was scraped with a spoon for 30 seconds, and then kneaded at a low speed for 60 seconds. The kneading bowl was removed from the mixer, and the kneaded mortar was quickly subjected to a flow test to evaluate the material separation resistance. The evaluation results are shown in Table 2.
The kneading temperature was 21 ° C., and the weight (specific gravity after kneading) was 1.25.
[0047]
(Examples 7 to 10)
Example 1 except that sepiolite (B), a holmite mineral, pearlite (C), a lightweight aggregate, an emulsion admixture (D), the amount of water used, and room temperature were changed to the amounts shown in Table 2. Similarly, mortar was prepared and evaluated. The results are shown in Table 1.
[0048]
[Table 2]
(The amount added is 100 parts by weight of cement and the amount by weight)
Figure 0003986709
[0049]
(Pressing performance on site)
The effect was confirmed in the field using the cement mortar of the following mixing | blending according to Table 2 Example.
[0050]
(Merge)
Normal Portland cement 672kg / m 3
Lightweight aggregate perlite 113kg / m 3
Sepiolite 5kg / m 3
Emulsion admixture 41kg / m 3
Aluminum powder (foaming agent) 27.6 g / m 3
Water 286kg / m 3
As a result of using the cement with the above composition, there was no problem in the pumpability of the 200 m pump.
[0051]
Comparative Examples 1-5
A mortar was prepared in the same manner as in Example 1, except that sepiolite (B), lightweight aggregate EPS (C), emulsion admixture (D), water usage and conditions were changed to those shown in Table 2. And evaluated. The results are shown in Table 3.
[Table 3]
(The amount added is 100 parts by weight of cement and the amount by weight)
Figure 0003986709
[0052]
In Comparative Example 1, the sepiolite, which is an essential component, was removed from Example 1, and the flow was adjusted with the amount of water. Both material separation resistance and pumpability were poor.
In Comparative Example 2, the room temperature was changed to 30 ° C. from Example 1, the amount of lightweight aggregate was reduced, and the flow was adjusted with the amount of water. The material separation resistance was poor.
[0053]
Comparative Example 3 is obtained by reducing the amount of lightweight aggregate from Example 1 and adjusting the flow with the amount of water. The material separation resistance was poor.
In Comparative Example 4, the room temperature was changed to 10 ° C. from Example 1, the amount of lightweight aggregate was reduced, and the flow was adjusted with the amount of water. Both material separation resistance and pumpability were poor.
[0054]
In Comparative Example 5, the flow adjustment was carried out with the amount of water except for the acrylic emulsion as the admixture (D) component as an essential component from Example 1. Adhesive strength and chemical resistance were poor.
[0055]
Comparative Examples 6-9
Mortar was prepared and evaluated in the same manner as in Example 1 except that sepiolite, lightweight aggregate perlite, emulsion admixture, water usage and conditions were changed to those shown in Table 4. The results are shown in Table 4.
[0056]
[Table 4]
(The amount added is 100 parts by weight of cement and the amount by weight)
Figure 0003986709
[0057]
In Comparative Example 6, the sepiolite (B), which is an essential component, was removed from Example 1, and the flow was adjusted with the amount of water. Both material separation resistance and pumpability were poor.
In Comparative Example 7, the amount of the lightweight aggregate pearlite (C), which is an essential component from Example 1, was increased to 33 parts by weight with respect to 1 part of sepiolite. Both material separation resistance and pumpability were poor.
In Comparative Example 8, the room temperature was changed to 10 ° C. from Example 1, and the amount of the essential light-weight aggregate (pearlite) (C) was increased to 33 parts by weight with respect to 1 part of sepiolite. It is. Both material separation resistance and pumpability were poor.
In Comparative Example 9, the admixture, which is an essential component, was removed from Example 1, and the flow was adjusted with the amount of water. Both material separation resistance and pumpability were poor.
[0058]
【The invention's effect】
As is clear from Tables 1 and 2, the grout material composition of the present invention has lightness, pumpability, fluidity, material separation resistance, chemical resistance, adhesiveness, durability, and volume shrinkage resistance. Excellent, especially pumpability, high fluidity, excellent material separation resistance, can improve the difficulties of conventional grout composition, and has a cured product with excellent chemical resistance, adhesion, durability, lightness and strength. Construction methods that use pumps, such as underground pipes buried in underground, sewer pipe inner peripheral lining construction methods, tunnel construction, grout materials for civil engineering construction structures, shield construction methods, spraying construction methods, etc. Used especially effectively.

Claims (6)

(A)セメント、
(B)ホルマイト鉱物、
(C)軽量骨材、
(D)α,β−エチレン性不飽和単量体を乳化重合して得られるエマルジョン系混和剤、を含有すること、(C)軽量骨材が、かさ比重0.01〜0.7であり、かつ、粒度が8〜12メッシュであること、及び、(B)ホルマイト鉱物:(C)軽量骨材の(重量比)が、1:1〜30であることを特徴とするグラウト材組成物。
(A) cement,
(B) holmite mineral,
(C) lightweight aggregate,
(D) containing an emulsion admixture obtained by emulsion polymerization of an α, β-ethylenically unsaturated monomer , and (C) a lightweight aggregate having a bulk specific gravity of 0.01 to 0.7. The grout composition is characterized in that the particle size is 8 to 12 mesh, and (B) holmite mineral: (C) (weight ratio) of the lightweight aggregate is 1: 1 to 30. .
ホルマイト鉱物(B)の配合量が、セメント100重量部に対して0.1〜5重量部であることを特徴とする請求項1に記載のグラウト材組成物。  The grout material composition according to claim 1, wherein the amount of the holmite mineral (B) is 0.1 to 5 parts by weight with respect to 100 parts by weight of cement. 軽量骨材(C)の配合量が、セメント100重量部に対して0.5〜40重量部であることを特徴とする請求項1に記載のグラウト材組成物。The grout material composition according to claim 1, wherein the amount of the lightweight aggregate (C) is 0.5 to 40 parts by weight with respect to 100 parts by weight of cement. 混和剤(D)の配合量が、セメント100重量部に対して1〜30固形分重量部配合されることを特徴とする請求項1に記載のグラウト材組成物。  The grout material composition according to claim 1, wherein the amount of the admixture (D) is 1 to 30 parts by weight based on 100 parts by weight of cement. 請求項1〜請求項4に記載のグラウト材組成物を硬化させてなる硬化物。  Hardened | cured material formed by hardening the grout material composition of Claims 1-4. 請求項1〜請求項4記載のグラウト材組成物を使用する施工方法。  A construction method using the grout material composition according to claim 1.
JP19671499A 1999-07-09 1999-07-09 Grout material composition, cured product and construction method thereof Expired - Lifetime JP3986709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19671499A JP3986709B2 (en) 1999-07-09 1999-07-09 Grout material composition, cured product and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19671499A JP3986709B2 (en) 1999-07-09 1999-07-09 Grout material composition, cured product and construction method thereof

Publications (3)

Publication Number Publication Date
JP2001019528A JP2001019528A (en) 2001-01-23
JP2001019528A5 JP2001019528A5 (en) 2005-04-07
JP3986709B2 true JP3986709B2 (en) 2007-10-03

Family

ID=16362378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19671499A Expired - Lifetime JP3986709B2 (en) 1999-07-09 1999-07-09 Grout material composition, cured product and construction method thereof

Country Status (1)

Country Link
JP (1) JP3986709B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273837A (en) * 2004-03-25 2005-10-06 Sumitomo Osaka Cement Co Ltd Manufacturing method for vibration-damping mechanical component
JP4854406B2 (en) * 2005-08-26 2012-01-18 株式会社大林組 Mortar composition, coating material and spraying material
JP4709677B2 (en) * 2006-03-31 2011-06-22 住友大阪セメント株式会社 Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
CN102007083A (en) * 2007-12-18 2011-04-06 Sika技术股份公司 Multicomponent composition for filling and/or grouting cracks, flaws, and cavities in structures or earth and stone formations
JP2009150130A (en) * 2007-12-20 2009-07-09 Shimizu Corp Backfill grouting material
JP2010155755A (en) * 2008-12-27 2010-07-15 Taiheiyo Materials Corp High inflation lightweight grout mortar composition
JP4968970B2 (en) * 2010-03-16 2012-07-04 有限会社大翔化学研究所 Ground improvement grout material and slime treatment method
CN102518450B (en) * 2011-12-09 2014-06-18 温州大学 Method for grouting ordinary cement rather than ultra-fine cement when reinforcing stratum by adopting shallow excavation method
JP5959096B2 (en) * 2012-06-14 2016-08-02 東京都下水道サービス株式会社 Grout material composition for existing pipe lining, cured product thereof, and lining construction method for existing pipe
JP5969426B2 (en) * 2013-05-14 2016-08-17 阪神高速道路株式会社 Lightweight filled mortar composition
JP6837256B2 (en) * 2016-03-30 2021-03-03 東京都下水道サービス株式会社 Grout material for sewage pipe rehabilitation method and sewage pipe rehabilitation method using it

Also Published As

Publication number Publication date
JP2001019528A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP5939776B2 (en) Repair mortar composition
JP2008247666A (en) Self-leveling hydraulic composition
JP4770443B2 (en) Iron coating cement composition and cured product obtained by blending the same
JP3986709B2 (en) Grout material composition, cured product and construction method thereof
JP2010180106A (en) Spraying method for ultra-high strength fiber-reinforced mortar, and mortar hardened body
JP2022069599A (en) Polymer cement mortar
JP6271249B2 (en) Spraying mortar
JP2020158371A (en) Polymer cement mortar and repair method of reinforced concrete
JP4937650B2 (en) Hydraulic composition
JP5335176B2 (en) Polymer cement grout material
JP5959096B2 (en) Grout material composition for existing pipe lining, cured product thereof, and lining construction method for existing pipe
JP2003306369A (en) Spray material and spraying method using it
JP2009084092A (en) Mortar-based restoring material
JP3528301B2 (en) High strength self-leveling cement composition
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete
JP5494049B2 (en) Premix powder of cement composition, hydraulic mortar and hardened mortar
JP3976951B2 (en) Grout material composition, cured product and construction method thereof
JP4672572B2 (en) Cement composition for spraying and spraying method using the same
JP2951374B2 (en) Cement admixture and cement composition
JP7350425B2 (en) Highly durable grout composition
JP4388250B2 (en) Hydraulic composition and cured body thereof
JP4108165B2 (en) Resin mortar composition
JP4916786B2 (en) Spray cement composition and spray method
JP2003342053A (en) Spraying material and spraying technique using it
JPH03177348A (en) Cement additive and polymer-cement composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3986709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term