JPH0426382A - Driving method for ultrasonic motor - Google Patents

Driving method for ultrasonic motor

Info

Publication number
JPH0426382A
JPH0426382A JP2127287A JP12728790A JPH0426382A JP H0426382 A JPH0426382 A JP H0426382A JP 2127287 A JP2127287 A JP 2127287A JP 12728790 A JP12728790 A JP 12728790A JP H0426382 A JPH0426382 A JP H0426382A
Authority
JP
Japan
Prior art keywords
frequency
drive
driving
ultrasonic motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2127287A
Other languages
Japanese (ja)
Inventor
Osamu Kawasaki
修 川崎
Takahiro Nishikura
西倉 孝弘
Masanori Sumihara
正則 住原
Katsu Takeda
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2127287A priority Critical patent/JPH0426382A/en
Publication of JPH0426382A publication Critical patent/JPH0426382A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To stabilize the status of an ultrasonic motor at the time of start and during the operation and improve the efficiency of the motor by a method wherein a driving current which is applied to one of a plurality of driving electrodes is controlled so as to be a required predetermined value in a frequency range not lower than the resonant frequency of a piezoelectric transducer unit by controlling the frequency of a driving voltage. CONSTITUTION:An oscillation frequency can be controlled by a voltage control oscillator 7 in accordance with a control voltage applied to its control terminal C. A dividing circuit 8 which divides the output AC signal of the voltage control oscillator 7 into two driving signals having a predetermined phase difference between each other is provided. A driving current which is applied to at least one of two driving electrodes of a piezoelectric transducer unit is controlled so as to be a required predetermined value in a frequency range not lower than the resonant frequency of the piezoelectric transducer unit by controlling the frequency of a driving voltage. With this constitution, the start and operation of an ultrasonic motor 11 in an unstable range can be avoided and, further, the current applied to the driving electrode can be stabilized and the stable start and operation of the motor can be realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 振動体に弾性波を励振することにより駆動
力を発生する超音波モータの駆動方法に関すム 従来の技術 以下、図面を参照しながら超音波モータとその駆動方法
の従来技術について説明を行う。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for driving an ultrasonic motor that generates driving force by exciting elastic waves in a vibrating body. The conventional technology of an ultrasonic motor and its driving method will be explained.

第5図ζ表 円環形超音波モータの切り欠き斜視図であ
り、円環形の弾性基板1の円環面の一方に圧電体として
円環形圧電セラミック2を貼合せて振動体3を構成して
いム 4は耐磨耗性材料の摩擦材、 5は弾性体であり
、互いに貼合せられて移動体6を構成していも 移動体
6は摩擦材4を介して図示しない加圧手段により振動体
3と加圧接触して設置されも 第6図は圧電体2に形成された駆動電極構造であり、 
1/4波長だけ位置的にずれた2組の駆動電極AとBが
形成されていも 駆動電極AとBはそれぞれ1/2波長
相当の長さを持つ小電極群がらなっていも 電極CとD
はそれぞれ3/4波長と1/4波長相当の長さを時板 
駆動電極AとBに1/4波長の位置的なずれを作るため
に形成していも 駆動電極AとB圏 それぞれ90度位
相の異なる2つの交流電圧を印加すると、第7図に示す
ような径方向の変位分布を有する径方向1次・周方向3
次以上の撓み振動の進行波が振動体3に励振されも こ
の進行波の波頭の横方向成分により、移動体6は摩擦駆
動され回転運動をする。
FIG. 5 ζ Table is a cutaway perspective view of an annular ultrasonic motor, in which a vibrating body 3 is constructed by laminating an annular piezoelectric ceramic 2 as a piezoelectric body to one of the annular surfaces of an annular elastic substrate 1. 4 is a friction material made of a wear-resistant material, and 5 is an elastic body. Even if they are pasted together to form a movable body 6, the movable body 6 is vibrated by a pressurizing means (not shown) via the friction material 4. FIG. 6 shows the drive electrode structure formed on the piezoelectric body 2, which is installed in pressure contact with the piezoelectric body 2.
Even if two sets of drive electrodes A and B are formed with a positional shift of 1/4 wavelength, even if drive electrodes A and B are each made up of a group of small electrodes with a length equivalent to 1/2 wavelength, electrodes C and D
are the lengths equivalent to 3/4 wavelength and 1/4 wavelength, respectively.
Even if drive electrodes A and B are formed to create a positional shift of 1/4 wavelength, if two AC voltages with a phase difference of 90 degrees are applied to drive electrodes A and B, the voltage as shown in Figure 7 will be generated. Radial primary/circumferential 3 with radial displacement distribution
Even if a traveling wave of bending vibration of the following order or more is excited in the vibrating body 3, the movable body 6 is frictionally driven and rotates due to the lateral component of the wave crest of this traveling wave.

振動体は圧電体単体の時と同様に駆動端子からみると共
振・反共振特性を示し 共振周波数近傍で低インピーダ
ンスになるので、共振周波数近傍で駆動すれば低電圧で
効率よく駆動することができも 従って、超音波モータ
の駆動(よ 振動体の共振周波数近傍で如何に安定に駆
動するかが重要であム 発明が解決しようとする課題 以上説明した様随 従来の超音波モータ(よ 振動体の
共振周波数近傍で駆動している。しかし第8図に示すよ
う&ミ 超音波モータの振動体は非線形効果によりアド
ミッタンスは特有の周波数特性を示す。すなわち第8図
中に矢印で示す様Cニ駆動周波数の掃引方向でアドミッ
タンスがヒステリシスを示す不安定動作領域(共振周波
数近傍のf2からfIで示す領域)があり、この周波数
領域で超音波モータを駆動すると動作が不安定になると
言う課題を有してい九 また 超音波モータの起動時に駆動周波数が上記の不安
定領域を通過する様に駆動を開始すると起動時に移動体
が移動しなかったり、速度が安定しない等の課題があっ
た 課題を解決するための手段 上記課題を解決する為の手段は 圧電体の2組の駆動電
極のうち少なくとも一方に流入する駆動電流を、駆動電
圧の周波数を制御して、前記振動体の共振周波数以上の
周波数領域において所定のの設定値になるように駆動電
圧の周波数を制御することであム また 超音波モータの起動時に1よ 振動体の共振周波
数より高い周波数から駆動電圧の周波数の掃引を開始り
、2組の駆動電極のうち少なくても一方に流入する駆動
電流が所定の設定値になった時に駆動電圧の周波数の掃
引を停止して前記駆動電流を前記の所定値になるように
駆動電圧の周波数を制御することであム 作用 上記手段によれば モータの起臥 運転は この不安定
領域を避けて行なわれると共に 駆動電極に流れる電流
が安定し 安定したモータの起動・運転が可能となるの
である。
The vibrating body exhibits resonance and anti-resonance characteristics when viewed from the drive terminal in the same way as a single piezoelectric body, and has low impedance near the resonance frequency, so if it is driven near the resonance frequency, it can be driven efficiently with low voltage. Therefore, it is important to drive the ultrasonic motor stably near the resonant frequency of the vibrating body. However, as shown in Figure 8, the admittance of the vibrating body of the ultrasonic motor exhibits a unique frequency characteristic due to the nonlinear effect.In other words, as shown by the arrow in Figure 8, the There is an unstable operation region (region from f2 to fI near the resonance frequency) where the admittance exhibits hysteresis in the sweep direction of the drive frequency, and driving an ultrasonic motor in this frequency region causes the problem of unstable operation. This also solves the problem that if the ultrasonic motor is started so that the drive frequency passes through the above unstable region, the moving object will not move or the speed will not be stable at the time of startup. Means for solving the above problem is as follows: The drive current flowing into at least one of the two sets of drive electrodes of the piezoelectric body is controlled by the frequency of the drive voltage to a frequency higher than the resonant frequency of the vibrating body. By controlling the frequency of the driving voltage so that it reaches a predetermined set value in the region, when starting the ultrasonic motor, the frequency of the driving voltage starts sweeping from a frequency higher than the resonant frequency of the vibrating body. When the drive current flowing into at least one of the two sets of drive electrodes reaches a predetermined set value, the frequency sweep of the drive voltage is stopped and the drive voltage is adjusted so that the drive current reaches the predetermined value. By controlling the frequency, the arm effect is achieved.According to the above method, the motor startup and operation are performed avoiding this unstable region, and the current flowing to the drive electrode is stabilized, making stable motor startup and operation possible. be.

実施例 以下、図面に従って本発明の実施例について詳細な説明
を行う。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

第1図は本発明の超音波モータの駆動方法の一実施例に
おける制御ブロック図であり、第2図は超音波モータを
定電圧駆動した時の1つの駆動端子に流入する駆動電流
の周波数特性である。
Fig. 1 is a control block diagram in one embodiment of the ultrasonic motor driving method of the present invention, and Fig. 2 shows the frequency characteristics of the drive current flowing into one drive terminal when the ultrasonic motor is driven at a constant voltage. It is.

第1図において、 7は電圧制御発振器でありコントロ
ール端子Cの制御電圧により発振周波数を制御できも 
8は電圧制御発振器7の出力交流信号を、所定の位相差
を有する2つの駆動信号に分割する分割回路である。分
割回路8の出力は電力増幅器9および10によって、超
音波モータ11を駆動するに充分なレベルにまで増幅さ
れ 超音波モータ11の2つの駆動端子にそれぞれ印加
されも 一方の駆動端子に流入する電流は抵抗】5と電
流検出器12によって検出される。 13は電圧制御発
振器7の発振周波数を制御する発振制御器であム 第2図は振動体のアドミッタンスの周波数特性に対応す
る駆動電流の周波数特性であり、駆動電流は振動体の共
振周波数近傍で大きくなム超音波モータの速度(よ 振
動振幅に比例つまり駆動電流に比例するので、超音波モ
ータを効率よく安定に駆動するには 振動体の非線形現
象に伴う不安定動作領域(同図中のr2からf3で示す
領域)を除いた共振周波数よりも高い共振周波数近傍の
動作領域で常に駆動する必要があa本実施例で(よ こ
の駆動を以下の様にして達成すも 先ず、超音波モータの動作速度を決定すム 超音波モー
タの動作速度が決まれば 上記の駆動領域において対応
する駆動電流の第1の設定値(第2図のi+)が決まる
と共にこの電流値を流すために必要な駆動電圧が決まる
In Figure 1, 7 is a voltage controlled oscillator, and the oscillation frequency can be controlled by the control voltage at control terminal C.
8 is a dividing circuit that divides the output AC signal of the voltage controlled oscillator 7 into two drive signals having a predetermined phase difference. The output of the dividing circuit 8 is amplified by power amplifiers 9 and 10 to a level sufficient to drive the ultrasonic motor 11, and when applied to each of the two drive terminals of the ultrasonic motor 11, the current flows into one of the drive terminals. is detected by the resistor ]5 and the current detector 12. 13 is an oscillation controller that controls the oscillation frequency of the voltage controlled oscillator 7. Figure 2 shows the frequency characteristics of the drive current corresponding to the frequency characteristics of the admittance of the vibrating body, and the drive current is near the resonance frequency of the vibrating body. The speed of a large ultrasonic motor is proportional to the vibration amplitude, that is, proportional to the drive current, so in order to drive an ultrasonic motor efficiently and stably, it is necessary to It is necessary to always drive in the operating region near the resonant frequency, which is higher than the resonant frequency excluding the region indicated by r2 to f3. Determining the operating speed of the motor Once the operating speed of the ultrasonic motor is determined, the first set value of the corresponding drive current (i+ in Figure 2) in the above drive range is determined, and it is necessary to flow this current value. The driving voltage is determined.

そして、超音波モータ11の起動時には スタート信号
が掃引指示器14に入力され 掃引指示器14は発振制
御器13を介して電圧制御発振器7を制御すム 電圧制
御発振器7(友 第2図の不安定周波数領域より充分高
し\ 例えば同図中の周波数f−で発振を開始する。そ
して、その後、低駆動周波数の方向へ掃引するように 
発振制御器13は電圧制御発振器7のコントロール端子
Cの制御電圧を制御する。
When the ultrasonic motor 11 is started, a start signal is input to the sweep indicator 14, and the sweep indicator 14 controls the voltage controlled oscillator 7 via the oscillation controller 13. It starts oscillating at a frequency sufficiently higher than the stable frequency range, for example f- in the same figure.Then, after that, it sweeps in the direction of the lower driving frequency.
The oscillation controller 13 controls the control voltage at the control terminal C of the voltage controlled oscillator 7.

電流検出器12の出力が通常の動作電流である第1の駆
動電流の設定値11に等しくなったら、掃引指示器14
は掃引停止信号を発振制御器13に送り、発振制御器1
3は駆動周波数の掃引を停止すム そして、電流検出器
12の出力が常に設定電流11に等しくなるように 発
振制御器13は電圧制御発振器7を制御すム 従って、本実施例で(よ 常に共振周波数よりも高い共
振周波数近傍の動作領域で安定に駆動されも な耘 超音波モータに急激な過負荷がかかった時は 振
動体の駆動端子からみたインピーダンスが急激に大きく
なり駆動電流が低下して停止すもこの場合、駆動電流が
第2の設定値11より小さくなったことを掃引指示器1
4が検知すれ(′L 掃引指示器14は掃引開始信号を
発振制御器13に送り、電圧制御発振器7(友 不安定
周波数領域より充分高い周波数で発振し 低い方へ駆動
周波数を掃引すム そして電流検出器12の出力が通常
の動作電流である第1の駆動電流の設定値11に等しく
なった収 掃引指示器14は発振制御器13を介して駆
動周波数の掃引を停止すム そして、電流検出器12の
出力が常に第2の設定電流11に等しくなるようく 発
振制御器13は電圧制御発振器7を制御すム 以上の様(二 本実施例では 常に共振周波数よりも高
い共振周波数近傍の動作領域で安定に駆動されるもので
あム な耘 超音波モータ11の特性は第2図において破線で
示すように 温度や負荷の変動により変化すも この様
な場合には 使用環境・使用温度の変動に応じて、これ
らの変動で生じる不安定周波数領域の最も高い値よりも
充分高く、かつ駆動周波数の掃引開始をする第2の駆動
電流の設定値1mに対応する最も高い周波数よりも高い
周波数にflを設定してやればよ1℃ この時、温度や負荷の変動により超音波モータの特性が
第2図の点線で示す特性の様に変化してL 駆動周波数
はflからf+aに変化され 結紙駆動電流は一定値1
1に保たれ何等の問題も発生しなし− 上記の実施例は電流として、振動体を構成する圧電体の
駆動電極に流れる全電流を採用した力(同様に機械腕電
流を採用することも容易であa第3図は共振周波数近傍
における振動体の駆動端子からみた等価回路である。同
図において、電気腕におけるCIは容量素子であり、機
械腕におけるC1、Ll、R1はそれぞれ弾性 質l 
損失を表す等価素子であム 駆動端子に駆動電圧を印加
すると、電流lが駆動端子に流入すム この電流lは電
気腕の電流i書と機械腕の電流i−に分かれも振動体の
振動振幅は機械腕の電流l・に比例するので、機械腕電
流i、を一定に制御すればより精度の高い超音波モータ
が実現できも そこで、第4図のように超音波モータ1
1の駆動端子に抵抗21を接続し 差動増幅器16で電
流lを検出する。
When the output of the current detector 12 becomes equal to the first drive current setting value 11 which is the normal operating current, the sweep indicator 14
sends a sweep stop signal to the oscillation controller 13, and the oscillation controller 1
3 stops the drive frequency sweep. Then, the oscillation controller 13 controls the voltage controlled oscillator 7 so that the output of the current detector 12 is always equal to the set current 11. Although the ultrasonic motor cannot be driven stably in the operating range near the resonance frequency, which is higher than the resonance frequency, when a sudden overload is applied to the ultrasonic motor, the impedance seen from the drive terminal of the vibrating body suddenly increases and the drive current decreases. In this case, the sweep indicator 1 indicates that the drive current has become smaller than the second set value 11.
4 is detected ('L) The sweep indicator 14 sends a sweep start signal to the oscillation controller 13, and the voltage controlled oscillator 7 (component) oscillates at a frequency sufficiently higher than the unstable frequency region and sweeps the drive frequency lower. When the output of the current detector 12 becomes equal to the first drive current set value 11 which is the normal operating current, the sweep indicator 14 stops sweeping the drive frequency via the oscillation controller 13. The oscillation controller 13 controls the voltage controlled oscillator 7 so that the output of the detector 12 is always equal to the second set current 11 (in this embodiment, the output is always higher than the resonant frequency near the resonant frequency). The characteristics of the ultrasonic motor 11, as shown by the broken line in Figure 2, change due to changes in temperature and load. In response to fluctuations in Set the frequency to fl. 1℃ At this time, due to changes in temperature and load, the characteristics of the ultrasonic motor change as shown by the dotted line in Figure 2, L. The drive frequency changes from fl to f+a. Paper drive current is constant value 1
1, and no problems occurred - In the above embodiment, the force used is the total current flowing through the drive electrode of the piezoelectric material constituting the vibrating body (similarly, it is also easy to use the mechanical arm current). Figure 3 is an equivalent circuit seen from the drive terminal of the vibrating body near the resonance frequency.In the figure, CI in the electric arm is a capacitive element, and C1, Ll, and R1 in the mechanical arm are elastic elements.
It is an equivalent element that represents loss. When a drive voltage is applied to the drive terminal, a current l flows into the drive terminal. This current l is divided into a current i in the electric arm and a current i in the mechanical arm. Since the amplitude is proportional to the current l in the mechanical arm, a more accurate ultrasonic motor can be realized by controlling the mechanical arm current i to a constant value.
A resistor 21 is connected to the drive terminal of 1, and a current 1 is detected by a differential amplifier 16.

また 超音波モータ11の電気腕の容量素子Csの値に
等しい容量素子17F  抵抗21に値の等しい抵抗1
8を直列接続して、差動増幅器19で電気腕の電流i・
を検出し 差動増幅器20で電流lから電流i拳を差し
引いて機械腕の電流i−を検出すも 第4図の機械腕電
流の検出器を第1図のブロック図の電流検出器12に使
えばより精度の高い超音波モータが同様に実現できも 鑞 駆動電極(よ 実施例では2組であった力丈2組以
上であってもよく、その場合においても少なくとも1つ
の電極に流入する電流について実施例と同様な制御を行
なうことで超音波モータの良好な動作を実現出来も 発明の効果 以上述べたようE  本発明の駆動方法によれば不安定
領域より充分高い駆動周波数から起動し常に振動体の特
性の安定した周波数領域の駆動周波数で超音波モータを
駆動ま しかも一定電流で駆動することにより、起動並
びに運転中の動作が安定した高効率の超音波モータを提
供できる。
Also, a capacitive element 17F whose value is equal to the value of the capacitive element Cs of the electric arm of the ultrasonic motor 11, and a resistor 1 whose value is equal to the resistor 21.
8 are connected in series, and a differential amplifier 19 calculates the electric arm current i.
The mechanical arm current i- is detected by subtracting the current i from the current l using the differential amplifier 20.The mechanical arm current detector in FIG. If used, a more precise ultrasonic motor can be realized as well, but the force may be two or more sets of driving electrodes (although there were two sets in the embodiment), and even in that case, the force flows into at least one electrode. Good operation of the ultrasonic motor can be achieved by controlling the current in the same manner as in the embodiment. Effects of the Invention As described above, the driving method of the present invention allows the motor to start at a driving frequency sufficiently higher than the unstable region. By always driving the ultrasonic motor at a drive frequency in a frequency range in which the characteristics of the vibrating body are stable, and by driving it with a constant current, it is possible to provide a highly efficient ultrasonic motor that is stable during startup and operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の駆動方法を実現した1実施例の駆動回
路のブロック@ 第2図は超音波モータ機械腕電流の検
出回路の1例を示す回路は 第57・・・電圧制御発振
盪 8・・・分割回路 9・・・電力増幅器 lO・・
・電力増幅器 11・・・超音波モー久12・・・電流
検出器 13・・・発振側#器 14・・・掃引指示器
 15・・・抵抗 16・・・差動増幅器17・・・コ
ンデンサ、 18・・・抵抗 19・・・差動増幅器2
0・・・差動増幅器 21・・・抵扼代理人の氏名 弁
理士 粟野重孝 はか1名第 図 q@が増幅器 スタート1翼号 第 図 II!  濠散 第 図 第 図 第 図 第 図 第 図    is 黒 :X 9
Figure 1 is a block diagram of a drive circuit according to an embodiment of the present invention's drive method. Figure 2 is an example of a detection circuit for the ultrasonic motor mechanical arm current. 8...Dividing circuit 9...Power amplifier lO...
・Power amplifier 11...Ultrasonic power amplifier 12...Current detector 13...Oscillation side # unit 14...Sweep indicator 15...Resistor 16...Differential amplifier 17...Capacitor , 18...Resistor 19...Differential amplifier 2
0... Differential amplifier 21... Name of resisting agent Patent attorney Shigetaka Awano Haka 1 person Figure q@ is amplifier start 1 wing Figure II! Moat scattering diagram diagram diagram diagram diagram diagram diagram diagram is black :X 9

Claims (3)

【特許請求の範囲】[Claims] (1)振動体と、前記振動体に加圧接触する移動体と、
前記振動体に形成された複数個の駆動電極を具備し、前
記駆動電極に位相差を持った駆動電圧を印加して前記振
動体に進行波を励振し、前記移動体を移動させる超音波
モータの駆動方法であって、前記複数個の駆動電極のう
ち少なくとも一つに流入する駆動電流を、駆動電圧の周
波数を制御して、前記振動体の共振周波数以上の周波数
領域において第1の設定値になるように駆動電圧の周波
数を制御することを特徴とする超音波モータの駆動方法
(1) a vibrating body; a moving body that presses into contact with the vibrating body;
An ultrasonic motor comprising a plurality of drive electrodes formed on the vibrating body, applying a drive voltage having a phase difference to the drive electrodes to excite a traveling wave in the vibrating body, and moving the movable body. In the driving method, the driving current flowing into at least one of the plurality of driving electrodes is controlled to a first set value in a frequency range equal to or higher than the resonant frequency of the vibrating body by controlling the frequency of the driving voltage. A method for driving an ultrasonic motor, characterized by controlling the frequency of a driving voltage so that
(2)超音波モータの起動時には、振動体の共振周波数
より高い周波数から駆動電圧の周波数の掃引を開始し、
複数個の駆動電極のうち少なくても一つに流入する駆動
電流が第1の設定値になった時に駆動電圧の周波数の掃
引を停止して前記駆動電流が第1の設定値になるように
駆動電圧の周波数を制御することを特徴とする請求項1
記載の超音波モータの駆動方法。
(2) When starting the ultrasonic motor, start sweeping the frequency of the drive voltage from a frequency higher than the resonant frequency of the vibrating body,
When the drive current flowing into at least one of the plurality of drive electrodes reaches a first set value, the frequency sweep of the drive voltage is stopped so that the drive current reaches the first set value. Claim 1 characterized in that the frequency of the drive voltage is controlled.
The method of driving the ultrasonic motor described.
(3)駆動電流について第1の設定値よりも小さい第2
の設定値を設け、駆動電流が前記第2の設定値以下にな
った時に、再び振動体の共振周波数より高い周波数から
駆動電圧の周波数の掃引を開始し、複数個の駆動電極の
うち少なくても一つに流入する駆動電流が第1の設定値
になった時に駆動周波数の掃引を停止して前記電流が第
1の設定値になるように駆動電圧の周波数を制御するこ
とを特徴とする請求項1記載の超音波モータの駆動方法
(3) The second set value for the drive current is smaller than the first set value.
When the drive current becomes equal to or less than the second set value, the frequency sweep of the drive voltage is started again from a frequency higher than the resonant frequency of the vibrating body, and the frequency of the drive voltage is started again from a frequency higher than the resonant frequency of the vibrating body. The invention is characterized in that when the drive current flowing into the drive current reaches a first set value, the sweep of the drive frequency is stopped and the frequency of the drive voltage is controlled so that the current reaches the first set value. The method of driving an ultrasonic motor according to claim 1.
JP2127287A 1990-05-16 1990-05-16 Driving method for ultrasonic motor Pending JPH0426382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127287A JPH0426382A (en) 1990-05-16 1990-05-16 Driving method for ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127287A JPH0426382A (en) 1990-05-16 1990-05-16 Driving method for ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH0426382A true JPH0426382A (en) 1992-01-29

Family

ID=14956239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127287A Pending JPH0426382A (en) 1990-05-16 1990-05-16 Driving method for ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0426382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021779A (en) * 2001-07-10 2003-01-24 Nidec Copal Corp Camera apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356178A (en) * 1986-08-26 1988-03-10 Matsushita Electric Ind Co Ltd Driving of ultrasonic motor
JPH01148080A (en) * 1987-12-03 1989-06-09 Matsushita Electric Ind Co Ltd Controller for ultrasonic motor
JPH01198282A (en) * 1988-01-29 1989-08-09 Matsushita Electric Ind Co Ltd Driver for supersonic motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356178A (en) * 1986-08-26 1988-03-10 Matsushita Electric Ind Co Ltd Driving of ultrasonic motor
JPH01148080A (en) * 1987-12-03 1989-06-09 Matsushita Electric Ind Co Ltd Controller for ultrasonic motor
JPH01198282A (en) * 1988-01-29 1989-08-09 Matsushita Electric Ind Co Ltd Driver for supersonic motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021779A (en) * 2001-07-10 2003-01-24 Nidec Copal Corp Camera apparatus

Similar Documents

Publication Publication Date Title
KR900007413B1 (en) Drive method for ultrasonic motor
JPH0528072B2 (en)
JP2663380B2 (en) Piezoelectric ultrasonic linear motor
JPS622869A (en) Supersonic motor drive device
JPH0426382A (en) Driving method for ultrasonic motor
JP2583904B2 (en) Ultrasonic motor driving method
JP2548248B2 (en) Ultrasonic motor controller
JP2574293B2 (en) Ultrasonic motor driving method
JP2558709B2 (en) Ultrasonic motor drive
JPH04322179A (en) Method of driving ultrasonic motor
JP2636280B2 (en) Driving method of ultrasonic motor
JPH072022B2 (en) Ultrasonic motor driving method
JPS61221585A (en) Drive circuit of vibration wave motor
JPS6292782A (en) Ultrasonic motor device
JP2543106B2 (en) Ultrasonic motor drive
JPH07123750A (en) Drive circuit of ultrasonic motor
JP2563351B2 (en) Ultrasonic motor driving method
JPH01298967A (en) Driver for ultrasonic actuator
JP2506896B2 (en) Ultrasonic motor drive
JPS63265577A (en) Driving of ultrasonic motor
JPH08338729A (en) Self-excitation circuit and piezoelectric vibration angular velocity meter using it
JPS63299788A (en) Ultrasonic motor driving device
JP2577485B2 (en) Driving method of ultrasonic motor
JPS6356179A (en) Driving of ultrasonic motor
JP3191406B2 (en) Driving method of ultrasonic motor