JPH0426360B2 - - Google Patents

Info

Publication number
JPH0426360B2
JPH0426360B2 JP60101161A JP10116185A JPH0426360B2 JP H0426360 B2 JPH0426360 B2 JP H0426360B2 JP 60101161 A JP60101161 A JP 60101161A JP 10116185 A JP10116185 A JP 10116185A JP H0426360 B2 JPH0426360 B2 JP H0426360B2
Authority
JP
Japan
Prior art keywords
oil
solvent
pyrolyzer
asphaltene
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60101161A
Other languages
Japanese (ja)
Other versions
JPS61261391A (en
Inventor
Koichi Washimi
Masahide Ishizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAA MAGII CORP
MITSUI KOZAN KASEI KK
TOYO ENJINIARINGU KK
Original Assignee
KAA MAGII CORP
MITSUI KOZAN KASEI KK
TOYO ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAA MAGII CORP, MITSUI KOZAN KASEI KK, TOYO ENJINIARINGU KK filed Critical KAA MAGII CORP
Priority to JP60101161A priority Critical patent/JPS61261391A/en
Priority to CN86102643A priority patent/CN86102643B/en
Priority to KR1019860003676A priority patent/KR900000861B1/en
Priority to EP86303612A priority patent/EP0202099B1/en
Priority to DD86290198A priority patent/DD251781A5/en
Priority to DE8686303612T priority patent/DE3680944D1/en
Priority to MX002465A priority patent/MX169003B/en
Publication of JPS61261391A publication Critical patent/JPS61261391A/en
Publication of JPH0426360B2 publication Critical patent/JPH0426360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/04Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、石油系重質油の処理に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to processing of petroleum heavy oil.

この発明は、石油系重質油からアスフアルテン
および重金属類が除去された軽質油および有効成
分油を収得させ、併せて有効成分油の混入量小な
るアスフアルテンおよび樹脂を排出させる方法に
関する。
The present invention relates to a method for obtaining light oil and active ingredient oil from which asphaltene and heavy metals have been removed from petroleum-based heavy oil, and at the same time, discharging asphaltene and resin with a small amount of active ingredient oil.

[従来技術の問題点] 石油系重質油が処理され、その有効成分が分離
回収される方法として多くの提案がある。
[Problems with the Prior Art] There are many proposals for methods for processing heavy petroleum oil and separating and recovering its active components.

重質油の処理に触媒の利用は、重質油中に多量
含有される重金属およびアスフアルテンによる触
媒の劣化のため不経済であり、低価値の重質油の
処理に高価値の水素と多大のエネルギーの使用も
経済性を損う原因である。
The use of catalysts in the treatment of heavy oil is uneconomical due to deterioration of the catalyst by heavy metals and asphaltenes, which are contained in large amounts in heavy oil. Energy use is also a cause of economic loss.

従つて、触媒および水素不使用の方法として熱
分解改質あるいは溶剤抽出による方法が提案され
実施されている。
Therefore, methods using thermal decomposition reforming or solvent extraction have been proposed and implemented as methods that do not use catalysts or hydrogen.

熱分解改質としてビスブレーキング法とデイレ
ード・コーキング法がよく知られている。
The visbreaking method and delayed coking method are well known as thermal decomposition reforming methods.

目的製品が特定的であるためでもあるが、ビス
ブレーキング法の熱処理は温和に過ぎて原料重質
油中の巨大分子成分の極く一部が分解されて原料
重質油の粘度が低下するのみに止まり、これも目
的製品が特定的であるためではあるが、デイレー
ド・コーキング法の熱処理は苛酷に過ぎて有用な
低分子量炭化水素のガス化と脱水素が不必要に促
進されており、両者は相対する両極端にある。資
源とエネルギーの有効利用の観点から、石油系重
質油の処理法の改善が必要である。
Partly because the target product is specific, the heat treatment of the visbreaking method is too mild and only a small portion of the macromolecular components in the raw material heavy oil are decomposed and the viscosity of the raw material heavy oil decreases. This is also due to the specificity of the target product, but the heat treatment of the delayed coking method is too harsh and unnecessarily accelerates the gasification and dehydrogenation of useful low molecular weight hydrocarbons. The two are opposite extremes. From the perspective of effective use of resources and energy, it is necessary to improve processing methods for heavy petroleum oil.

[発明の目的] この発明の目的は、多種成分からなり、多量の
低価値成分を含有する石油系重質油が、信頼度の
高い可及的に簡潔な工程によつて、有用成分の損
失は最小限に止められつゝ多量含有される低価値
成分は高価値成分に転換され、有害あるいは無価
値成分は能率よく分離される方法を提供すること
である。
[Objective of the Invention] The object of the present invention is to reduce the loss of useful components in petroleum-based heavy oil, which is composed of various components and contains a large amount of low-value components, through a highly reliable and simple process. The object of the present invention is to provide a method in which low-value components contained in large amounts are converted to high-value components while minimizing them, and harmful or worthless components are efficiently separated.

[発明の構成と各構成手段の作用・効果] この発明は、石油の常圧蒸溜残渣油・減圧蒸溜
残渣油など原料とする石油系重質油が特定的条件
下に選択的に熱分解されることによつて、分解が
原料油中の比較的容易に分解される高分子量炭化
水素の分解のみに止められ、分解中、生成する軽
質炭化水素の分離回収が促進され、工程流中の既
に有効成分化した炭化水素の分解の進行が最小限
に止められて不用のガス発生が回避され、 直ちに熱分解器の底部から流出する熱分解重質
油は高能率の抽出・沈降分離処理に付され、含有
される有効成分油の実質的に全量が回収されるこ
とにより、原料の石油系重質油からの全体的製品
収率が限界まで向上させられる一連の工程であ
る。
[Structure of the Invention and Functions and Effects of Each Constituent Means] This invention provides a method for selectively thermally decomposing petroleum-based heavy oil, such as atmospheric distillation residue oil and vacuum distillation residue oil, as a raw material under specific conditions. By doing so, the decomposition is limited to only the high molecular weight hydrocarbons in the feedstock that are decomposed relatively easily, and the separation and recovery of the light hydrocarbons generated during decomposition is promoted. The progress of decomposition of hydrocarbons that have become active components is minimized, the generation of unnecessary gas is avoided, and the pyrolyzed heavy oil that flows out from the bottom of the pyrolyzer is immediately subjected to highly efficient extraction and sedimentation separation treatment. This is a series of steps in which the overall product yield from the raw petroleum heavy oil is improved to the limit by recovering substantially all of the active ingredient oil contained therein.

この発明の工程においては、第1段階の熱分解
率と第2段階の抽出率が、原料の石油系重質油の
組成に適合させられ最適の組み合せとなるように
選択されて、触媒あるいは副原料の水素などが使
用されることなく、また所要エネルギー量少な
く、従来の接触水添分解法、デイレイド・コーキ
ング法、あるいは原料重質油直接溶剤抽出法に比
較して、遥かに高い収率を以て製品油、即ち、熱
分解による改質油、及び抽出工程で回収される改
質油が与えられる、と同時に、取り扱い容易な流
動性残渣が与えられる。
In the process of this invention, the thermal decomposition rate in the first stage and the extraction rate in the second stage are matched to the composition of the raw petroleum-based heavy oil and are selected to be the optimal combination. It does not use raw material such as hydrogen, requires less energy, and has a much higher yield than the conventional catalytic hydrogen cracking method, delayed coking method, or direct solvent extraction method of heavy oil raw material. The product oil, ie, the reformate from pyrolysis and the reformate recovered in the extraction process, is provided, as well as a flowable residue that is easy to handle.

この発明の工程中において、第1段階の熱分解
処理の重要条件として、分解反応に伴つて進行す
る重縮合反応により、石油系重質油中のニツケ
ル、バナジウムその他の重金属分がアスフアルテ
ン成分中へ移動あるいはアスフアルテン成分と会
合して選択的に濃縮されるために適合する条件と
後続工程の容量保全の条件が選定されている。
During the process of this invention, as an important condition for the first stage of thermal decomposition treatment, nickel, vanadium and other heavy metals in petroleum heavy oil are converted into asphaltene components by the polycondensation reaction that progresses with the decomposition reaction. Conditions are selected that are suitable for selective concentration by migration or association with asphaltene components, and conditions for preserving capacity in subsequent steps.

次に、第2段階に抽出分離処理の重要条件とし
て、前記の熱分解処理によりアスフアルテン成分
中に濃縮された重金属分が、アスフアルテン成分
の抽出除去に伴つて排除されるため、アスフアル
テン成分が急速に実質的に完全に抽出分離される
に適合する条件が選定されている。
Next, as an important condition for the extraction and separation treatment in the second stage, the heavy metals concentrated in the asphaltene component by the above-mentioned thermal decomposition treatment are removed as the asphaltene component is extracted and removed, so that the asphaltene component is rapidly removed. Conditions are selected to ensure substantially complete extraction and separation.

これら特定の二段階処理の連続により、高収率
を以て、アスフアルテン、重金属その他の不純物
の含有量が極めて少ない有効成分油が与えられ
る。
These particular two-step process sequences provide active oils with high yields and extremely low contents of asphaltenes, heavy metals, and other impurities.

この発明の工程においては、第1段階・第2段
階の両者の効能が相互に関連して有効成分油の品
質、収率と原単位を向上させる。
In the process of this invention, the effects of both the first and second stages are interrelated to improve the quality, yield, and basic unit of the active ingredient oil.

第1段階の熱分解処理において、アスフアルテ
ン自体の凝集会合が活発化され、更に、その進行
状態に大きく影響される重金属のアスフアルテン
成分との化合あるいは会合が促進されて重金属が
アスフアルテン中に濃縮されることを促進するた
めに、原料の石油系重質油中の沸点500℃以上の
成分の35%、好ましくは40%量以上が、沸点500
℃以下の軽質炭化水素に分解される苛酷度
(Seve−rity)の熱分解である必要があることが
判明した。
In the first stage of thermal decomposition treatment, the agglomeration association of asphaltene itself is activated, and furthermore, the combination or association of heavy metals with asphaltene components, which is greatly influenced by the progress state, is promoted, and heavy metals are concentrated in asphaltene. In order to promote
It has been found that the thermal decomposition needs to be severe enough to decompose into light hydrocarbons at temperatures below ℃.

因みに、ビスブレーキング法(Visbreaking
Process)においては、沸点500℃以上の成分の
15〜30%の量が、沸点500℃以下の軽質炭化水素
に分解されるに止まつている。
By the way, the visbreaking method
Process), components with a boiling point of 500℃ or higher are
Only 15-30% of the amount is decomposed into light hydrocarbons with boiling points below 500°C.

なお、ビスブレーキング法では反応圧力10〜30
Kg/cm2、滞留時間10〜40分間程度であり、熱分解
反応中の水蒸気処理はない。
In addition, in the visbreaking method, the reaction pressure is 10 to 30
Kg/cm 2 , residence time is about 10 to 40 minutes, and there is no steam treatment during the thermal decomposition reaction.

一方、過度の熱分解により不用にガスが発生し
て有効成分油の収率が低下することを回避するた
めに、この発明の工程中の熱分解は、沸点500℃
以上の成分の65%、好ましく60%量以上が、沸点
500℃以下の軽質炭化水素に分解されることがな
い範囲内に止められる。
On the other hand, in order to avoid unnecessary gas generation due to excessive thermal decomposition and a decrease in the yield of the active ingredient oil, the thermal decomposition during the process of this invention is carried out at a boiling point of 500℃.
65%, preferably 60% or more of the above components have a boiling point
It is kept within a range that does not decompose into light hydrocarbons at temperatures below 500℃.

この熱分解の苛酷度に関する上限の規制の意義
は全製造工程の経済性と優位性に大いに関連す
る。
The significance of this upper limit on the severity of thermal decomposition is highly related to the economy and superiority of the entire manufacturing process.

即ち、熱分解の苛酷度が、上記の上限を超える
ときは、低価値のガスが大量に発生し、同時にコ
ークスの生成が著しく増大し、熱分解以降の工程
液流中のコークス、および製造工程の最終の排出
物、即ちアスフアルテンが、液体でなく固定であ
るコークスとなるために分離、回収、輸送、その
他、全ての処理条件を著しく困難化させ、装置を
複雑化させる。
That is, when the severity of pyrolysis exceeds the above upper limit, large amounts of low-value gases are generated and, at the same time, coke production increases significantly, causing coke in the process stream after pyrolysis and in the manufacturing process. The final discharged product, that is, asphaltene, is not a liquid but a fixed coke, which significantly complicates separation, recovery, transportation, and all other processing conditions and complicates the equipment.

この発明の工程の第1段階である熱分解が、コ
ークスの生成を抑制して、熱分解の残渣を液体状
のピツチの生成までに止めているために、この発
明の工程の残渣は流動体であり、処理条件は甚だ
安易となり、装置の構成は簡素化されている。
Since the pyrolysis, which is the first step in the process of this invention, suppresses the production of coke and stops the pyrolysis residue from forming liquid pitch, the residue of the process of this invention is a fluid. Therefore, the processing conditions are much simpler, and the configuration of the apparatus is simplified.

この発明の工程の第1段階の熱分解の排出流を
構成するアスフアルテン含有ピツチを高流動性の
液体状態に維持して、高能率の抽出と分離を可能
とするために、第2段階の溶剤使用の分別装置
は、 その抽出温度が富アスフアルテン油のリング・
ボール式測定法による軟化点温度以上の高温度に
維持され、溶剤の臨界点付近の温度・圧力状態に
おかれる。
In order to maintain the asphaltene-containing pitch, which constitutes the effluent stream of the first stage pyrolysis of the process of this invention, in a highly fluid liquid state, to enable highly efficient extraction and separation, the second stage solvent is The fractionation equipment used is that its extraction temperature is rich in asphaltenic oil.
The temperature is maintained at a high temperature above the softening point measured by the ball method, and the temperature and pressure are near the critical point of the solvent.

抽出分離されるべきアスフアルテンの密度は
1.2〜1.5g/c.c.の範囲内、ピツチのそれは1.1〜
1.2g/c.c.の範囲内、ピツチからアスフアルテン
が分離されることにより与えられる有効成分油の
それは0.95〜1.1g/c.c.の範囲内である。
The density of asphaltenes to be extracted and separated is
Within the range of 1.2-1.5g/cc, that of Pituchi is 1.1-
Within the range of 1.2 g/cc, that of the active ingredient oil obtained by separating asphaltene from pitch is within the range of 0.95 to 1.1 g/cc.

臨界点近傍の高温の分別装置中の溶剤の密度は
0.1〜0.3g/c.c.の範囲内であり、また、その粘度
は極度に低く気体の粘度に近い。
The density of the solvent in the high temperature fractionator near the critical point is
The viscosity is within the range of 0.1 to 0.3 g/cc, and its viscosity is extremely low, close to that of gas.

従つて、第2段階の分別装置中では、第1段階
から直接的に導入される熱分解の排出流中の液体
状に維持されるアスフアルテン含有ピツチは、高
流動性を維持した状態にあるため、これも極度に
高流動性状態にある溶剤と、充分に混合され密接
に接触して急速に抽出処理を受ける。
Therefore, in the fractionator of the second stage, the asphaltene-containing pits, which are maintained in liquid form in the pyrolysis effluent directly introduced from the first stage, remain in a state of high fluidity. , which is also thoroughly mixed and in intimate contact with the solvent, which is also in an extremely fluid state, and undergoes a rapid extraction process.

前記の通り、超臨界状態の高温の溶剤の密度
は、アスフアルテンのそれに比較して、顕著に小
さいため、アスフアルテンは、有効成分油と溶剤
の混合物中を急速に、かつ完全に沈降して分離さ
れる。
As mentioned above, the density of the high-temperature solvent in the supercritical state is significantly lower than that of asphaltene, so asphaltene rapidly and completely settles out of the mixture of active ingredient oil and solvent and is separated. Ru.

この急速、かつ完全な沈降による分離が、この
抽出工程、乃至、この発明の工程の、経済性に大
きく寄与する。
This rapid and complete separation by sedimentation greatly contributes to the economics of this extraction process, or of the process of this invention.

次に、アスフアルテンを抽出工程において沈降
分離された後の有効成分油と溶剤の混合物が加熱
され、その温度が上昇し超臨界状態にされること
により溶剤の溶解度が更に低下し、有効成分油は
気体中に懸濁している液滴の沈降同様に、急速に
沈降して溶剤から完全に分離される。
Next, the mixture of active ingredient oil and solvent after asphaltene has been separated by precipitation in the extraction process is heated, and the temperature rises to a supercritical state, which further reduces the solubility of the solvent, and the active ingredient oil Similar to the settling of droplets suspended in a gas, they settle rapidly and are completely separated from the solvent.

この状態により、溶剤の再使用のための溶剤回
収時に、通常、必要とされる莫大な蒸発用熱量が
不要であることも、この発明の方法を経済的に極
めて優れたものとする理由の一つである。
This state eliminates the need for a huge amount of heat for evaporation, which is normally required when recovering the solvent for reuse, which is one of the reasons why the method of the present invention is extremely economical. It is one.

第1段階の熱分解により生成する有効成分油量
が大である優位性が、第2段階の抽出・分離が高
能率に完全に達成されることにより確保される。
The advantage of the large amount of active ingredient oil produced by the first stage of thermal decomposition is ensured by the highly efficient and complete extraction and separation of the second stage.

[図面による説明] 以下、図面によつて、この発明の工程を、説明
する。
[Description with Drawings] Hereinafter, the steps of the present invention will be explained with reference to the drawings.

第1図は、この発明の工程を示すフローシート
である。
FIG. 1 is a flow sheet showing the steps of this invention.

減圧蒸溜残渣油あるいは常圧蒸溜残渣油などの
原料とする石油系重質油が管1より予熱器2へ導
入される。
Petroleum-based heavy oil used as a raw material, such as vacuum distillation residue oil or atmospheric distillation residue oil, is introduced into a preheater 2 through a pipe 1.

この予熱器は管内でのコーキングを防止するた
めに、管内は低圧、1〜10Kg/cm2程度、高流速、
2〜20m/sec.程度とされる。
In order to prevent coking inside the pipe, this preheater uses low pressure inside the pipe, approximately 1 to 10 kg/ cm2 , high flow rate,
It is said to be about 2 to 20 m/sec.

予熱器2を通過して、450〜500℃の範囲内の温
度まで予熱された工程流は、管3により縦型円筒
状の熱分解器4の上方部に導入される。
The process stream, which has passed through the preheater 2 and has been preheated to a temperature within the range of 450 to 500°C, is introduced through a pipe 3 into the upper part of a vertical cylindrical pyrolyzer 4.

熱分解器4は、信頼性と経済性を追求して可能
な限り、簡単な構造とされている。
The pyrolyzer 4 has a structure as simple as possible in pursuit of reliability and economy.

所要の分解率に到達させるために、熱分解器中
の滞留時間は、最短でもビスブレーキング法のそ
れの2倍程度の長時間とされる。
In order to reach the required decomposition rate, the residence time in the pyrolyzer is at least twice as long as that in the visbreaking method.

熱分解器内は常圧とされ、底部に加熱水蒸気が
供給され有効成分油中の高沸点成分の駆出が促進
され、熱分解器塔底の流出流のための減圧蒸溜工
程が不用とされる。
The inside of the pyrolyzer is maintained at normal pressure, and heated steam is supplied to the bottom to promote ejection of high-boiling components in the active ingredient oil, eliminating the need for a vacuum distillation process for the outflow from the bottom of the pyrolyzer. Ru.

熱分解器内において、工程流は下降させられ、
熱分解器の底部から排出されるが、熱分解器内下
降中の短絡通過、偏流、逆流、渦流の発生の防止
のために、熱分解器内には数段の水平多孔区画板
が設備されている。
Within the pyrolyzer, the process stream is lowered and
Although it is discharged from the bottom of the pyrolyzer, several stages of horizontal porous partition plates are installed inside the pyrolyzer to prevent short circuits, drift, backflow, and vortices while descending in the pyrolyzer. ing.

熱分解反応により生成するガス状物と駆出用水
蒸気の混合物は下降する工程流に対し向流的に上
昇し熱分解器の頂部から排出される。
A mixture of gaseous products produced by the pyrolysis reaction and ejection steam rises countercurrently to the descending process stream and is discharged from the top of the pyrolyzer.

熱分解器内において、内壁表面あるいは水平多
孔区画板の表面に接近する部分において工程流が
停滞してコークスが生成することの防止のために これらの表面に沿つて低速で動作する水平回転
型撹拌機が設備されている。
In the pyrolyzer, in order to prevent the process flow from stagnation and coke formation near the inner wall surface or the surface of the horizontal porous partition plate, a horizontal rotary stirring type that operates at low speed along these surfaces is used. The machine is equipped.

熱分解器4は、これらの内部設備により、熱分
解器中の工程流のPlug Flow状流通を確保し、下
降する工程流中に熱分解反応の進行に伴い生成す
るコークス前駆体(meso−phase)が、コークス
前駆体との親和性が小さい軽質炭化水素成分を多
量含有する熱分解未だ不充分な工程流と混合され
て、析出し凝集することなく工程流中に可及的に
微細粒子として分散して存在しコークス化するこ
となく、熱分解器4の底部から排出させる。熱分
解器4中において、熱分解により生成する軽質炭
化水素の蒸気と少量のガスは、下降する工程流に
向流し、多孔板の開孔を通過して上昇し熱分解器
4の最上部において工程流から分離して排出さ
れ、管19により濃出器20に導かれ、次に分離
槽21内においてガス状混合物は上方部に分離さ
れ、凝縮水は凝縮油分中から密度差により分離さ
れた後、分離槽21の下部から管23により排出
され、凝縮した有効成分油は管34により排出さ
れ回収される。熱分解により生成する軽質炭化水
素が、工程流中に残存すれば、これらは前記の通
りコークス前駆体との親和性が小さいためコーク
ス前駆体の析出凝集とコークス化を促進するた
め、これら軽質炭化水素中の高沸点留分が工程流
中に溶解して残存することを防止するために、熱
分解器4の下方部の工程流中に、これら留分の駆
出用の水蒸気が管18により供給される。
The pyrolyzer 4 uses these internal equipment to ensure plug flow-like flow of the process stream in the pyrolyzer, and prevents coke precursors (meso-phase) generated as the pyrolysis reaction progresses in the descending process stream. ) is mixed with a process stream whose thermal decomposition is still insufficient, which contains a large amount of light hydrocarbon components with low affinity for coke precursors, and is dispersed as fine particles as possible in the process stream without precipitation and agglomeration. It exists in a dispersed manner and is discharged from the bottom of the pyrolyzer 4 without being coked. In the pyrolyzer 4, light hydrocarbon vapors and a small amount of gas produced by pyrolysis flow counter-currently to the descending process stream, pass through the perforated holes in the perforated plate, rise, and rise at the top of the pyrolyzer 4. It was separated from the process stream and discharged, led to a concentrator 20 by a pipe 19, and then in a separation tank 21, the gaseous mixture was separated in the upper part, and the condensed water was separated from the condensed oil by density difference. Thereafter, it is discharged from the lower part of the separation tank 21 through a pipe 23, and the condensed active ingredient oil is discharged through a pipe 34 and recovered. If light hydrocarbons produced by thermal decomposition remain in the process stream, they will promote coke precipitation and coke formation due to their low affinity with the coke precursor as described above. In order to prevent high-boiling fractions in hydrogen from remaining dissolved in the process stream, water vapor for ejecting these fractions is introduced into the process stream in the lower part of the pyrolyzer 4 through a pipe 18. Supplied.

直接的接続の第2段階の溶剤使用の分別装置に
おいて溶剤中に軽質炭化水素が混入し、その量が
増大する場合は溶剤の選択性が次第に低下し分別
装置の能力を低下させ溶剤補給量も増大させるた
め、熱分解器4中の軽質炭化水素の充分な駆出が
極めて重要である。
If light hydrocarbons are mixed into the solvent in a directly connected second-stage solvent-using separation device and the amount increases, the selectivity of the solvent will gradually decrease, reducing the capacity of the separation device and reducing the amount of solvent replenishment. For this purpose, sufficient evacuation of light hydrocarbons in the pyrolyzer 4 is extremely important.

従つて、駆出用水蒸気の使用量は製品である有
効成分油量に5〜20wt%の範囲内とされる。
Therefore, the amount of ejection steam used is within the range of 5 to 20 wt% based on the amount of active ingredient oil in the product.

分解反応は吸熱反応であり、熱分解器4は断熱
型であるため、工程流は熱分解器中を下降しつ
つ、その温度が低下するが、所定の分解率を維持
するため、温度低下の下限は最低400℃とされる。
The decomposition reaction is an endothermic reaction, and the pyrolyzer 4 is of an adiabatic type, so the temperature of the process flow decreases as it descends through the pyrolyzer. However, in order to maintain a predetermined decomposition rate, The lower limit is set to at least 400℃.

熱分解により生成した軽質炭化水素が水蒸気に
よる駆出により既に除去されているため、熱分解
器4の底部からの排出量は、蒸溜工程を経由する
ことなく、ポンプ5により昇圧されて管6によ
り、直接的に溶剤使用の分別装置の溶剤との混合
器7へ送入される。
Since the light hydrocarbons produced by pyrolysis have already been removed by steam ejection, the amount discharged from the bottom of the pyrolyzer 4 is pressurized by the pump 5 and passed through the pipe 6 without going through the distillation process. , directly into the solvent mixer 7 of the solvent-based fractionation device.

混合器7において、溶剤と混合された工程流は
管8により分別装置の第1段の分離塔9の中段部
分に導入される。
In the mixer 7, the process stream mixed with the solvent is introduced via a pipe 8 into the middle section of the first stage separation column 9 of the fractionator.

工程流と溶剤との混合比率(体積比)は、1:
8乃至1:12程度とされる。
The mixing ratio (volume ratio) of process flow and solvent is 1:
It is said to be about 8 to 1:12.

高温高圧の臨界状態付近にある分離塔9中にお
いて、溶剤と充分に混合された工程流は、有効成
分油、樹脂状物および溶剤とからなり流動性混合
物の軽質相である工程流となり、アスフアルテン
と少量の溶剤とからなり流動状態にある重質相
が、軽質相である工程流から沈降し分離される。
In the separation column 9 near the critical state of high temperature and high pressure, the process stream thoroughly mixed with the solvent becomes a process stream that is a light phase of a fluid mixture consisting of active ingredient oil, resinous substances, and solvent, and asphaltene. The heavy phase, which is in a fluid state and consists of a small amount of solvent and a small amount of solvent, settles and is separated from the light phase of the process stream.

分離塔9の頂部から軽質相である工程流が管1
0により排出され加熱装置27により昇温された
後、第2段の分離塔11の中段部分に導入され
る。分離塔9の底部から管12によりアスフアル
テンと少量の溶剤とからなる重質相が流動状態を
以て排出され、弁35により常圧に減圧され分離
器24中に導かれ、ここにおいて混在する少量の
溶剤は蒸発し回収され、アスフアルテンは管25
により排出され回収される。
The process stream, which is a light phase, flows from the top of the separation column 9 to pipe 1.
After being discharged by the heating device 27 and heated by the heating device 27, it is introduced into the middle stage of the second stage separation column 11. A heavy phase consisting of asphaltene and a small amount of solvent is discharged from the bottom of the separation column 9 in a fluid state through a pipe 12, and is reduced to normal pressure by a valve 35 and introduced into a separator 24, where a small amount of mixed solvent is removed. is evaporated and recovered, and asphaltenes are collected in tube 25.
is discharged and collected.

分離塔11中において、工程流は有効成分油お
よび溶剤とからなる流動状態にある混合物の軽質
相となり、樹脂状物と少量の溶剤とからなる流動
状態にある重質相が、軽質相である工程流から、
下方に分離される。
In the separation column 11, the process stream becomes a light phase of a mixture in a fluid state consisting of active ingredient oil and a solvent, and a heavy phase in a fluid state consisting of a resinous material and a small amount of solvent is a light phase. From the process flow,
Separated downward.

分離塔11の頂部から軽質相である工程流が管
13により排出され加熱装置28により昇温され
た後、第3段の分離塔14の中段部分に導入され
る。
A process stream, which is a light phase, is discharged from the top of the separation column 11 through a pipe 13, heated by a heating device 28, and then introduced into the middle section of the third stage separation column 14.

分離塔11の底部から管15により重質相であ
る樹脂状物が流動状態を以て検出され回収され
る。
A heavy phase resinous substance is detected in a fluid state from the bottom of the separation column 11 through a pipe 15 and recovered.

超臨界状態にある分離塔14中において、製品
である脱アスフアルテン油となつた工程流は分離
塔14中の底部に集合し重質相を形成し、一方、
脱アスフアルテン油が沈降して分離された溶剤は
分離塔14中の上方部に軽質相を形成する。製品
の脱アスフアルテン油は管16により分離塔14
の底部から排出され回収される。
In the separation column 14 in a supercritical state, the process stream that has become a product, deasphaltenized oil, collects at the bottom of the separation column 14 to form a heavy phase, while
The solvent separated by precipitation of the deasphaltenized oil forms a light phase in the upper part of the separation column 14. The product, deasphaltenized oil, is sent to a separation column 14 via a pipe 16.
is discharged from the bottom and collected.

分離塔14中の頂部から軽質相を形成している
溶剤が管17により排出され冷却器29を経由し
ポンプ31により、また分離器24の上方部分か
ら回収された一部の溶剤は管26により凝縮器3
0に至り、ここにおいて液体状となりポンプ32
により混合器7へ返送される。
The solvent forming the light phase from the top of the separation column 14 is discharged via line 17 via a cooler 29 and pump 31, and some of the solvent recovered from the upper part of the separator 24 is removed via line 26. Condenser 3
0, at which point it becomes liquid and the pump 32
is returned to the mixer 7.

アスフアルテンと有効成分油に微量帯同されて
系外に去り損失となる溶剤相当分の溶剤を補充す
るためポンプ36と管37により新溶剤が供給さ
れる。
New solvent is supplied by a pump 36 and a pipe 37 in order to replenish the amount of solvent that is lost due to trace amounts entrained in asphaltene and active ingredient oil and left out of the system.

[実施例および比較例] 実施例 ニツケルを83ppm、およびバナジウムを
272ppm含有する中近東系原油の減圧蒸溜残渣油
である原料油が480℃に予熱され、内部に整流用
の10段の水平多孔板を有する熱分解器に供給さ
れ、常圧下、熱分解器流出温度420℃、滞留時間
120分間、熱分解器底部から水蒸気が原料油の
10wt%の比率を以て送入される反応条件下に熱
分解され、原料油中の沸点500℃以上の留分の
55wt%が、沸点500℃以下の留分に転化させられ
た。
[Example and Comparative Example] Example 83ppm of nickel and vanadium
Feedstock oil, which is vacuum distillation residue oil of Middle Eastern crude oil containing 272 ppm, is preheated to 480℃ and supplied to a pyrolysis machine that has 10 horizontal perforated plates for rectification inside, and the pyrolysis machine leaks under normal pressure. Temperature 420℃, residence time
For 120 minutes, steam flows from the bottom of the pyrolyzer into the raw oil.
The fraction with a boiling point of 500℃ or higher in the feedstock is thermally decomposed under the reaction conditions and is fed at a ratio of 10wt%.
55wt% was converted to fractions with boiling points below 500°C.

熱分解器の流出物構成は、原料油重量を基準と
して、ガス状分解生成物4wt%、熱分解軽質油
51wt%であつた。
The composition of the effluent from the pyrolysis machine is 4wt% gaseous decomposition products and pyrolysis light oil based on the weight of the feedstock oil.
It was 51wt%.

この分解重質油は、リング・ボール式測定法に
よる軟化点温度が150℃であり、アスフアルテン
含有量40wt%であつた。
This cracked heavy oil had a softening point temperature of 150°C as measured by the ring-ball method, and an asphaltene content of 40 wt%.

熱分解重質油は、熱分解器底部から混合器に送
入され、10倍量のシクロヘキサンと混合された
後、第1段分離塔に導入された。
The pyrolyzed heavy oil was fed into the mixer from the bottom of the pyrolyzer, mixed with 10 times the amount of cyclohexane, and then introduced into the first stage separation column.

第1分離塔内の温度・圧力は282℃・52atmに
保持された。
The temperature and pressure inside the first separation column were maintained at 282°C and 52atm.

第1段分離塔の下方部から溶剤シクロヘキサン
含有量30%のアスフアルテン含有流量が排出さ
れ、常圧に減圧されて、フラツシングにより溶剤
シクロヘキサンの98%が蒸発して分離され回収さ
れ、熱分解重質油に対して45wt%量の富アスフ
アルテン油として回収された。
The asphaltene-containing flow with a solvent cyclohexane content of 30% is discharged from the lower part of the first stage separation tower, and the pressure is reduced to normal pressure, and 98% of the solvent cyclohexane is evaporated by flashing, separated and recovered, and the pyrolyzed heavy It was recovered as asphaltene-rich oil in an amount of 45 wt% based on oil.

この富アスフアルテン油中には、ニツケル
460ppmバナジウム1500ppmが含有され、リン
グ・ボール式測定法による軟化点温度は240℃で
あつた。
This rich asphaltene oil contains nickel
It contained 460ppm vanadium and 1500ppm, and the softening point temperature was 240°C by ring-ball method.

第1段分離塔の上方部から有効成分油と溶剤の
混合物が排出され加熱された後、内部の温度・圧
力が290℃・50atmの第2分離塔に導入された。
The mixture of active ingredient oil and solvent was discharged from the upper part of the first stage separation column and heated, and then introduced into the second separation column whose internal temperature and pressure were 290°C and 50 atm.

第2分離塔の塔底から熱分解重質油に対して
10wt%量の樹脂油が排出され回収された。
For pyrolysis heavy oil from the bottom of the second separation tower
A 10wt% amount of resin oil was discharged and recovered.

第2段分離塔の上方部から排出される工程流は
加熱された後、内部の温度・圧力が316℃・
46atmの第3段分離塔に導入された。
After the process stream discharged from the upper part of the second stage separation column is heated, the internal temperature and pressure are 316℃
It was introduced into a 46 atm third stage separation column.

第3段分離塔中において、有効成分油と溶剤が
分離し、塔底から有効成分油が排出され回収さ
れ、上方部から溶剤が排出され冷却された後、再
使用のため混合器に返送された。
In the third stage separation column, the active ingredient oil and the solvent are separated, the active ingredient oil is discharged from the bottom of the column and collected, and the solvent is discharged from the upper part and after being cooled, is returned to the mixer for reuse. Ta.

第3段分離塔にやり回収された有効成分油は、
熱分解重質油に対して45wt%の収率であり、ア
スフアルテン含有量0.5wt%以下、ニツケル含有
量10ppm、バナジウム含有量20ppmであつた。
The active ingredient oil collected by the third stage separation tower is
The yield was 45 wt% based on pyrolysis heavy oil, asphaltene content was less than 0.5 wt%, nickel content was 10 ppm, and vanadium content was 20 ppm.

熱分解器から直接的に回収された熱分解軽質油
と、溶剤により抽出分離された有効成分油の合計
収率は、71.25wt%であり、原料油中の重金属の
除去率は98.3%であつた。
The total yield of the pyrolyzed light oil directly recovered from the pyrolyzer and the active ingredient oil extracted and separated using a solvent was 71.25 wt%, and the removal rate of heavy metals from the feedstock oil was 98.3%. Ta.

溶剤シクロヘキサンの消費量は、原料油に対し
て0.2wt%であつた。
The consumption amount of the solvent cyclohexane was 0.2 wt% based on the raw oil.

比較例 実施例と同一の原料油が、450℃に予熱され、
同一の熱分解器に供給され、常圧下、400℃滞留
時間20分間の条件を以て熱分解され、原料油中の
沸点500℃以上の留分の30wt%が、沸点500℃以
下の留分に転化させられた。
Comparative example The same raw material oil as in the example was preheated to 450°C,
The oil is supplied to the same pyrolyzer and is thermally decomposed under normal pressure and residence time at 400°C for 20 minutes, converting 30wt% of the fraction with a boiling point of 500°C or higher in the raw oil to a fraction with a boiling point of 500°C or lower. I was made to do it.

熱分解器底部への水蒸気供給は行われなかつ
た。
No steam was supplied to the bottom of the pyrolyzer.

熱分解器の底部から排出される熱分解重質油が
10倍量のペンタンと混合され、内部の温度・圧力
が177℃・42atmである第1段分離塔へ送入され
た。
The pyrolyzed heavy oil discharged from the bottom of the pyrolyzer is
It was mixed with 10 times the amount of pentane and sent to the first stage separation column, where the internal temperature and pressure were 177°C and 42 atm.

第1分離塔の下方部からペンタンを含有するア
スフアルテン含有流が排出され、常圧に減圧され
て、フラツシングにより溶剤ペンタンが蒸発して
分離回収され、熱分解重質油に対して35wt%量
の富アスフアルテン油が回収された。
The asphaltene-containing stream containing pentane is discharged from the lower part of the first separation column, and the pressure is reduced to normal pressure, and the solvent pentane is evaporated by flashing and separated and recovered. Rich asphaltene oil was recovered.

この富アスフアルテン油中には、ニツケル
276ppmバナジウム740ppmが含有され、リング・
ボール式測定法による軟化点温度は120℃であつ
た。
This rich asphaltene oil contains nickel
Contains 276ppm vanadium 740ppm, ring
The softening point temperature measured by the ball method was 120°C.

第1段分離塔の上方部から有効成分油と溶剤の
混合物が排出され加熱された後、内部の温度・圧
力が200℃・46atmの第2段分離塔に導入された。
The mixture of active ingredient oil and solvent was discharged from the upper part of the first-stage separation column and heated, and then introduced into the second-stage separation column at an internal temperature and pressure of 200°C and 46 atm.

第2段分離塔の塔底から熱分解重質油に対して
10wt%の量の樹脂油が排出され回収された。
For pyrolysis heavy oil from the bottom of the second stage separation tower
Resin oil in the amount of 10wt% was discharged and recovered.

第2段分離塔の上方部から排出される工程流は
加熱された後、内部の温度・圧力が227℃・
44atmの第3段分離塔に導入された。
The process stream discharged from the upper part of the second stage separation column is heated, and then the internal temperature and pressure are 227℃.
It was introduced into a 44 atm third stage separation column.

第3段分離塔中において、有効成分油と溶剤が
分離し、塔底から融解成分油が排出され回収さ
れ、上方部から溶剤が排出され冷却された後、再
使用のため混合器に返送された。
In the third stage separation column, the active component oil and the solvent are separated, the molten component oil is discharged from the bottom of the column and collected, and the solvent is discharged from the top and after being cooled, it is returned to the mixer for reuse. Ta.

第3分離塔により回収された有効成分油は、熱
分解重質油に対して55wt%の収率であり、アス
フアルテン含有量0.1wt%以下、ニツケル含有量
40ppm、バナジウム含有量100ppmであつた。
The active ingredient oil recovered by the third separation tower has a yield of 55wt% based on pyrolysis heavy oil, has an asphaltene content of 0.1wt% or less, and a nickel content.
The vanadium content was 40ppm, and the vanadium content was 100ppm.

熱分解器から直接的に回収された熱分解軽質油
と、溶剤により抽出分離された有効成分油の合計
収率は65.55wt%であり、実施例に比較して、低
収率であるにも拘らず、原料油中の重金属の除去
率は85%に止まつた。なお、溶剤ペンタの消費量
は、原料油に対して1.0wt%であつた。
The total yield of the pyrolyzed light oil directly recovered from the pyrolyzer and the active ingredient oil extracted and separated using a solvent was 65.55 wt%, which was a lower yield than that of the example. Regardless, the removal rate of heavy metals from the raw oil remained at 85%. Note that the consumption amount of the solvent penta was 1.0 wt% based on the raw oil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法が実施される工程の
概要を示すフローシートである。 部分記号リスト、1……管(原料油供給)、2
……予熱器、4……熱分解器、5……ポンプ、7
……混合器、9……分離塔(第1段)、11……
分離塔(第2段)、12……管(溶剤含有アスフ
アルテン排出)、14……分離塔(第3段)、15
……管(樹脂状物排出)、16……管(有効成分
油排出)、17……管(溶剤返送)、18……管
(駆出水蒸気供給)、19……管(熱分解器中の蒸
発気排出)、20……凝縮器、21……分離器
(ガス・油・水)、22……管(ガス排出)、23
……管(水排出)、24……分離塔(溶剤回収)、
25……管(アスフアルテン排出)、26……管
(回収溶剤)、27……加熱器、28……加熱器、
29……冷却器、30……凝縮器、33……管
(溶剤返送)、34……管(熱分解生成油排出)、
35……減圧弁、37……管(溶剤補給)。
FIG. 1 is a flow sheet outlining the steps in which the method of the invention is carried out. Partial symbol list, 1...Pipe (raw oil supply), 2
... Preheater, 4 ... Pyrolyzer, 5 ... Pump, 7
... Mixer, 9 ... Separation column (first stage), 11 ...
Separation column (second stage), 12... pipe (solvent-containing asphaltene discharge), 14... separation column (third stage), 15
...Pipe (resin material discharge), 16 ... pipe (active ingredient oil discharge), 17 ... pipe (solvent return), 18 ... pipe (ejected steam supply), 19 ... pipe (in pyrolysis machine) 20...Condenser, 21...Separator (gas/oil/water), 22...Pipe (gas discharge), 23
...Pipe (water discharge), 24 ...Separation tower (solvent recovery),
25... pipe (asphaltene discharge), 26... pipe (recovery solvent), 27... heater, 28... heater,
29...Cooler, 30...Condenser, 33...Pipe (solvent return), 34...Pipe (pyrolysis product oil discharge),
35... pressure reducing valve, 37... pipe (solvent supply).

Claims (1)

【特許請求の範囲】 1 石油系重質油が、予熱器により450〜500℃の
範囲内の温度まで昇温させられた後、断熱状態に
ある熱分解器の上方部に導入され、 温度範囲400〜450℃、常圧、滞留時間1〜5時
間の反応条件下に、熱分解器中を、多段型水平多
孔板による整流と撹拌機による低速水平撹拌を受
けつつプログフロー(Plug−Flow)状の通過状
態を維持して下降させられ、 熱分解反応によるガス状生成物は、熱分解器の
下方部分に導入される駆動用水蒸気とともに下降
液流に対し向流的に上昇して分離され、 原料の石油系重質油中の沸点500℃以上の成分
の35〜65%量が沸点500℃以下の成分へ転換され、 熱分解器底部からの排出流は、直ちに、その内
部温度が富アスフアルテン油のリング・ボール式
測定法による軟化点温度以上の温度に維持され超
臨界状態にある溶剤使用の分別装置中に導入され
て処理され、有効成分油とアスフアルテンに分別
されることを特徴とする熱分解改質油の製法。
[Claims] 1 Petroleum-based heavy oil is heated to a temperature within the range of 450 to 500°C by a preheater, and then introduced into the upper part of the thermal decomposer which is in an adiabatic state, and the temperature range is Under the reaction conditions of 400 to 450℃, normal pressure, and residence time of 1 to 5 hours, Plug-Flow occurs in the pyrolyzer while undergoing rectification by a multi-stage horizontal perforated plate and low-speed horizontal stirring by a stirrer. The gaseous products of the pyrolysis reaction rise countercurrently to the descending liquid flow together with the driving steam introduced into the lower part of the pyrolyzer and are separated. , 35 to 65% of the components with a boiling point of 500°C or higher in the raw petroleum heavy oil are converted to components with a boiling point of 500°C or lower, and the discharge stream from the bottom of the pyrolyzer immediately has an internal temperature of 500°C or higher. It is characterized by being introduced into a fractionation device using a solvent that is maintained at a temperature higher than the softening point temperature of asphaltene oil in a supercritical state according to the ring-and-ball method of measuring asphaltene oil, and is then treated and separated into active ingredient oil and asphaltene oil. A method for producing pyrolyzed reformed oil.
JP60101161A 1985-05-13 1985-05-13 Production of thermal cracking modified oil Granted JPS61261391A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60101161A JPS61261391A (en) 1985-05-13 1985-05-13 Production of thermal cracking modified oil
CN86102643A CN86102643B (en) 1985-05-13 1986-04-21 Process for treating heavy petroleum oil reside
KR1019860003676A KR900000861B1 (en) 1985-05-13 1986-05-12 Treating process of petroleum
EP86303612A EP0202099B1 (en) 1985-05-13 1986-05-13 Process for treating heavy petroleum oil resids
DD86290198A DD251781A5 (en) 1985-05-13 1986-05-13 METHOD FOR THE TREATMENT OF REFUELS FROM HEAVY-OIL ON GROUND-BASED BASE
DE8686303612T DE3680944D1 (en) 1985-05-13 1986-05-13 METHOD FOR TREATING HEAVY PETROLEUM RESIDUES.
MX002465A MX169003B (en) 1985-05-13 1986-05-13 PROCEDURE FOR TREATING HEAVY OIL RESIDUAL OILS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60101161A JPS61261391A (en) 1985-05-13 1985-05-13 Production of thermal cracking modified oil

Publications (2)

Publication Number Publication Date
JPS61261391A JPS61261391A (en) 1986-11-19
JPH0426360B2 true JPH0426360B2 (en) 1992-05-07

Family

ID=14293319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60101161A Granted JPS61261391A (en) 1985-05-13 1985-05-13 Production of thermal cracking modified oil

Country Status (7)

Country Link
EP (1) EP0202099B1 (en)
JP (1) JPS61261391A (en)
KR (1) KR900000861B1 (en)
CN (1) CN86102643B (en)
DD (1) DD251781A5 (en)
DE (1) DE3680944D1 (en)
MX (1) MX169003B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773986A (en) * 1986-12-18 1988-09-27 Lummus Crest, Inc. High severity visbreaking
US4767521A (en) * 1986-12-18 1988-08-30 Lummus Crest, Inc. Treatment of feed for high severity visbreaking
US4846958A (en) * 1988-05-26 1989-07-11 Lummus Crest, Inc. High severity visbreaking with recycle
GB8828335D0 (en) * 1988-12-05 1989-01-05 Shell Int Research Process for conversion of heavy hydrocarbonaceous feedstock
CN1076749C (en) * 1998-04-24 2001-12-26 中国石油化工集团公司 Composite process for modulation thermal conversion and solvent deasphalting
ID29093A (en) * 1998-10-16 2001-07-26 Lanisco Holdings Ltd DEEP CONVERSION THAT COMBINES DEMETALIZATION AND CONVERSION OF CRUDE OIL, RESIDUES OR HEAVY OILS BECOME LIGHTWEIGHT LIQUID WITH COMPOUNDS OF OXYGENATE PURE OR PURE
EP0999200B1 (en) * 1998-11-04 2002-07-17 Rohm And Haas Company Process for the high yield production of methyl methacrylate or methacrylic acid
CN102220166A (en) * 2010-04-13 2011-10-19 中国石油化工集团公司 Delayed coking method
CN102220165A (en) * 2010-04-13 2011-10-19 中国石油化工集团公司 Process for delaying coking
CN102485839B (en) * 2010-12-03 2014-11-19 中国石油天然气股份有限公司 Preparation method of rubber oil base oil raw material
CN103044932B (en) * 2011-10-17 2015-08-19 中国石油天然气股份有限公司 The method of modifying asphalt is prepared with the raw material of low asphalt content
CN103045281B (en) * 2011-10-17 2014-08-06 中国石油天然气股份有限公司 Method for increasing content of asphaltene in low-asphaltene raw materials
CN103773446B (en) * 2012-10-18 2015-09-23 中国石油化工股份有限公司 A kind of heavy oil cracking reactor and heavy oil cracking process
CN103773447B (en) * 2012-10-18 2015-09-23 中国石油化工股份有限公司 A kind of heavy oil contact cracking method contacts cracking unit with heavy oil
CN103059887B (en) * 2013-01-28 2014-06-25 天津市东盛工贸有限公司 Horizontal reaction kettle delayed coking equipment and process thereof
KR101470458B1 (en) 2013-03-11 2014-12-08 주식회사 시알아이 Devices and Methods Using them for Heavy Oil Recovery from Oil Shale
CA2826494C (en) * 2013-09-09 2017-03-07 Imperial Oil Resources Limited Improving recovery from a hydrocarbon reservoir
US10794891B2 (en) * 2016-12-01 2020-10-06 Bp Corporation North America Inc. Fuel oil stability
CN112708436B (en) * 2019-10-25 2022-09-02 国家能源投资集团有限责任公司 Mesophase pitch preparation system and mesophase pitch preparation method
CN116348444A (en) 2020-10-23 2023-06-27 罗姆化学有限责任公司 Improved process for the preparation of methyl methacrylate and/or methacrylic acid with reduced back mixing during conversion
CN112870753A (en) * 2021-01-26 2021-06-01 广东申菱环境系统股份有限公司 Condensing type oil gas recovery device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655490A (en) * 1979-10-12 1981-05-16 Mitsubishi Heavy Ind Ltd Conversion method of heavy oil to light oil
JPS58176293A (en) * 1982-04-09 1983-10-15 Toyo Eng Corp Treatment of heavy oil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239616A (en) * 1979-07-23 1980-12-16 Kerr-Mcgee Refining Corporation Solvent deasphalting
US4290880A (en) * 1980-06-30 1981-09-22 Kerr-Mcgee Refining Corporation Supercritical process for producing deasphalted demetallized and deresined oils
GB2138840B (en) * 1983-02-28 1986-11-19 Fuji Oil Co Ltd Thermal cracking of heavy hydrocarbon oils
JPS6112789A (en) * 1984-06-27 1986-01-21 Fuji Standard Res Kk Method for continuous thermal cracking treatment of heavy oil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655490A (en) * 1979-10-12 1981-05-16 Mitsubishi Heavy Ind Ltd Conversion method of heavy oil to light oil
JPS58176293A (en) * 1982-04-09 1983-10-15 Toyo Eng Corp Treatment of heavy oil

Also Published As

Publication number Publication date
DD251781A5 (en) 1987-11-25
EP0202099B1 (en) 1991-08-21
JPS61261391A (en) 1986-11-19
CN86102643B (en) 1988-11-09
KR900000861B1 (en) 1990-02-17
KR860009104A (en) 1986-12-20
EP0202099A3 (en) 1988-02-03
EP0202099A2 (en) 1986-11-20
MX169003B (en) 1993-06-17
CN86102643A (en) 1986-11-12
DE3680944D1 (en) 1991-09-26

Similar Documents

Publication Publication Date Title
JPH0426360B2 (en)
US3617493A (en) Process for steam cracking crude oil
US4331533A (en) Method and apparatus for cracking residual oils
US4543177A (en) Production of light hydrocarbons by treatment of heavy hydrocarbons with water
RU2002117936A (en) A method for converting heavy feedstocks such as heavy crude oils and bottoms
CA1220152A (en) Process for production of light hydrocarbons by treatment of heavy hydrocarbons with water
US4158622A (en) Treatment of hydrocarbons by hydrogenation and fines removal
RU2005117791A (en) METHOD FOR PROCESSING HEAVY RAW MATERIALS, SUCH AS HEAVY RAW OIL AND CUBE RESIDUES
JPH0139475B2 (en)
US3364138A (en) Separating asphaltenes and resins with alkane and alcohol treatment
US4938862A (en) Process for the thermal cracking of residual hydrocarbon oils
RU2024586C1 (en) Process for treating heavy asphalthene-containing stock
JPH03181594A (en) Extraction of solvent from lubricating oil
US2902428A (en) Extraction of feedstock with polyethylene glycol solvent
JPS5898386A (en) Conversion of heavy oil or residual oil to gas and distillable hydrocarbon
JPS59168090A (en) Method of cleaving and hydrogenating hard treatment petroleum residue such as asphaltene or resin
US4435276A (en) Method of treating heavy oil
US2112250A (en) Process of making oxidized products
JPS6158513B2 (en)
JPS6241997B2 (en)
US3645887A (en) Heavy oil hydrogen treating process
US1582131A (en) Method of recovering alpha metallic halide from hydrocarbon sludges
RU2170755C1 (en) Method of processing of secondary heavy hydrocarbon materials
US4863586A (en) Process for recovery of low-temperature carbonization oil
US2345877A (en) Manufacture of liquid hydrocarbons