JPH04263075A - Diamond or diamondlike carbon-coated hard material - Google Patents

Diamond or diamondlike carbon-coated hard material

Info

Publication number
JPH04263075A
JPH04263075A JP3023496A JP2349691A JPH04263075A JP H04263075 A JPH04263075 A JP H04263075A JP 3023496 A JP3023496 A JP 3023496A JP 2349691 A JP2349691 A JP 2349691A JP H04263075 A JPH04263075 A JP H04263075A
Authority
JP
Japan
Prior art keywords
diamond
carbon
coating layer
hard material
coated hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3023496A
Other languages
Japanese (ja)
Other versions
JP2987956B2 (en
Inventor
Naoya Omori
直也 大森
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3023496A priority Critical patent/JP2987956B2/en
Priority to KR1019920701315A priority patent/KR950013501B1/en
Priority to DE69131846T priority patent/DE69131846T2/en
Priority to US07/910,094 priority patent/US5328761A/en
Priority to PCT/JP1991/001359 priority patent/WO1992005904A1/en
Priority to EP91917335A priority patent/EP0504424B1/en
Priority to CA 2074482 priority patent/CA2074482C/en
Priority to PCT/JP1991/001542 priority patent/WO1992014689A1/en
Priority to CA002060823A priority patent/CA2060823C/en
Priority to DE69223075T priority patent/DE69223075T3/en
Priority to EP92301144A priority patent/EP0500253B2/en
Publication of JPH04263075A publication Critical patent/JPH04263075A/en
Priority to US08/178,622 priority patent/US5391422A/en
Application granted granted Critical
Publication of JP2987956B2 publication Critical patent/JP2987956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve peeling resistance by forming specified microscopic ruggednesses on the surface of a hard substrate and enhancing the adhesive strength of an interface between a diamond-based coating layer and the substrate. CONSTITUTION:Microscopic ruggednesses are formed on the surface of a substrate consisting of a hard material (cemented carbide, cermet, Al2O3, silicon nitride and silicon carbide). One or more protrusions of the substrate are formed at the interface between the substrate and the diamond and/or diamondlike carbon (diamond-based coating layer) for each sampling length of 10mum, the ratio of the sum A of the lengths of the recesses to the sum B of the lengths of protrusions is controlled to 0.05-20 in the sampling length at the interface, and the protrusions are allowed to intrude into the diamond-based coating layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高い基材との密着強度
を持ったダイヤモンドまたはダイモンド状炭素被覆層を
有するダイヤモンド被覆硬質材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond-coated hard material having a diamond or diamond-like carbon coating layer having high adhesion strength to a base material.

【0002】0002

【従来の技術】ダイヤモンドは極めて硬度が高く、化学
的に安定し、高い熱伝導率特性、音波伝パン速度を初め
とする数多くの優れた特性を持っているため、この特性
を生かした硬質材料、あるいはダイヤモンドまたはダイ
ヤモンド状炭素被覆硬質材料として、例えば下記のもの
が広く実用に供されている。 ■  Al、Cuや実用に供されている各種軽金属、ま
たはその合金とほとんど反応しないので、これらの合金
を高速で切削し、しかも極めて良好な仕上げ面とする単
結晶ダイヤモンド、焼結ダイヤモンドあるいはダイヤモ
ンド被覆切削工具、例えばスローアウエイチップ、ドリ
ル、マイクロドリル、エンドミルなどの切削工具。 ■  耐摩耗性が高いため、高い寸法精度での長時間加
工を可能としたボンディングツールなどの各種耐摩工具
。 ■  放熱板を初めとする各種機械部品。 ■  スピーカーを初めとする各種振動板。 ■  各種電子部品。
[Prior Art] Diamond has many excellent properties, including extremely high hardness, chemical stability, high thermal conductivity, and high acoustic propagation speed. Alternatively, as hard materials coated with diamond or diamond-like carbon, for example, the following are widely used in practical use. ■ Single-crystal diamond, sintered diamond, or diamond coating, which hardly reacts with Al, Cu, and various light metals used in practical use, or their alloys, allows these alloys to be cut at high speed and with an extremely good surface finish. Cutting tools, such as indexable inserts, drills, micro drills, end mills, etc. ■ Various wear-resistant tools such as bonding tools that have high wear resistance and enable long-term machining with high dimensional accuracy. ■ Various mechanical parts including heat sinks. ■ Various types of diaphragms including speakers. ■ Various electronic components.

【0003】そして、人工ダイヤモンドの製造法のうち
、気相よりダイヤモンド被覆層を形成する方法としては
、μ波プラズマCVD法、RF−プラズマCVD法、E
A−CVD法、誘磁場μ波プラズマCVD法、RF熱プ
ラズマCVD法、DCプラズマCVD法、DCプラズマ
ジェットCVD法、フィラメント熱CVD法、燃焼法等
数多くの方法が知られており、ダイヤモンド被覆硬質材
料製造の有力な方法である。
Among the methods for producing artificial diamonds, methods for forming a diamond coating layer from a gas phase include the μ-wave plasma CVD method, the RF-plasma CVD method, and the E-plasma CVD method.
Many methods are known, including the A-CVD method, magnetic field μ-wave plasma CVD method, RF thermal plasma CVD method, DC plasma CVD method, DC plasma jet CVD method, filament thermal CVD method, and combustion method. It is a powerful method of material production.

【0004】0004

【発明が解決しようとする課題】ところが、ダイヤモン
ド被覆硬質材料の多くは基材とダイヤモンド被覆層の密
着強度が不足しているため、ダイヤモンド被覆層が剥離
することにより寿命にいたる場合が多い。この大きな原
因として、ダイヤモンドは、あらゆる物質と中間層を持
たないため、他物質との濡れ性が悪いことが考えられる
。高い密着強度をもつダイヤモンド被覆硬質材料を得る
べく、ダイヤモンドと同じ熱膨張係数を持った基材を選
択する方法(特公開・昭61−291493では、Si
3 N4 を主成分とする焼結体、およびSiCを主成
分とする焼結体を提案している)や、基材表面のダイヤ
モンド被覆層形成に悪影響を及ぼす金属をエッチングに
より除去し、基材表面のダイヤ核の発生密度を高める方
法(特開平1−201475号公報では、超硬合金の表
面を酸溶液にてエッチングし、Co金属成分を除去し、
ダイヤモンド核のグラファイト化を抑止している)(特
開昭61−124573号公報では、ダイヤモンド砥粒
または砥石により、基材表面に傷つけ処理を行ない、基
材表面でのダイヤモンドの核発生密度を向上させている
)が提案されているが、現状ではその密着強度は不十分
である。本発明はこれらの問題点を解消し、優れた密着
強度をもつダイヤモンド被覆硬質材料を提供することを
目的とする。
However, in most diamond-coated hard materials, the adhesion strength between the base material and the diamond coating layer is insufficient, so that the diamond coating layer often peels off, leading to the end of its life. A major reason for this is thought to be that diamond has poor wettability with other substances because it does not have an intermediate layer with any substance. In order to obtain a diamond-coated hard material with high adhesion strength, a method of selecting a base material with the same coefficient of thermal expansion as diamond (Japanese Patent Publication No. 61-291493,
3 N4 as the main component and SiC as the main component), and metals that have a negative effect on the formation of the diamond coating layer on the surface of the substrate are removed by etching, and the substrate is A method of increasing the density of diamond nuclei on the surface (in Japanese Patent Application Laid-Open No. 1-201475, the surface of the cemented carbide is etched with an acid solution to remove the Co metal component,
In Japanese Patent Application Laid-Open No. 61-124573, the surface of the base material is scratched using diamond abrasive grains or a grindstone to increase the density of diamond nuclei generated on the surface of the base material. However, the adhesion strength is currently insufficient. The present invention aims to solve these problems and provide a diamond-coated hard material with excellent adhesion strength.

【0005】[0005]

【課題を解決するための手段】前述した通り、ダイヤモ
ンドは極めて化学的に安定しているため、あらゆる物質
と中間化合物を作らない。このため、優れた密着強度を
持つダイヤモンド被覆硬質材料を作製する場合、ダイヤ
モンド被覆層と基材がなんらかの物理的な強い力にて接
合されている状態を作り出さねばならない。本発明者は
、これを実現するため、基材表面に、機械的、または化
学的に作製され、基材と高い密着強度をもつ凸部が存在
する状態を作り出し、この基材表面にダイヤモンド被覆
層を形成し、凸部がダイヤモンド被覆層に侵入した状態
を作った場合、ダイヤモンド被覆層と基材との密着強度
が非常に高くなることを発見した。これは、ダイヤモン
ド被覆層と基材との接触面積が増大したことと、凸部が
、ダイヤモンド被覆層のアンカー作用を持ち、ダイヤモ
ンド被覆層が剥がれにくくなったためと考えられる。
[Means for Solving the Problem] As mentioned above, diamond is extremely chemically stable and does not form intermediate compounds with any substances. Therefore, when producing a diamond-coated hard material with excellent adhesion strength, it is necessary to create a state in which the diamond coating layer and the base material are joined by some strong physical force. In order to achieve this, the present inventor created a state in which convex parts are mechanically or chemically created on the surface of the base material and have high adhesion strength to the base material, and the surface of this base material is coated with diamond. It has been discovered that when a diamond coating layer is formed and the convex portions penetrate into the diamond coating layer, the adhesion strength between the diamond coating layer and the base material becomes extremely high. This is thought to be because the contact area between the diamond coating layer and the base material increased, and the convex portions had an anchoring effect for the diamond coating layer, making it difficult for the diamond coating layer to peel off.

【0006】ここで述べる凹凸とは、(1)ダイヤモン
ド砥石、(2)ダイヤモンド砥粒による傷つけ処理、な
どにより形成される巨視的にみた凹凸ではなく、微小区
間内における凹凸であり、ダイヤモンド被覆層−基材界
面において、基準長さを10μm などの微小区間とし
た、この基準長さ内における凹凸のことである。本発明
者たちは種々の凹凸状態を作り出した結果、10μm 
の基準長さ内に、少なくとも凸部が1箇所以上存在し、
かつ基準長さ内において、凸部の長さの総和Bと、凹部
の長さの総和Aの比が、0.05≦A/B≦20であり
、かつ凸部が、ダイヤモンド被覆層中に0.2μm 以
上侵入している状態が、密着強度が高くなることを発見
した。これはダイヤモンド被覆後の基材の断面をラッピ
ングし、観察、写真撮影を行ない、ダイヤモンド被覆層
、基材の界面を模式化して算出した。
The unevenness described here is not a macroscopic unevenness formed by (1) a diamond grinding wheel, (2) scratching treatment with diamond abrasive grains, etc., but is an unevenness within a minute section, and is a diamond coating layer. - At the base material interface, the reference length is a minute section such as 10 μm, and it refers to unevenness within this reference length. As a result of creating various uneven states, the present inventors found that 10 μm
There is at least one convex portion within the standard length of
and within the standard length, the ratio of the total length B of the convex portions to the total length A of the concave portions is 0.05≦A/B≦20, and the convex portions are included in the diamond coating layer. It was discovered that the adhesion strength increases when the penetration depth is 0.2 μm or more. This was calculated by lapping the cross section of the substrate after diamond coating, observing and photographing it, and schematizing the interface between the diamond coating layer and the substrate.

【0007】ここで、コーティング初期、チップ表面全
体にダイヤモンド核の発生を促すため、一般に行われて
いるダイヤモンド砥粒による傷つけ処理を行うことが望
ましい。この際、砥粒を物理的に押し付け、傷をつける
方法では、作製した凸部が欠損、破壊される可能性があ
るため、本基材とダイヤモンド砥粒を水、エチルアルコ
ール、アセトンなどの溶媒の中に投じ、溶液に超音波振
動を与えることにより傷つけ処理を行うことが望ましい
。この傷つけ処理により、基材表面の凸部および凸でな
い部分全体に均等にダイヤモンド核発生する。これによ
り、凸部がダイヤモンド被覆層に侵入した状態を作るこ
とが可能となった。
[0007] At the initial stage of coating, in order to promote the generation of diamond nuclei over the entire chip surface, it is desirable to carry out a commonly used scratching process using diamond abrasive grains. At this time, if the abrasive grains are physically pressed and scratched, there is a possibility that the protrusions that have been created may be chipped or destroyed. It is preferable to perform damage treatment by throwing the liquid into a solution and applying ultrasonic vibration to the solution. By this scratching treatment, diamond nuclei are generated evenly over the entire convex and non-convex portions of the surface of the base material. This made it possible to create a state in which the convex portion penetrated into the diamond coating layer.

【0008】基材に凹凸を作る具体的方法としては、■
  基材表面に柱状晶および/または針状晶を析出する
方法 ■  エッチングによりエッチングされやすいバインダ
ーを取り除く方法 ■  基材にマスクを施してからエッチングし、そのあ
と、マスクを取り除く方法 ■  レーザー等による物理的加工による方法など、基
材に応じて適当な方法を選択する。■の方法は基材に何
らかの熱処理を施し、表面に基材成分による柱結晶また
は針状結晶を自由成長させるか、および/または2次結
晶発生を促進するものであり、■の方法は、酸、アルカ
リに対する腐食性の異なる硬質相と結合相により構成さ
れる素材に対して有効であり、■の方法はホトマスクを
用い任意のパターンにマスクを設けた後、エッチングに
よりマスクを取り除く方法である。
[0008] As a specific method for creating unevenness on the base material,
A method for depositing columnar crystals and/or needle crystals on the surface of a substrate ■ A method for removing binders that are easily etched by etching ■ A method for applying a mask to the substrate, etching, and then removing the mask ■ Physics using lasers, etc. Select an appropriate method depending on the base material, such as a method using mechanical processing. Method (2) involves subjecting the base material to some kind of heat treatment to allow the free growth of columnar crystals or needle-shaped crystals from the base material components on the surface and/or promoting the generation of secondary crystals. This method is effective for materials composed of a hard phase and a binder phase that have different corrosivity to alkali. Method (2) is a method in which a photomask is used to provide a mask in an arbitrary pattern, and then the mask is removed by etching.

【0009】凸部を構成する材料としては、窒化珪素結
晶、窒化珪素を含む結晶、サイアロン、炭化珪素、炭化
珪素を含む物質、タングステン、タングステンの炭化物
もしくは炭窒化物、タングステンと他の1種もしくは2
種以上の金属の炭化物または炭窒化物およびこれらを含
む物質からなる群から選ばれる。こゝで、サイアロン(
Sialon) は、窒化珪素結晶のSiおよびNの一
部が夫々AlとOで置換されたものであり、α−サイア
ロン、β−サイアロンがある。そして、これら凹凸部を
形成する物質は基材と一体で同一材料であることが好ま
しく、同一材料で組成が異なってもよい。
Materials constituting the convex portion include silicon nitride crystals, crystals containing silicon nitride, sialon, silicon carbide, substances containing silicon carbide, tungsten, carbides or carbonitrides of tungsten, tungsten and one other type, or 2
Selected from the group consisting of carbides or carbonitrides of at least one metal, and substances containing these. Here, Sialon (
Sialon) is a silicon nitride crystal in which part of Si and N are replaced with Al and O, respectively, and includes α-sialon and β-sialon. It is preferable that the substance forming these uneven portions is integral with the base material and made of the same material, and the same material may have a different composition.

【0010】本発明によるダイヤモンドおよび/または
ダイヤモンド状炭素被覆層−基材界面の状態を模式的に
示すと図1のようになる。こゝでは、凸部の長さの総和
A、すなわちΣAと凹部の長さの総和B、すなわちΣB
の比H0.05≦ΣA/ΣB≦20でなければならず、
凸部の侵入長さは0.2μm 以上とするのが好ましい
。 例えば、0.5μm の凸部が10μm 中に1個ある
ときΣA/ΣB=19となる。
FIG. 1 schematically shows the state of the diamond and/or diamond-like carbon coating layer-substrate interface according to the present invention. Here, the sum of the lengths of the convex portions A, that is, ΣA, and the sum of the lengths of the concave portions, B, that is, ΣB
The ratio H0.05≦ΣA/ΣB≦20,
The penetration length of the convex portion is preferably 0.2 μm or more. For example, when there is one convex portion of 0.5 μm in 10 μm, ΣA/ΣB=19.

【0011】いずれにしても、このようにして形成され
る凸部は、ダイヤモンドおよび/またはダイヤモンド状
炭素被覆層−基材界面において、基準長さを10μm 
とした時、この基準長さ内において、少なくとも1箇所
以上存在し、凸部の長さの総和Bと凹部の長さの総和A
の比が0.05以上、20以下の範囲にあることが必要
で、かつ該凸部がダイヤモンド被覆層中に侵入していな
ければならない。この場合、侵入長さは0.2μm 以
上であることが好ましい。凸部の長さの総和Bと凹部の
長さの総和Aの比が0.05≦A/B≦20の範囲を逸
脱した場合、密着強度の向上が認められない。
In any case, the convex portions formed in this manner have a reference length of 10 μm at the diamond and/or diamond-like carbon coating layer-substrate interface.
Then, within this standard length, there is at least one location, and the total length of the convex portion B and the total length of the concave portion A
It is necessary that the ratio is in the range of 0.05 or more and 20 or less, and the convex portion must penetrate into the diamond coating layer. In this case, the penetration length is preferably 0.2 μm or more. If the ratio of the total length B of the convex portions to the total length A of the concave portions deviates from the range of 0.05≦A/B≦20, no improvement in adhesion strength is observed.

【0012】基材は、超硬合金、サーメット、Al2 
O3 、窒化珪素、炭化珪素など各種セラミックを始め
とする硬質材料であれば何でも可能である。この中で、
特に、窒化珪素、炭化珪素、炭化チタン、窒化チタン、
炭窒化チタンのようなTiの化合物および/またはTi
の化合物を含む物質、タングステンの炭化物および/ま
たはタングステン合金の炭化物および/またはこれらを
含む物質による凹凸が存在する場合、高い密着強度を示
すことも判った。さらに、凸部の形状がアスペクト比1
.5以上の柱状結晶である場合や、針状結晶である場合
、さらに密着強度が高くなることも判った。
[0012] The base material is cemented carbide, cermet, Al2
Any hard material can be used, including various ceramics such as O3, silicon nitride, and silicon carbide. In this,
In particular, silicon nitride, silicon carbide, titanium carbide, titanium nitride,
Compounds of Ti such as titanium carbonitride and/or Ti
It has also been found that high adhesion strength is exhibited when there are irregularities caused by a substance containing a compound of tungsten carbide and/or a tungsten alloy carbide and/or a substance containing these. Furthermore, the shape of the convex portion has an aspect ratio of 1.
.. It was also found that the adhesion strength becomes even higher when the crystals are columnar crystals of 5 or more or when they are needle crystals.

【0013】なお、ダイヤモンド被覆層の層厚に関して
は、0.1μm 以下では被覆層による耐摩耗性など諸
性能の向上が認められず、また200μm以上の被覆層
を形成した場合でも、もはや大きな性能の向上が認めら
れないため、0.1μm 〜200μm が望ましい。
[0013] Regarding the thickness of the diamond coating layer, if the thickness is less than 0.1 μm, no improvement in various performances such as wear resistance is observed due to the coating layer, and even if the coating layer is formed with a thickness of 200 μm or more, the performance is no longer significant. 0.1 μm to 200 μm is desirable.

【0014】以上の説明はダイヤモンドを被覆する場合
について行ったが、ダイヤモンド被覆層中にダイヤモン
ド状炭素が混在する場合およびこれらの単層、2層以上
にて構成される場合、また本被覆層がホウ素、窒素など
の異種原子を含む場合も全く同様の効果が得られる。ま
たダイヤモンド状炭素を被覆する場合も同様で、本発明
の優れた効果が奏せられる。次に本発明を実施例により
具体的に説明する。
[0014] The above explanation has been made regarding the case where diamond is coated, but when diamond-like carbon is mixed in the diamond coating layer, when it is composed of a single layer or two or more layers of these, and when this coating layer is Exactly the same effect can be obtained when a different type of atom such as boron or nitrogen is included. The same applies to the case where diamond-like carbon is coated, and the excellent effects of the present invention can be achieved. Next, the present invention will be specifically explained using examples.

【0015】[0015]

【実施例】実施例1 母材として、窒化珪素基のセラミック(具体的にはSi
3 N4 −4wt%Al2 O3 −4wt%ZrO
2 −3wt%Y2 O3 )で形状がSPG422の
スローアウエイチップを作製した。本チップを、180
0℃、5atmのN2ガス雰囲気にて、40分間熱処理
を行ったところ、チップ表面には短径2μm 、長径8
μm 、アスペクト比4の窒化珪素の柱状結晶および針
状結晶が発生した。本チップを、2gの粒径8〜16μ
m のダイヤモンド砥粒とともにエチルアルコール中に
投じ、15分間超音波振動を与えた。このようにして作
製したチップを、2.45GHzのμ波プラズマCVD
装置を用いて、1000℃に加熱し、全圧を80Tor
rとした水素−メタン2%の混合プラズマ中にて8時間
保持し、層厚さ10μm のダイヤモンド被覆切削チッ
プを作製した。また、比較のため、同一形状、同一組成
で熱処理を行わなかったため、表面に窒化珪素の柱状晶
が存在しないチップにダイヤモンド被覆層を設けた比較
チップを準備した(比較チップには、超音波処理は行わ
なかった)。なお、本試験において、基材の表面に析出
した被覆層は、ラマン分光分析法によって、ダイヤモン
ド被覆層であることを確認した。
[Example] Example 1 A silicon nitride-based ceramic (specifically, Si
3 N4 -4wt%Al2 O3 -4wt%ZrO
A throw-away tip with a shape of SPG422 was prepared using 2-3 wt% Y2O3). This chip, 180
When heat-treated for 40 minutes at 0°C and 5 atm N2 gas atmosphere, the chip surface had a short axis of 2 μm and a long axis of 8
Columnar crystals and needle-like crystals of silicon nitride with an aspect ratio of 4 μm were generated. 2g of this chip with a particle size of 8 to 16μ
The sample was placed in ethyl alcohol together with diamond abrasive grains of 1.0 m, and subjected to ultrasonic vibration for 15 minutes. The chip produced in this way was subjected to 2.45 GHz μ-wave plasma CVD.
Using a device, heat to 1000°C and raise the total pressure to 80 Torr.
A diamond-coated cutting tip with a layer thickness of 10 μm was prepared by holding the sample in a hydrogen-methane mixed plasma of 2% at r for 8 hours. In addition, for comparison, we prepared a comparative chip with a diamond coating layer on a chip with the same shape and composition but no silicon nitride columnar crystals on the surface because no heat treatment was performed (the comparative chip was treated with ultrasonic was not carried out). In this test, the coating layer deposited on the surface of the base material was confirmed to be a diamond coating layer by Raman spectroscopy.

【0016】これらの切削チップを用いて、被削材  
  :  Al−24wt%Si合金(ブロック材) 切削速度  :  400m/min 送り      :  0.1mm/rev.切込み 
   :  0.5mm の条件にて断続切削を行い、3分後および10分後の逃
げ面摩耗量、切り刃の摩耗状態、被削材の溶着状態を観
察したところ、本発明切削チップは、切削開始10分後
の切れ刃観察において、逃げ面摩耗量は0.04mmで
、正常摩耗であり、また被削材の溶着はほとんど見られ
なかった。これに対して比較チップでは、切削開始3分
後の切れ刃観察において、ダイヤモンド被覆層の大きな
剥離が見られ、逃げ面摩耗量も0.11mmとなり、被
削材も大きく溶着しているため切削を中止した。
[0016] Using these cutting tips, the workpiece material
: Al-24wt%Si alloy (block material) Cutting speed: 400m/min Feed: 0.1mm/rev. depth of cut
: Intermittent cutting was performed under the condition of 0.5 mm, and the amount of flank wear, the wear state of the cutting edge, and the welding state of the workpiece material were observed after 3 minutes and 10 minutes. When the cutting edge was observed 10 minutes after the start, the amount of flank wear was 0.04 mm, indicating normal wear, and almost no welding of the work material was observed. On the other hand, with the comparison insert, when observing the cutting edge 3 minutes after the start of cutting, large peeling of the diamond coating layer was observed, the amount of flank wear was 0.11 mm, and the workpiece material was also largely welded, so cutting has been discontinued.

【0017】切削試験後のチップを切断、ラッピング後
、基材−ダイヤモンド被覆層界面を光学顕微鏡にて観察
した所、本発明切削チップにおいては、窒化珪素の柱状
晶がダイヤモンド被覆層に最大3μm の深さにて侵入
し、また、10μm の基準長さ内に、3〜5の凸部が
存在し、A/Bは0.7〜1.2となっていることを確
認した。なお比較チップにおいては、基材−ダイヤモン
ド被覆層界面に、窒化珪素の柱状晶は存在せず、また基
材のダイヤモンド被覆層中への侵入は観察されなかった
After cutting and lapping the chip after the cutting test, the interface between the base material and the diamond coating layer was observed using an optical microscope, and it was found that in the cutting chip of the present invention, the columnar crystals of silicon nitride were present in the diamond coating layer with a maximum thickness of 3 μm. It was confirmed that 3 to 5 convex portions were present within the standard length of 10 μm, and A/B was 0.7 to 1.2. In the comparative chip, no columnar crystals of silicon nitride were present at the interface between the base material and the diamond coating layer, and no intrusion of the base material into the diamond coating layer was observed.

【0018】実施例2 母材として、炭化珪素ウイスカーセラミック(具体的に
はAl2 O3 −35vol%SiCウイスカー5w
t%ZrO2 )で形状がSPG422のスローアウエ
イチップを作製した。本チップを、溶融NaOHと接触
させ、エッチングを行うことにより、チップ表面には短
径1μm 、長径8μm の炭化珪素ウイスカーの針状
結晶が露出した。本チップを、2gの粒径8〜16μm
 のダイヤモンド砥粒とともにエチルアルコール中に投
じ、15分間超音波振動を与えた。このようにして作製
したチップを、2.45GHzのμ波プラズマCVD装
置を用いて、1000℃に加熱し、全圧を80Torr
とした水素−メタン2%の混合プラズマ中にて7時間保
持し、層厚さ9μm のダイヤモンド被覆切削チップを
作製した。 また、比較のため、同一形状、同一組成でエッチング処
理を行わなかったため、表面に炭化珪素ウイスカーの針
状晶が存在しないチップにダイヤモンド被覆層を設けた
比較チップを準備した(比較チップには、超音波処理は
行わなかった)。なお、本試験において、基材の表面に
析出した被覆層は、ラマン分光分析法によって、ダイヤ
モンド被覆層であることを確認した。
Example 2 Silicon carbide whisker ceramic (specifically, Al2O3-35vol%SiC whisker 5w) was used as the base material.
A throw-away chip with a shape of SPG422 was manufactured using t%ZrO2). By bringing this chip into contact with molten NaOH and etching it, needle-like crystals of silicon carbide whiskers with a short axis of 1 μm and a long axis of 8 μm were exposed on the chip surface. 2g of this chip has a particle size of 8 to 16 μm.
The sample was placed in ethyl alcohol together with diamond abrasive grains, and ultrasonic vibration was applied for 15 minutes. The chip thus produced was heated to 1000°C using a 2.45GHz μ-wave plasma CVD device, and the total pressure was adjusted to 80 Torr.
A diamond-coated cutting tip with a layer thickness of 9 μm was prepared by holding the sample in a 2% hydrogen-methane mixed plasma for 7 hours. In addition, for comparison, we prepared a comparison chip in which a diamond coating layer was provided on a chip with the same shape and composition and no acicular crystals of silicon carbide whiskers on the surface because no etching treatment was performed. (No ultrasound treatment was performed). In this test, the coating layer deposited on the surface of the base material was confirmed to be a diamond coating layer by Raman spectroscopy.

【0019】これらの切削チップを用いて、被削材  
  :  Al−24wt%Si合金(ブロック材) 切削速度  :  400m/min 送り      :  0.1mm/rev.切込み 
   :  0.5mm の条件にて断続切削を行い、3分後および10分後の逃
げ面摩耗量、切り刃の摩耗状態、被削材の溶着状態を観
察したところ、本発明切削チップは、切削開始10分後
の切れ刃観察において、逃げ面摩耗量は0.05mmで
、正常摩耗であり、また被削材の溶着はほとんど見られ
なかった。これに対して比較チップでは、切削開始3分
後の切れ刃観察において、ダイヤモンド被覆層の大きな
剥離が見られ、逃げ面摩耗量も0.14mmとなり、被
削材も大きく溶着しているため切削を中止した。
[0019] Using these cutting tips, the workpiece material
: Al-24wt%Si alloy (block material) Cutting speed: 400m/min Feed: 0.1mm/rev. depth of cut
: Intermittent cutting was performed under the condition of 0.5 mm, and the amount of flank wear, the wear state of the cutting blade, and the welding state of the workpiece material were observed after 3 minutes and 10 minutes. When the cutting edge was observed 10 minutes after the start, the amount of flank wear was 0.05 mm, indicating normal wear, and almost no welding of the work material was observed. On the other hand, with the comparison insert, when observing the cutting edge 3 minutes after the start of cutting, large peeling of the diamond coating layer was observed, the amount of flank wear was 0.14 mm, and the workpiece material was also largely welded, resulting in cutting. has been discontinued.

【0020】切削試験後のチップを切断、ラッピング後
、基材−ダイヤモンド被覆層界面を光学顕微鏡にて観察
した所、本発明切削チップにおいては、炭化珪素ウイス
カーがダイヤモンド被覆層に最大4μm の深さにて侵
入し、界面において、10μm の基準長さ内に、3〜
6の凸部が存在し、A/Bは1.0〜1.6となってい
ることを確認した。なお比較チップにおいては、基材−
ダイヤモンド被覆層界面に、炭化珪素ウイスカーは存在
せず、また基材のダイヤモンド被覆層中への侵入は観察
されなかった。
After cutting and lapping the chip after the cutting test, the interface between the base material and the diamond coating layer was observed using an optical microscope, and it was found that in the cutting chip of the present invention, the silicon carbide whiskers were at the maximum depth of 4 μm in the diamond coating layer. At the interface, within the standard length of 10 μm, 3~
It was confirmed that 6 convex portions were present and A/B was 1.0 to 1.6. In addition, in the comparison chip, the base material -
No silicon carbide whiskers were present at the diamond coating layer interface, and no intrusion of the base material into the diamond coating layer was observed.

【0021】実施例3 母材として、JIS−K10超硬合金(具体的にはWC
−5%Co)で形状がSPG422のスローアウエイチ
ップを作製した。本チップを、鏡面加工した後、レーザ
ー加工により、 (1)深さ3.0μm 、幅1.5μm の溝を、2μ
m 間隔の格子状に加工 (2)深さ3.0μm 、幅3.0μm の溝を、3μ
m 間隔の格子状に加工 (3)深さ0.2μm 、幅1.5μm の溝を、2μ
m 間隔の格子状に加工 (4)深さ3.0μm 、幅2.0μm の溝を、8μ
m 間隔の格子状に加工 した本発明チップ(1)〜(4)を作製した。おのおの
、A/Bは、1.75、1.33、0.25となる。 前記と同様、本チップを、2gの粒径8〜16μm の
ダイヤモンド砥粒とともにエチルアルコール中に投じ、
15分間超音波振動を与えた。このようにして作製した
チップの表面に公知の熱フィラメントCVD法を用いて
、      反応管容器             
       :  直径200mmの石英管    
  フィラメント材質              :
  金属W      フィラメント温度      
        :  2400℃      フィラ
メント−チップ表面間距離:  7.0mm     
 全圧                      
    :  100Torr      雰囲気ガス
                    :  H2
 −1.5%CH4 ガス      時間     
                     :7時間
の条件にて、6μm のダイヤモンド被覆層を形成した
。 また、比較のため、同一形状、同一組成でレーザー加工
処理を行わなかったチップに、ダイヤモンド被覆層を設
けた比較チップを準備した(比較チップには、超音波処
理は行わなかった)。なお、本試験において、基材の表
面に析出した被覆層は、ラマン分光分析法によって、ダ
イヤモンド被覆層であることを確認した。
Example 3 JIS-K10 cemented carbide (specifically WC) was used as the base material.
A throw-away tip with a shape of SPG422 was manufactured using -5% Co). After mirror-finishing this chip, a groove of 3.0 μm in depth and 1.5 μm in width was created by laser processing.
Machining into a lattice shape with a spacing of 3.0 m (2) Grooves 3.0 μm deep and 3.0 μm wide
(3) Grooves with a depth of 0.2 μm and a width of 1.5 μm
(4) Grooves with a depth of 3.0 μm and a width of 2.0 μm are cut into 8 μm grooves.
Chips (1) to (4) of the present invention processed into a lattice shape with m spacing were fabricated. A/B is 1.75, 1.33, and 0.25, respectively. In the same manner as above, this chip was poured into ethyl alcohol along with 2 g of diamond abrasive grains with a particle size of 8 to 16 μm,
Ultrasonic vibration was applied for 15 minutes. Using a known hot filament CVD method on the surface of the chip produced in this way, a reaction tube container was formed.
: Quartz tube with a diameter of 200mm
Filament material:
Metal W filament temperature
: 2400℃ Distance between filament and chip surface: 7.0mm
total pressure
: 100Torr Atmosphere gas: H2
-1.5%CH4 gas time
: A diamond coating layer of 6 μm was formed under conditions of 7 hours. For comparison, a comparison chip was prepared in which a diamond coating layer was provided on a chip with the same shape and composition that was not subjected to laser processing (the comparison chip was not subjected to ultrasonic treatment). In this test, the coating layer deposited on the surface of the base material was confirmed to be a diamond coating layer by Raman spectroscopy.

【0022】これらの切削チップを用いて、被削材  
  :  Al−12wt%Si合金(丸棒)切削速度
  :  1000m/min送り      :  
0.15mm/rev.切込み    :  1.5m
m の条件にて断続切削を行い、5分後および30分後の逃
げ面摩耗量、切り刃の摩耗状態、被削材の溶着状態を観
察したところ、本発明切削チップ(1)〜(4)は、切
削開始10分後の切れ刃観察において、逃げ面摩耗量は
それぞれ0.03、0.02、0.08、0.07mm
で、正常摩耗であり、また被削材の溶着はほとんど見ら
れなかった。これに対して比較チップでは、切削開始5
分後の切れ刃観察において、ダイヤモンド被覆層の大き
な剥離が見られ、逃げ面摩耗量も0.23mmとなり、
被削材も大きく溶着しているため切削を中止した。
[0022] Using these cutting tips, the workpiece material
: Al-12wt%Si alloy (round bar) Cutting speed: 1000m/min Feed:
0.15mm/rev. Depth of cut: 1.5m
Intermittent cutting was carried out under the conditions of 1.m, and the amount of flank wear, the wear state of the cutting edge, and the welding state of the workpiece material were observed after 5 and 30 minutes.Cutting chips of the present invention (1) to (4) ), the amount of flank wear was 0.03, 0.02, 0.08, and 0.07 mm, respectively, when observing the cutting edge 10 minutes after the start of cutting.
The wear was normal, and there was almost no welding of the work material. On the other hand, with the comparative chip, cutting starts at 5
When observing the cutting edge after 30 minutes, large peeling of the diamond coating layer was observed, and the amount of flank wear was 0.23 mm.
Cutting was stopped because the workpiece material was also heavily welded.

【0023】切削試験後のチップを切断、ラッピング後
、基材−ダイヤモンド被覆層界面を光学顕微鏡にて観察
した所、本発明切削チップにおいては、基材である超硬
合金がダイヤモンド被覆層に最大3μm の深さにて侵
入しており、また、A/Bは予想された値となっている
ことを確認した。比較チップにおいては、基材のダイヤ
モンド被覆層中への侵入および凹凸の存在は観察されな
かった。
After cutting and lapping the chip after the cutting test, the interface between the base material and the diamond coating layer was observed using an optical microscope. It was confirmed that the penetration was at a depth of 3 μm, and that A/B was the expected value. In the comparison chip, no intrusion of the base material into the diamond coating layer and no unevenness were observed.

【0024】[0024]

【発明の効果】本発明ダイヤモンドおよび/またはダイ
ヤモンド状炭素被覆硬質材料においては、いずれも従来
のダイヤモンドおよび/またはダイヤモンド状炭素被覆
硬質材料と比べると、良好な耐剥離性を持つことがわか
る。本実施例1、2における方法は、基材の特性を生か
した表面処理であるが、本実施例3における方法は基材
を選ばない応用力に優れた方法であるため、炭化珪素、
Al2O3 を主体とした各種セラミック、サーメット
などを基材とした場合も、良好な結果が得られる。また
、本実施例は、切削工具の場合を紹介したが、TABツ
ールなどの耐摩工具や機械部品に応用した場合も、良好
な結果が得られた。そのほか、エンドミル、ドリル、プ
リント基板穴あけ用ドリル、リーマーなどにも応用でき
る。
The hard materials coated with diamond and/or diamond-like carbon of the present invention are found to have better peeling resistance than the conventional hard materials coated with diamond and/or diamond-like carbon. The methods in Examples 1 and 2 are surface treatments that take advantage of the characteristics of the base material, but the method in Example 3 has excellent applicability regardless of the base material.
Good results can also be obtained when the base material is made of various ceramics, cermets, etc. mainly composed of Al2O3. Furthermore, although this example introduced the case of cutting tools, good results were also obtained when applied to wear-resistant tools such as TAB tools and machine parts. In addition, it can be applied to end mills, drills, printed circuit board drilling drills, reamers, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の被覆層−基材界面の状態を模式的に示
す概念図である。
FIG. 1 is a conceptual diagram schematically showing the state of the coating layer-substrate interface of the present invention.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】  硬質材料の表面に、ダイヤモンドおよ
び/またはダイヤモンド状炭素被覆層を形成してなる被
覆硬質材料において、(1)基材表面に微視的凹凸が存
在し、(2)凸部が、ダイヤモンドおよび/またはダイ
ヤモンド状炭素被覆層−基材界面において、基準長さを
10μm とした時、この基準長さ内において少なくと
も1箇所以上存在し、(3)界面における基準長さ内に
おいて、凸部の長さの総和Bと、凹部の長さの総和Aの
比が、0.05≦A/B≦20であり、(4)かつ凸部
が、ダイヤモンド被覆層中に侵入している、ことを特徴
とするダイヤモンドまたはダイヤモンド状炭素被覆硬質
材料。
Claim 1: In a coated hard material formed by forming a diamond and/or diamond-like carbon coating layer on the surface of a hard material, (1) microscopic irregularities exist on the surface of the base material, and (2) convex portions are present. exists at least one location within the standard length at the diamond and/or diamond-like carbon coating layer-substrate interface when the standard length is 10 μm, and (3) within the standard length at the interface, The ratio of the total length B of the convex portions to the total length A of the concave portions is 0.05≦A/B≦20, (4) and the convex portions penetrate into the diamond coating layer. , a diamond or diamond-like carbon coated hard material.
【請求項2】  ダイヤモンドおよび/またはダイヤモ
ンド状炭素被覆層中に、凸部が少なくとも0.2μm 
侵入していることを特徴とする請求項1記載のダイヤモ
ンドまたはダイヤモンド状炭素被覆硬質材料。
2. The diamond and/or diamond-like carbon coating layer has convexities of at least 0.2 μm.
Diamond or diamond-like carbon-coated hard material according to claim 1, characterized in that it is intruded.
【請求項3】  凸部が、窒化珪素結晶および/または
窒化珪素を含む結晶および/またはサイアロンであるこ
とを特徴とする請求項1または2記載のダイヤモンドま
たはダイヤモンド状炭素被覆硬質材料。
3. The diamond or diamond-like carbon-coated hard material according to claim 1, wherein the convex portion is a silicon nitride crystal and/or a crystal containing silicon nitride and/or a sialon.
【請求項4】  凸部が、炭化珪素および/または炭化
珪素を含む物質で構成されることを特徴とする請求項1
または2記載のダイヤモンドまたはダイヤモンド状炭素
被覆硬質材料。
4. Claim 1, wherein the convex portion is made of silicon carbide and/or a substance containing silicon carbide.
or the diamond- or diamond-like carbon-coated hard material described in 2.
【請求項5】  凸部が、(1)タングステン、(2)
タングステンの炭化物または炭窒化物、(3)タングス
テンと他の1種または2種以上の金属の炭化物または炭
窒化物および(4)これらを含む物質からなる群から選
ばれる1種以上の材料で構成されることを特徴とする請
求項1または2記載のダイヤモンドまたはダイヤモンド
状炭素被覆硬質材料。
[Claim 5] The convex portion is (1) tungsten, (2)
Consists of one or more materials selected from the group consisting of tungsten carbide or carbonitride, (3) carbide or carbonitride of tungsten and one or more other metals, and (4) substances containing these. The diamond- or diamond-like carbon-coated hard material according to claim 1 or 2, characterized in that the diamond- or diamond-like carbon-coated hard material is coated with diamond or diamond-like carbon.
【請求項6】  侵入する物質の形状が、アスペクト比
が1.5以上の柱状形状であることを特徴とする請求項
1〜5の何れかに記載のダイヤモンドまたはダイヤモン
ド状炭素被覆硬質材料。
6. The diamond or diamond-like carbon-coated hard material according to claim 1, wherein the invading substance has a columnar shape with an aspect ratio of 1.5 or more.
【請求項7】  侵入する物質の形状が、針状形状であ
ることを特徴とする請求項1〜5の何れかに記載のダイ
ヤモンドまたはダイヤモンド状炭素被覆硬質材料。
7. The diamond or diamond-like carbon-coated hard material according to claim 1, wherein the shape of the invading substance is acicular.
【請求項8】  硬質材料が、(1)超硬合金、(2)
サーメット、(3)Al2 O3 、窒化珪素、炭化珪
素などの各種セラミック、または(4)これらの複合材
料であることを特徴とする請求項1〜7の何れかに記載
のダイヤモンドまたはダイヤモンド状炭素被覆硬質材料
[Claim 8] The hard material is (1) cemented carbide, (2)
The diamond or diamond-like carbon coating according to any one of claims 1 to 7, characterized in that it is a cermet, (3) various ceramics such as Al2O3, silicon nitride, and silicon carbide, or (4) a composite material thereof. Hard material.
【請求項9】  ダイヤモンドまたはダイヤモンド状炭
素被覆層と基材との境界部において、凹凸部を形成する
物質が、基材と一体同一材料であることを特徴とする請
求項1〜8の何れかに記載のダイヤモンドまたはダイヤ
モンド状炭素被覆硬質材料。
9. Any one of claims 1 to 8, wherein the substance forming the uneven portion at the boundary between the diamond or diamond-like carbon coating layer and the base material is the same material as the base material. Diamond or diamond-like carbon coated hard materials as described in .
【請求項10】  ダイヤモンドまたはダイヤモンド状
炭素被覆層と基材との境界部において、凹凸部を形成す
る物質が、基材と同一材料であるが、組成が異なる物質
であることを特徴とする請求項1〜8の何れかに記載の
ダイヤモンドまたはダイヤモンド状炭素被覆硬質材料。
10. A claim characterized in that the substance forming the uneven portion at the boundary between the diamond or diamond-like carbon coating layer and the base material is the same material as the base material but has a different composition. Item 9. Diamond or diamond-like carbon-coated hard material according to any one of Items 1 to 8.
JP3023496A 1990-10-05 1991-02-18 Diamond or diamond-like carbon coated hard material Expired - Lifetime JP2987956B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP3023496A JP2987956B2 (en) 1991-02-18 1991-02-18 Diamond or diamond-like carbon coated hard material
DE69131846T DE69131846T2 (en) 1990-10-05 1991-10-04 HARD MATERIAL CLOTHED WITH DIAMOND, DISPOSABLE INSERT, AND METHOD FOR PRODUCING THIS MATERIAL AND INSERT
US07/910,094 US5328761A (en) 1990-10-05 1991-10-04 Diamond-coated hard material, throwaway insert and a process for the production thereof
PCT/JP1991/001359 WO1992005904A1 (en) 1990-10-05 1991-10-04 Hard material clad with diamond, throwaway chip, and method of making said material and chip
EP91917335A EP0504424B1 (en) 1990-10-05 1991-10-04 Hard material clad with diamond, throwaway chip, and method of making said material and chip
KR1019920701315A KR950013501B1 (en) 1990-10-05 1991-10-04 Drill of diamond-coated sintered body
CA 2074482 CA2074482C (en) 1991-02-18 1991-11-11 Diamond-coated hard material, throwaway insert and a process for the production thereof
PCT/JP1991/001542 WO1992014689A1 (en) 1991-02-18 1991-11-11 Diamond-clad hard material, throwaway tip, and method of making said material and tip
CA002060823A CA2060823C (en) 1991-02-08 1992-02-07 Diamond-or diamond-like carbon-coated hard materials
DE69223075T DE69223075T3 (en) 1991-02-18 1992-02-12 Diamond-coated or diamond-coated carbon-coated hard materials
EP92301144A EP0500253B2 (en) 1991-02-18 1992-02-12 Diamond- or diamond-like carbon coated hard materials
US08/178,622 US5391422A (en) 1991-02-18 1994-01-07 Diamond- or Diamond-like carbon-coated hard materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023496A JP2987956B2 (en) 1991-02-18 1991-02-18 Diamond or diamond-like carbon coated hard material

Publications (2)

Publication Number Publication Date
JPH04263075A true JPH04263075A (en) 1992-09-18
JP2987956B2 JP2987956B2 (en) 1999-12-06

Family

ID=12112107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023496A Expired - Lifetime JP2987956B2 (en) 1990-10-05 1991-02-18 Diamond or diamond-like carbon coated hard material

Country Status (1)

Country Link
JP (1) JP2987956B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627498A1 (en) 1993-05-25 1994-12-07 Ngk Spark Plug Co., Ltd Ceramic-based substrate, and methods for producing same
WO2011018917A1 (en) 2009-08-11 2011-02-17 住友電気工業株式会社 Diamond-coated tool
JP2013252585A (en) * 2012-06-06 2013-12-19 Hiroshima Univ Method for forming nano/micro wire projection, method for forming thin film and cutting tool
CN115142040A (en) * 2022-06-24 2022-10-04 武汉工程大学 Diamond film with high welding strength and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627498A1 (en) 1993-05-25 1994-12-07 Ngk Spark Plug Co., Ltd Ceramic-based substrate, and methods for producing same
US5725932A (en) * 1993-05-25 1998-03-10 Ngk Spark Plug Co., Ltd. Ceramic-based substrate for coating diamond and method for preparing substrate for coating
US5858480A (en) * 1993-05-25 1999-01-12 Ngk Spark Plug Co., Ltd. Ceramic-based substrate for coating diamond and method for preparing substrate for coating
WO2011018917A1 (en) 2009-08-11 2011-02-17 住友電気工業株式会社 Diamond-coated tool
US9302327B2 (en) 2009-08-11 2016-04-05 Sumitomo Electric Industries, Ltd. Diamond coated tool
US9731355B2 (en) 2009-08-11 2017-08-15 Sumitomo Electric Industries, Ltd. Diamond coated tool
JP2013252585A (en) * 2012-06-06 2013-12-19 Hiroshima Univ Method for forming nano/micro wire projection, method for forming thin film and cutting tool
CN115142040A (en) * 2022-06-24 2022-10-04 武汉工程大学 Diamond film with high welding strength and preparation method and application thereof
CN115142040B (en) * 2022-06-24 2023-09-26 武汉工程大学 Diamond film with high welding strength and preparation method and application thereof

Also Published As

Publication number Publication date
JP2987956B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
US5391422A (en) Diamond- or Diamond-like carbon-coated hard materials
EP0503822B2 (en) A diamond- and/or diamond-like carbon-coated hard material
KR950013501B1 (en) Drill of diamond-coated sintered body
JP3448884B2 (en) Artificial diamond coating
JP2987955B2 (en) Diamond or diamond-like carbon coated hard material
Itoh et al. Improvement of cutting performance of silicon nitride tool by adherent coating of thick diamond film
JPH04263075A (en) Diamond or diamondlike carbon-coated hard material
JP2964669B2 (en) Boron nitride coated hard material
JP2557560B2 (en) Polycrystalline diamond cutting tool and manufacturing method thereof
JPH08267644A (en) Diamond composite member and its manufacture
US5567522A (en) Diamond cutting tool and method of manufacturing the same
JP2987964B2 (en) Boron nitride coated hard material
JP3235206B2 (en) Diamond cutting tool and manufacturing method thereof
JP2008100301A (en) Diamond coated cutting insert and cutting tool
JPH0671503A (en) Diamond cutting tool and its manufacture
JP2987963B2 (en) Boron nitride coated hard material
JPH04261703A (en) Polycrystal diamond cutting tool
JP3033169B2 (en) Diamond-coated indexable insert and method for producing the same
JPH0354180A (en) Production of diamond-coated sintered material
CA2074482C (en) Diamond-coated hard material, throwaway insert and a process for the production thereof
JPH0544036A (en) Diamond coated hard material
JPH05253757A (en) Diamond cutting tool and manufacture thereof
JPH0788713A (en) Drill covered with carbon film and manufacture thereof
JPH05125542A (en) Manufacture of thin diamond film tool
JP3067259B2 (en) Diamond coated hard material and method for producing the same