JPH04261520A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH04261520A
JPH04261520A JP903291A JP903291A JPH04261520A JP H04261520 A JPH04261520 A JP H04261520A JP 903291 A JP903291 A JP 903291A JP 903291 A JP903291 A JP 903291A JP H04261520 A JPH04261520 A JP H04261520A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
amorphous silicon
display element
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP903291A
Other languages
Japanese (ja)
Inventor
Takeshi Horikawa
剛 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP903291A priority Critical patent/JPH04261520A/en
Priority to US07/822,109 priority patent/US5231282A/en
Publication of JPH04261520A publication Critical patent/JPH04261520A/en
Priority to US08/050,673 priority patent/US5281806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide a high space resolving power and to allow stable operations by forming a photoconductive layer into a laminated structure of an inorg. insulating film and an amorphous silicon film and crimping this inorg. insulating film between one electrode substrate and the amorphous silicon film. CONSTITUTION:This element has glass substrates 1 disposed to face each other and transparent conductive films 2 formed on the inside surfaces of the glass substrates 1, by which the electrode substrate is formed. An oriented film 5 is formed on the one transparent conductive film 2 and a liquid crystal layer 4 is formed on the oriented film 5. A reading out light reflection film 6 is formed via the oriented film 5 on the liquid crystal layer 4. The inorg. insulating film 32 consisting of a silicon oxide film is formed on the other transparent conductive film 2 and the hydrogenated amorphous silicon film 31 is formed on the inorg. insulating film 32. The photoconductive layer 33 is formed of both thereof. The other surface of the hydrogenated amorphous silicon film 31 is integrated with the reading out light reflection film 6.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、大画面高精細のプロ
ジェクションディスプレイ等に用いられる光書込型の液
晶表示素子に関し、特にその高品位化に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optically writable liquid crystal display element used in large-screen, high-definition projection displays and the like, and particularly relates to improving the quality thereof.

【0002】0002

【従来の技術】図3は、例えばCONFERNECE 
RECORD of 1990 Internatio
nal Topical Meetingon OPT
ICAL COMPUTING (1990) 9B3
,P17〜18に示された従来の液晶表示素子の断面図
である。
2. Description of the Related Art FIG. 3 shows, for example, CONFERNECE
RECORD of 1990 International
nal Topical Meeting OPT
ICAL COMPUTING (1990) 9B3
, P17-18 are cross-sectional views of the conventional liquid crystal display element shown in FIG.

【0003】図において、1はガラス基板、2は透明導
電性膜、4は液晶層、5は配光膜、6は読出光反射板、
30は高抵抗の水素化非晶質珪素膜からなる光伝導層で
ある。
In the figure, 1 is a glass substrate, 2 is a transparent conductive film, 4 is a liquid crystal layer, 5 is a light distribution film, 6 is a readout light reflecting plate,
30 is a photoconductive layer made of a high resistance hydrogenated amorphous silicon film.

【0004】次に、動作について説明する。液晶表示素
子への書込は、二つの対向配置された透明導電性膜2間
に所定のバイアスが印加されている時、図3の左側より
任意の明暗の空間パターンを有する書込光を光伝導層3
0に入射させることにより行なわれる。このとき、書込
光によって照射されない領域の光伝導層30は高抵抗で
あるが、書込光によって照射された光伝導層30はその
光伝導性のために低抵抗化し、光伝導層30と液晶層4
の間に書込光の空間パターンに対応したキャリアの分布
が生じる。このキャリアの分布に応じて、液晶の複屈折
もしくは旋光能の大きさに空間的な分布が生じる。例え
ば、液晶層4として強誘電性液晶を用いた場合には、入
射光の空間パターンに応じた液晶層4の複屈折の空間分
布が生じる。
Next, the operation will be explained. Writing to the liquid crystal display element is performed by emitting writing light having an arbitrary light and dark spatial pattern from the left side of FIG. conductive layer 3
This is done by making it incident on 0. At this time, the photoconductive layer 30 in the area not irradiated with the writing light has a high resistance, but the photoconductive layer 30 irradiated with the writing light has a low resistance due to its photoconductivity, and the photoconductive layer 30 liquid crystal layer 4
During this period, a carrier distribution corresponding to the spatial pattern of the writing light occurs. Depending on the distribution of carriers, a spatial distribution occurs in the magnitude of birefringence or optical rotation power of the liquid crystal. For example, when a ferroelectric liquid crystal is used as the liquid crystal layer 4, a spatial distribution of birefringence of the liquid crystal layer 4 occurs depending on the spatial pattern of incident light.

【0005】こうして書込まれた液晶層4の複屈折や旋
光能の空間分布は、図3の右側より読出光を偏光子を介
して液晶層4に入射させ、読出光反射膜6で反射された
光を再び偏光子を介してスクリーン上に投影するなどし
て読出すことができる。
[0005] The spatial distribution of birefringence and optical rotation power of the liquid crystal layer 4 written in this way can be determined by making the readout light enter the liquid crystal layer 4 from the right side of FIG. The reflected light can be read out by projecting it onto a screen again via a polarizer.

【0006】上記した液晶表示素子を用いて、二次元画
像の波長変換、インコヒーレント−コヒーレント変換な
どができる。又、この液晶表示素子はBSOを用いたラ
イトバルブなどに比して高い空間分解能を有しているた
め、この液晶表示素子を用いて大画面高精細のプロジェ
クションシステムを構成することができる。
[0006]Using the above liquid crystal display element, wavelength conversion of two-dimensional images, incoherent-coherent conversion, etc. can be performed. Furthermore, since this liquid crystal display element has a higher spatial resolution than a light valve using BSO, it is possible to construct a large-screen, high-definition projection system using this liquid crystal display element.

【0007】上記した液晶表示素子の書込動作が実現す
るためには、光伝導層30の抵抗は、書込光によって照
射されないとき液晶層4に比べて十分高く、照射時には
液晶層4の抵抗程度以下になることが必要である。又、
デバイスの高空間分解能を実現するためには、光伝導層
30の暗抵抗が十分に大きいという条件の他に、液晶層
4及び光伝導層30の膜厚が薄いことが必要である。
In order to realize the writing operation of the liquid crystal display element described above, the resistance of the photoconductive layer 30 is sufficiently high compared to the liquid crystal layer 4 when not irradiated with the writing light, and the resistance of the liquid crystal layer 4 is sufficiently high when irradiated with the writing light. It is necessary to reduce the amount to a certain level. or,
In order to realize high spatial resolution of the device, in addition to the condition that the dark resistance of the photoconductive layer 30 is sufficiently large, it is also necessary that the liquid crystal layer 4 and the photoconductive layer 30 be thin.

【0008】[0008]

【発明が解決しようとする課題】上記した従来の液晶表
示素子においては、光伝導層30として水素化非晶質珪
素膜が用いられ、その他にもCdS、結晶質珪素、BS
O結晶板等が用いられる。このうち、水素化非晶質珪素
膜はプラズマCVD法などにより形成され、他の材料に
比べて、抵抗値の設定が比較的容易で、ガラス基板1と
の密着力が高く、可視光域での光感度も大きいなどの利
点を有している。
[Problems to be Solved by the Invention] In the conventional liquid crystal display device described above, a hydrogenated amorphous silicon film is used as the photoconductive layer 30, and in addition, CdS, crystalline silicon, BS
An O crystal plate or the like is used. Among these, the hydrogenated amorphous silicon film is formed by plasma CVD method, etc., and compared to other materials, it is relatively easy to set the resistance value, has high adhesion to the glass substrate 1, and can be used in the visible light range. It has advantages such as high photosensitivity.

【0009】しかしながら、プラズマCVD法により形
成される水素化非晶質珪素膜の室温での暗導電率は、ノ
ンドープ膜で1×10−9〜1×10−11 S/cm
程度であり、硼素を数ppm 程度添加したいわゆるボ
ロンライトドーピング膜でもせいぜい〜1×10−12
 S/cmであり、液晶の一般的な導電率1×10−1
1 〜1×10−12 S/cmに比べて十分に低いと
は言えず、水素化非晶質珪素膜を光伝導層30として用
いる場合、なんらかの方法で高い暗導電率を補う必要が
ある。
However, the dark conductivity at room temperature of a hydrogenated amorphous silicon film formed by the plasma CVD method is 1×10 −9 to 1×10 −11 S/cm for an undoped film.
Even a so-called boron light-doped film containing several ppm of boron has a concentration of ~1×10-12 at most.
S/cm, and the general conductivity of liquid crystal is 1 x 10-1
It cannot be said that it is sufficiently lower than 1 to 1×10 −12 S/cm, and when a hydrogenated amorphous silicon film is used as the photoconductive layer 30, it is necessary to compensate for the high dark conductivity by some method.

【0010】従来、このために、水素化非晶質珪素膜を
液晶層4の厚さに比べてかなり厚くしたり(例えば、液
晶層4の厚さ2μmに対して、水素化非晶質珪素膜の厚
さを10μm程度とする。)、あるいは光伝導膜30を
水素化非晶質珪素膜のピン構造とし、書込は形成された
ピンフォトダイオードに逆方向バイアスを印加して行な
うなどの方法をとっていた。しかし、光伝導膜30の膜
厚を増加させると液晶表示素子の空間分解能が低下する
という課題があり、また光伝導層30をピン構造とする
と液晶層4にかかる電圧波形が駆動電圧波形と異なって
しまうため、長時間の駆動において液晶の劣化が生じる
という課題があった。
Conventionally, for this purpose, the hydrogenated amorphous silicon film has been made considerably thicker than the liquid crystal layer 4 (for example, when the thickness of the liquid crystal layer 4 is 2 μm, the hydrogenated amorphous silicon film has been made considerably thicker than the liquid crystal layer 4). ), or the photoconductive film 30 has a pin structure of a hydrogenated amorphous silicon film, and writing is performed by applying a reverse bias to the formed pin photodiode. I had a method. However, increasing the thickness of the photoconductive film 30 causes a problem in that the spatial resolution of the liquid crystal display element decreases, and if the photoconductive layer 30 has a pin structure, the voltage waveform applied to the liquid crystal layer 4 differs from the driving voltage waveform. Therefore, there was a problem in that the liquid crystal deteriorated during long-time driving.

【0011】又、液晶表示素子の動作温度は使用する液
晶相の発現温度域に限定されるが、この温度域が室温よ
りも高い場合には、水素化非晶質珪素膜の暗導電率やピ
ンフォトダイオードの逆方向電流の活性化エネルギが液
晶のそれに比べて大きいために、光伝導層30の暗抵抗
を液晶層4の抵抗より大きくすることが難かしいという
課題もあった。
[0011] Furthermore, the operating temperature of a liquid crystal display element is limited to the temperature range in which the liquid crystal phase used is developed, but if this temperature range is higher than room temperature, the dark conductivity and Another problem is that it is difficult to make the dark resistance of the photoconductive layer 30 larger than the resistance of the liquid crystal layer 4 because the activation energy of the reverse current of the pin photodiode is larger than that of the liquid crystal.

【0012】この発明は上記のような課題を解決するた
めに成されたものであり、光伝導層全体の暗抵抗を液晶
層の抵抗とマッチングさせることができるとともに、高
い空間分解能を得ることができ、かつ動作温度にかかわ
らず安定な動作を行なうことができる液晶表示素子を得
ることを目的とする。
The present invention was made to solve the above-mentioned problems, and it is possible to match the dark resistance of the entire photoconductive layer with the resistance of the liquid crystal layer, and to obtain high spatial resolution. The object of the present invention is to obtain a liquid crystal display element that can operate stably regardless of the operating temperature.

【0013】[0013]

【課題を解決するための手段】この発明に係る液晶表示
素子は、光伝導層を無機絶縁膜と非晶質珪素膜との積層
構造とし、無機絶縁膜を一方の電極基板と非晶質珪素膜
との間に挟持したものである。
[Means for Solving the Problems] A liquid crystal display element according to the present invention has a photoconductive layer having a laminated structure of an inorganic insulating film and an amorphous silicon film, and the inorganic insulating film is connected to one electrode substrate and an amorphous silicon film. It is sandwiched between the membrane and the membrane.

【0014】[0014]

【作用】この発明においては、暗状態でバイアスを電極
基板間に印加したときに、電極基板から非晶質珪素膜へ
のキャリアの注入が無機絶縁膜により抑制され、光伝導
層の暗抵抗が増加する。
[Operation] In this invention, when a bias is applied between the electrode substrate in a dark state, the injection of carriers from the electrode substrate to the amorphous silicon film is suppressed by the inorganic insulating film, and the dark resistance of the photoconductive layer is reduced. To increase.

【0015】[0015]

【実施例】以下、この発明の実施例を図面とともに説明
する。図1は実施例による液晶表示素子の断面図であり
、1は対向配置されたガラス基板、2はガラス基板21
の内面に形成された透明導電性膜であり、これらにより
電極基板が形成される。5は一方の透明導電性膜2上に
形成された配向膜、4は配向膜5上に形成された液晶層
であり、液晶層4上には配向膜5を介して読出光反射膜
6が形成されている。又、他方の透明導電性膜2上には
酸化珪素膜からなる無機絶縁膜32が形成され、無機絶
縁膜32上に水素化非晶質珪素膜31が形成され、この
両者により光伝導層33が形成される。水素化非晶質珪
素膜31の他面は読出光反射膜6と一体化される
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a liquid crystal display element according to an embodiment, in which 1 is a glass substrate disposed facing each other, and 2 is a glass substrate 21.
A transparent conductive film formed on the inner surface of the electrode substrate. 5 is an alignment film formed on one transparent conductive film 2, 4 is a liquid crystal layer formed on the alignment film 5, and a reading light reflecting film 6 is formed on the liquid crystal layer 4 via the alignment film 5. It is formed. Further, an inorganic insulating film 32 made of a silicon oxide film is formed on the other transparent conductive film 2, and a hydrogenated amorphous silicon film 31 is formed on the inorganic insulating film 32, and both of them form a photoconductive layer 33. is formed. The other surface of the hydrogenated amorphous silicon film 31 is integrated with the readout light reflecting film 6.

【00
16】上記した液晶表示素子の製造において、ガラス基
板1上に透明導電性膜2としてITO膜を形成した後、
透明導電性膜2の電極端子取出部以外の領域に無機絶縁
膜32をスパッタ法で形成した。無機絶縁膜32の膜厚
は、20nm〜200nmとした。次に、無機絶縁膜3
2上に水素化非晶質珪素膜31をシランガスとジボラン
ガスを用いて、プラズマCVD法により形成し、その膜
厚は3μmとした。水素化非晶質珪素膜31と他方の透
明導電性膜2との間には、配向膜5と液晶層4と読出光
反射膜6とからなる液晶セルを形成した。液晶層4とし
ては、強誘電性液晶(チッソ社製CS−1014)を用
いた。配向層5には、SiO斜方蒸着膜を用いた。液晶
のセルギャップは2μmとした。この液晶が表示素子の
動作に用いられるSmC* 相を示す温度は、40〜5
0℃である。又、読出光反射膜6としては、蒸着によっ
て形成した誘電体多層膜を用いた。
00
16] In manufacturing the above-mentioned liquid crystal display element, after forming an ITO film as the transparent conductive film 2 on the glass substrate 1,
An inorganic insulating film 32 was formed by sputtering on a region of the transparent conductive film 2 other than the electrode terminal extraction portion. The thickness of the inorganic insulating film 32 was 20 nm to 200 nm. Next, inorganic insulating film 3
A hydrogenated amorphous silicon film 31 was formed on 2 by plasma CVD using silane gas and diborane gas, and the film thickness was 3 μm. Between the hydrogenated amorphous silicon film 31 and the other transparent conductive film 2, a liquid crystal cell consisting of an alignment film 5, a liquid crystal layer 4, and a readout light reflecting film 6 was formed. As the liquid crystal layer 4, a ferroelectric liquid crystal (CS-1014 manufactured by Chisso Corporation) was used. For the alignment layer 5, an SiO obliquely evaporated film was used. The cell gap of the liquid crystal was 2 μm. The temperature at which this liquid crystal exhibits the SmC* phase used in the operation of display elements is 40 to 5
It is 0°C. Further, as the readout light reflecting film 6, a dielectric multilayer film formed by vapor deposition was used.

【0017】製作した液晶表示素子の表示動作は素子の
温度を45℃に保って行なったが、この動作温度での液
晶の導電率は〜3×10−12 S/cmであり、また
水素化非晶質珪素膜31の暗状態の導電率は〜1×10
−11 S/cm程度であった。
The display operation of the fabricated liquid crystal display element was carried out by keeping the temperature of the element at 45°C, but the conductivity of the liquid crystal at this operating temperature was ~3 x 10-12 S/cm, and the hydrogenation The conductivity of the amorphous silicon film 31 in the dark state is ~1×10
-11 S/cm.

【0018】次に、上記実施例の作用について説明する
。書込み及び読出についての主な作用は、従来例と同様
である。ここで、水素化非晶質珪素膜31と透明導電性
膜2に挟持された無機絶縁膜32の存在によって、暗状
態でバイアスを透明導電性膜2間に印加したときに、透
明導電性膜2から水素化非晶質珪素膜31へのキャリア
注入が抑制されるため、従来の構造に比べて光伝導層3
3の実効的な暗抵抗が増加する。この暗状態での光伝導
層33の抵抗値は、無機絶縁膜32の膜厚を変えること
により増減させることができる。従って、水素化非晶質
珪素膜31の抵抗値低下のために従来困難であった高温
での動作にも充分対応できるように光伝導層33を構成
することができる。
Next, the operation of the above embodiment will be explained. The main operations regarding writing and reading are the same as in the conventional example. Here, due to the presence of the inorganic insulating film 32 sandwiched between the hydrogenated amorphous silicon film 31 and the transparent conductive film 2, when a bias is applied between the transparent conductive film 2 in a dark state, the transparent conductive film 2 to the hydrogenated amorphous silicon film 31 is suppressed, compared to the conventional structure, the photoconductive layer 3
The effective dark resistance of 3 increases. The resistance value of the photoconductive layer 33 in this dark state can be increased or decreased by changing the thickness of the inorganic insulating film 32. Therefore, the photoconductive layer 33 can be configured so as to be able to sufficiently cope with operation at high temperatures, which has been difficult in the past due to the reduced resistance value of the hydrogenated amorphous silicon film 31.

【0019】書込光照射下では、適当な印加電圧と無機
絶縁膜32の厚さの選択による水素化非晶質珪素膜31
の低抵抗化に伴ない、無機絶縁膜32のブレイクダウン
が生じ、光伝導層33の全体の低抵抗化が引き起こされ
、液晶層4へのバイアス印加が生じる。
Under the writing light irradiation, the hydrogenated amorphous silicon film 31 can be formed by selecting an appropriate applied voltage and the thickness of the inorganic insulating film 32.
As the resistance decreases, breakdown of the inorganic insulating film 32 occurs, causing a decrease in the overall resistance of the photoconductive layer 33, and a bias is applied to the liquid crystal layer 4.

【0020】上記した液晶表示素子の特長を明らかにす
るために、無機絶縁膜32の存在の有無及びその膜厚に
よる表示特性の比較を行ない、その結果を第1表に示す
In order to clarify the features of the above-mentioned liquid crystal display element, the display characteristics were compared depending on the presence or absence of the inorganic insulating film 32 and its film thickness, and the results are shown in Table 1.

【0021】[0021]

【0022】He−Neのレーザの平行光束を解像度評
価用のマスクパターンを介して作成した素子の光伝導層
33に入射させた状態で、100nsec幅の矩形電圧
パルスを両透明導電性膜2間に印加して書込を行なった
。ここで、書込光の強度は10μW/cm2 とした。 表1中には、書込時の矩形電圧パルスの電圧値を変化さ
せたときの空間分解能の最大値、書込が可能であった電
圧値領域を表示特性として示している。
[0022] While the parallel beam of the He-Ne laser is incident on the photoconductive layer 33 of the device created through a mask pattern for resolution evaluation, a rectangular voltage pulse with a width of 100 nsec is applied between both transparent conductive films 2. was applied to perform writing. Here, the intensity of the writing light was 10 μW/cm 2 . Table 1 shows, as display characteristics, the maximum value of spatial resolution and the voltage value range in which writing was possible when changing the voltage value of the rectangular voltage pulse during writing.

【0023】又、酸化珪素膜からなる無機絶縁膜32を
透明電極性膜2と水素化非晶質珪素膜31の間に挟持さ
せることにより、表示素子の分解能が100lp/mm
程度にまで改善した。これは、光伝導層33の実効的な
暗抵抗が増加したことにより、キャリアの横方向拡散に
よる画像のぼけが低減したためであると考えられる。又
、無機絶縁膜32の厚さの増加とともに書込に要する電
圧が上昇し、さらには書込可能な電圧幅が広がるため、
安定な書込動作が可能になった。これらの効果は、無機
絶縁膜32の厚さを20nm以上としたときに特に顕著
である。
Furthermore, by sandwiching the inorganic insulating film 32 made of a silicon oxide film between the transparent electrode film 2 and the hydrogenated amorphous silicon film 31, the resolution of the display element can be increased to 100 lp/mm.
improved to a certain degree. This is considered to be because the effective dark resistance of the photoconductive layer 33 increased, thereby reducing image blurring due to lateral diffusion of carriers. Moreover, as the thickness of the inorganic insulating film 32 increases, the voltage required for writing increases, and furthermore, the voltage range that can be written increases.
Stable write operation is now possible. These effects are particularly remarkable when the thickness of the inorganic insulating film 32 is 20 nm or more.

【0024】一方、無機絶縁膜32の厚さが200nm
を越えると、光照射時の光伝導層33の抵抗低下が少な
くなるため、書込には印加電圧もしくは光量の大幅な増
加が必要となる。又、光伝導層33のキャパシタンスの
低下によって、画像のぼけが増加する。これらのことか
ら、酸化珪素膜からなる無機絶縁膜32の厚さは20〜
200nm程度が適当である。
On the other hand, the thickness of the inorganic insulating film 32 is 200 nm.
If the value exceeds 1, the resistance of the photoconductive layer 33 decreases less when irradiated with light, and writing requires a significant increase in the applied voltage or the amount of light. Furthermore, the decrease in capacitance of the photoconductive layer 33 increases image blur. For these reasons, the thickness of the inorganic insulating film 32 made of a silicon oxide film is 20 to 20 cm.
Approximately 200 nm is appropriate.

【0025】図2はこの発明の第2の実施例による液晶
表示素子の構成を示す。この実施例では、水素化非晶質
珪素膜31の両面に酸化珪素膜からなる無機絶縁膜32
を形成し、光伝導層34を構成しており、他の構成は第
1の実施例と同様である。
FIG. 2 shows the structure of a liquid crystal display element according to a second embodiment of the invention. In this embodiment, an inorganic insulating film 32 made of a silicon oxide film is formed on both sides of a hydrogenated amorphous silicon film 31.
is formed to constitute the photoconductive layer 34, and the other configurations are the same as in the first embodiment.

【0026】この第2の実施例においても、一方の無機
絶縁膜32は透明導電性膜2と水素化非晶質珪素膜31
との間に挟持され、光伝導層34の暗抵抗が増大する。 又、光伝導層34は正負どちらの極性の電圧を印加して
もほぼ等価な電流電圧特性を示すので、従来ピンフォト
ダイオードを光伝導層34として用いたときに生じる液
晶の劣化を防ぐことができる。
Also in this second embodiment, one of the inorganic insulating films 32 is a transparent conductive film 2 and a hydrogenated amorphous silicon film 31.
The dark resistance of the photoconductive layer 34 increases. Furthermore, since the photoconductive layer 34 exhibits approximately equivalent current-voltage characteristics regardless of whether positive or negative polarity voltage is applied, deterioration of the liquid crystal that occurs when a conventional pin photodiode is used as the photoconductive layer 34 can be prevented. can.

【0027】なお、上記各実施例においては、読出反射
膜6を有する、いわゆる反射型の液晶表示素子について
述べたが、読出光反射膜6は読出光の利用効率を増加す
るとともに、光伝導層33,34と読出用の光学系とを
分離するために設けられている。従って、読出用反射膜
6を形成せず、かつ読出光として光伝導層33,34の
感度外の波長を使うなどの工夫をすることにより、この
発明の液晶表示素子を透過型の液晶表示素子として用い
ることも可能である。その場合でも、光伝導層33,3
4をこの発明のように構成することにより、表示特性を
改善することができる。又、液晶層4として強誘電性液
晶を用いたが、ツイストネマティック液晶やゲスト−ホ
スト型液晶及び液晶分散型ポリマ等を用いることもでき
る。さらに無機絶縁膜32として酸化珪素膜を用いたが
、窒化珪素膜を用いてもよい。
In each of the above embodiments, a so-called reflective liquid crystal display element having a readout reflective film 6 has been described, but the readout light reflective film 6 not only increases the utilization efficiency of readout light but also It is provided to separate the reading optical system from the reading optical system. Therefore, by not forming the readout reflective film 6 and using a wavelength outside the sensitivity of the photoconductive layers 33 and 34 as the readout light, the liquid crystal display element of the present invention can be converted into a transmissive type liquid crystal display element. It is also possible to use it as Even in that case, the photoconductive layers 33, 3
By configuring 4 as in the present invention, display characteristics can be improved. Further, although ferroelectric liquid crystal is used as the liquid crystal layer 4, twisted nematic liquid crystal, guest-host type liquid crystal, liquid crystal dispersed polymer, etc. can also be used. Further, although a silicon oxide film is used as the inorganic insulating film 32, a silicon nitride film may also be used.

【0028】[0028]

【発明の効果】以上のようにこの発明によれば、電極基
板と光伝導層の非晶質珪素膜との間に無機絶縁膜を設け
ており、この無機絶縁膜の作用により暗状態でのキャリ
ア注入が抑制されるので、光伝導層の暗抵抗を増加する
ことができ、表示特性の良好な液晶表示素子が得られる
。又、上記暗抵抗の増加によりキャリアの横方向拡散に
よる画像のぼけが低減し、高い空間分解能を得ることが
できる。さらに、動作温度が高温であっても、上記暗抵
抗の増加により安定した動作を行なうことができる。
[Effects of the Invention] As described above, according to the present invention, an inorganic insulating film is provided between the electrode substrate and the amorphous silicon film of the photoconductive layer. Since carrier injection is suppressed, the dark resistance of the photoconductive layer can be increased, and a liquid crystal display element with good display characteristics can be obtained. Further, due to the increase in the dark resistance, image blur due to lateral diffusion of carriers is reduced, and high spatial resolution can be obtained. Furthermore, even if the operating temperature is high, stable operation can be performed due to the increase in dark resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の第1の実施例による液晶表示素子の
断面図である。
FIG. 1 is a sectional view of a liquid crystal display element according to a first embodiment of the present invention.

【図2】この発明の第2の実施例による液晶表示素子の
断面図である。
FIG. 2 is a sectional view of a liquid crystal display element according to a second embodiment of the invention.

【図3】従来の液晶表示素子の断面図である。FIG. 3 is a cross-sectional view of a conventional liquid crystal display element.

【符号の説明】[Explanation of symbols]

1  ガラス基板 2  透明導電性膜 4  液晶層 31  水素化非晶質珪素膜 32  無機絶縁膜 33,34  光伝導層 1 Glass substrate 2 Transparent conductive film 4 Liquid crystal layer 31 Hydrogenated amorphous silicon film 32 Inorganic insulation film 33, 34 Photoconductive layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  対向配置された一対の電極基板間に光
伝導層と液晶層を形成された光書込型の液晶表示素子に
おいて、光伝導層を無機絶縁膜と非晶質珪素膜との積層
構造とし、この無機絶縁膜を一方の電極基板と非晶質珪
素膜の間に挟持したことを特徴とする液晶表示素子。
Claim 1: In an optical writing type liquid crystal display element in which a photoconductive layer and a liquid crystal layer are formed between a pair of electrode substrates arranged opposite to each other, the photoconductive layer is composed of an inorganic insulating film and an amorphous silicon film. A liquid crystal display element having a laminated structure and having this inorganic insulating film sandwiched between one electrode substrate and an amorphous silicon film.
JP903291A 1991-01-22 1991-01-29 Liquid crystal display element Pending JPH04261520A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP903291A JPH04261520A (en) 1991-01-29 1991-01-29 Liquid crystal display element
US07/822,109 US5231282A (en) 1991-01-22 1992-01-17 Optical writing type liquid crystal light valve and writing apparatus therefor
US08/050,673 US5281806A (en) 1991-01-22 1993-04-22 Optical writing type liquid crystal light valve and writing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP903291A JPH04261520A (en) 1991-01-29 1991-01-29 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH04261520A true JPH04261520A (en) 1992-09-17

Family

ID=11709316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP903291A Pending JPH04261520A (en) 1991-01-22 1991-01-29 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH04261520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693958A (en) * 1995-01-25 1997-12-02 Sharp Kabushiki Kaisha Light-writing-type liquid crystal element having a photoconductor between carrier blocking layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693958A (en) * 1995-01-25 1997-12-02 Sharp Kabushiki Kaisha Light-writing-type liquid crystal element having a photoconductor between carrier blocking layers

Similar Documents

Publication Publication Date Title
US5594567A (en) Spatial light modulator with a photoconductor having uneven conductivity in a lateral direction and a method for fabricating the same
US4448491A (en) Image display apparatus
US5384649A (en) Liquid crystal spatial light modulator with electrically isolated reflecting films connected to electrically isolated pixel portions of photo conductor
JP2000035591A (en) Active matrix element, and light emitting element using the element, light modulation element, photo-detecting element, exposure element, and display device
US5071230A (en) Liquid crystal display device with selective transmitting means and an impedance changing layer
US5220445A (en) Optical image processor
JP3941437B2 (en) LIQUID CRYSTAL DISPLAY DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JPH06230410A (en) Spatial optical modulation element
JPH04261520A (en) Liquid crystal display element
JP2848741B2 (en) Liquid crystal spatial light modulator
JP2839990B2 (en) Liquid crystal spatial light modulator
JP2952610B2 (en) Optical writing liquid crystal light valve
KR950014322B1 (en) Spatial light modulator
JPH0553148A (en) Active matrix liquid crystal panel
JP2724207B2 (en) Ferroelectric liquid crystal element and optical writing type liquid crystal display
JP2975576B2 (en) Optical writing type liquid crystal display
JP2816576B2 (en) Optical writing type liquid crystal light valve
JPH03110524A (en) Space optical modulating element
JPH08122811A (en) Space light modulating element and its manufacture
JP2768589B2 (en) Optical writing liquid crystal light valve
JPH06222383A (en) Liquid crystal spatial optical modulation element
JPH0318829A (en) Space optical modulation element
JP3005102B2 (en) Spatial light modulator
JPS5835516A (en) Electrooptic device
JPS6257016B2 (en)