JPH042607A - Production of silica balloon - Google Patents

Production of silica balloon

Info

Publication number
JPH042607A
JPH042607A JP10361390A JP10361390A JPH042607A JP H042607 A JPH042607 A JP H042607A JP 10361390 A JP10361390 A JP 10361390A JP 10361390 A JP10361390 A JP 10361390A JP H042607 A JPH042607 A JP H042607A
Authority
JP
Japan
Prior art keywords
temperature combustion
low temperature
water glass
aqueous solution
combustion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10361390A
Other languages
Japanese (ja)
Other versions
JPH0764547B2 (en
Inventor
Shinichi Makino
真一 牧野
Fumio Takemura
文男 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP10361390A priority Critical patent/JPH0764547B2/en
Publication of JPH042607A publication Critical patent/JPH042607A/en
Publication of JPH0764547B2 publication Critical patent/JPH0764547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/107Forming hollow beads
    • C03B19/1075Forming hollow beads by blowing, pressing, centrifuging, rolling or dripping

Abstract

PURPOSE:To readily obtain superfine particles having an adjusted particle size by dividing a closed cylindrical oven into a low temperature combustion region and a high temperature combustion region and spraying a water glass aqueous solution in the low temperature combustion region in a silica balloon production method in which the water glass aqueous solution is sprayed in a combustion gas stream passing through the oven. CONSTITUTION:In a method for spraying a water glass aqueous solution in a combustion gas stream passing through a closed cylindrical oven and subsequently staying the resultant glass fine particle intermediates in a high temperature oven for a certain period to convert into silica balloons, the following means are adapted. Namely, the oven is divided into a low temperature combustion region of 200-500 deg.C and a high temperature combustion region of >=1300 deg.C and a water glass is sprayed in the low temperature region. In the above-mentioned method, the co-employment of oxygen gas as a combustion oxidizing agent fed into the low temperature combustion region and/or the feeding of carbon dioxide in the low temperature region through a route different from a route of a fuel hydrocarbon can increase the concentration of CO2 gas in the low temperature combustion region to more homogeneously and efficiently promote the alkali-removing reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超微粒状の高品質シリカバルーンを操業性よ
く製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing ultrafine, high-quality silica balloons with good operability.

(従来の技術〕 ミクロン単位の外径をもつ単一の中空微小球体はバルー
ンと呼ばれ、既にアルミナ、フライアッシュ、シラスガ
ラス、シリカ、はう砂などの無機質系のものが上市され
ている。これらのうちシリカを構成材料とするものは、
通常、シリカバルーンと称され、耐火断熱材料の骨材、
プラスチックの充填材等の用途に有用されている。
(Prior Art) A single hollow microsphere having an outer diameter on the order of microns is called a balloon, and inorganic microspheres such as alumina, fly ash, glass glass, silica, and silt are already on the market. Among these, those whose constituent material is silica are
Usually called silica balloon, aggregate of fireproof insulation material,
It is useful for applications such as plastic fillers.

従来、シリカバルーンの製造技術としては、けい素源原
料を融解したのち空気、不活性ガスなどのジェット気流
に晒すことによりガス包蔵−中空化を起こさせる方法、
けい素源原料をそのまま又は発泡剤を混入して熱分解し
、ガス発泡により中空微粒化する方法、あるいはアルカ
リけい酸塩原料を化学的、熱的に処理したのち高温雰囲
気で発泡中空化する方法等が知られている。
Conventional techniques for producing silica balloons include a method in which silicon source material is melted and then exposed to a jet stream of air, inert gas, etc. to cause gas inclusion/hollowing;
A method in which the silicon source raw material is thermally decomposed as it is or mixed with a foaming agent, and then made into hollow particles by gas foaming, or a method in which the alkali silicate raw material is chemically and thermally treated and then foamed into hollow particles in a high-temperature atmosphere. etc. are known.

しかしながら、これら従来の方法では形成するシリカバ
ルーンの微粒化ならびに粒度の調整化に限界があり、1
00μ−以下の整粒化された微粒子を効率よく製造する
ことは困難であった。
However, these conventional methods have limitations in making the silica balloons finer and adjusting the particle size.
It has been difficult to efficiently produce sized fine particles of 00 μm or less.

本発明者らは、これらの欠点を解消するための手段とし
て、密閉筒状炉内を流通する高温燃焼ガス流に水ガラス
水溶液を噴霧して脱アルカリし、生成したガラス微粒子
中間体を一定時間高温炉内に滞留することを内容とする
シリカバルーンの製造方法を開発し、既に特願平1−1
65009号として提案した。
As a means to eliminate these drawbacks, the present inventors sprayed a water glass aqueous solution into a high-temperature combustion gas flow flowing in a closed cylindrical furnace to dealkalize it, and the resulting glass fine particle intermediate was treated for a certain period of time. We have developed a method for producing silica balloons that remains in a high-temperature furnace, and have already filed a patent application for 1991-1.
It was proposed as No. 65009.

(発明が解決しようとする課題〕 水ガラス系けい素源原料の熱処理によってシリカバルー
ンを形成する場合には、水ガラスからソリ力に転化させ
る過程において脱アルカリ反応を如何に均一かつ効果よ
く遂行させるかが生成物の純度、粒度分布、異形ショッ
ト含有量などを支配する大きな決め手となる。上記した
特願平1−165009号の発明では、この点の解決策
として炉内に塩酸、硝酸などの無I!酸水溶液を在入す
る方法が採られているが、無機酸の炉内導入には操業面
で種々のトラブルを招く危険性があり工業的な生産プロ
セスとしては問題がある。
(Problems to be Solved by the Invention) When forming silica balloons by heat treatment of water glass-based silicon source raw materials, how can the dealkalization reaction be carried out uniformly and effectively in the process of converting water glass into warp force? This is a major determining factor that controls the purity, particle size distribution, content of irregular shot, etc. of the product.In the invention of the above-mentioned Japanese Patent Application No. 1-165009, as a solution to this problem, hydrochloric acid, nitric acid, etc. A method of introducing an aqueous acid solution without I! has been adopted, but introducing an inorganic acid into the furnace risks causing various troubles in terms of operation, and is problematic as an industrial production process.

本発明は、工業生産的な脱アルカリ化反応手段の解明に
基づいて開発されたもので、外径10μ顛以下の超微粒
範囲にある高品質のシリカバルーンを粒度調整容易にか
つ操業性よく製造する方法の提供を目的としている。
The present invention was developed based on the elucidation of an industrially productive dealkalization reaction method, and produces high-quality silica balloons in the ultrafine range with an outer diameter of 10 μm or less with easy particle size adjustment and good operability. The purpose is to provide a method to do so.

(課題を解決するための手段〕 上記の目的を達成するための本発明によるシリカバルー
ンの製造方法は、密閉筒状炉内を流通する燃焼ガス流ム
こ水ガラス水溶液を噴霧して脱アルカリし、生成したガ
ラス微粒子中間体を一定時間高温炉内に滞留させてシリ
カバルーンに転化させる方法において、炉内を200〜
500℃の低温燃焼域とそれに引き続く1300’C以
上の高温燃焼域とに区分形成し、前記低温燃焼域に水ガ
ラス水溶液を噴霧することを構成上の特徴とする。
(Means for Solving the Problems) A method for manufacturing a silica balloon according to the present invention to achieve the above object is to dealkalize a silica balloon by spraying an aqueous solution of water glass into a combustion gas stream flowing in a closed cylindrical furnace. In this method, the produced glass particle intermediate is retained in a high-temperature furnace for a certain period of time to be converted into a silica balloon.
The structure is characterized in that it is divided into a low-temperature combustion region of 500° C. and a subsequent high-temperature combustion region of 1300° C. or more, and that a water glass aqueous solution is sprayed into the low-temperature combustion region.

密閉筒状炉内を流通する燃焼ガス流は、燃料炭化水素を
空気などの燃焼用酸化剤とともに炉内に噴射して完全燃
焼させることによって形成するが、装置としては炉頭部
に燃焼バーナーを備える低温燃焼域を設け、それに連設
する別の燃焼バーナーを備える高温燃焼域を設置した二
段燃焼ゾーン構造とした炉が使用される。
The combustion gas flow flowing through the closed cylindrical furnace is formed by injecting fuel hydrocarbons into the furnace together with a combustion oxidizer such as air and completely combusting them. A furnace with a two-stage combustion zone structure is used, which includes a low-temperature combustion zone with a combustion zone and a high-temperature combustion zone with another combustion burner connected thereto.

燃料炭化水素油には、軽油、重油、クレオソート油、エ
チレンボトム油などの液状燃料油を用いることもできる
が、生成させるシリカバルーンに高純度を付与する面か
らプロパン、メタン、ブタン等のガス状炭化水素を使用
することが望ましい。
Liquid fuel oils such as light oil, heavy oil, creosote oil, and ethylene bottom oil can be used as the fuel hydrocarbon oil, but gases such as propane, methane, butane, etc. can be used in order to impart high purity to the silica balloons produced. It is desirable to use hydrocarbons.

燃料炭化水素と同時に供給する燃焼用酸化剤としては、
空気、酸素もしくはこれらの混合ガスが用いられる。
As a combustion oxidizer that is supplied simultaneously with fuel hydrocarbons,
Air, oxygen or a mixture thereof is used.

炉内の温度は、200〜500℃の低温燃焼域とそれに
引き続く 1300℃以上の高温燃焼域とが区分形成さ
れるように制御し、水ガラス水溶液を前記低温燃焼域に
噴霧する。この工程は水ガラス成分の円滑な脱アルカリ
反応を進めるうえで本発明の主要な要件となるが、この
際低温燃焼域に導入する燃焼用酸化剤として酸素ガスを
併用する手段、または低温燃焼域に燃料炭化水素とは別
ルートを介して二酸化炭素ガスを導入する手段、もしく
はこれら両手段を同時に実施すると低温燃焼域内の酸化
炭素濃度が過剰となり、脱アルカリ反応を一層均一かつ
効率的に推進させることが可能となる。
The temperature inside the furnace is controlled so that a low-temperature combustion zone of 200 to 500° C. and a subsequent high-temperature combustion zone of 1300° C. or higher are formed separately, and a water glass aqueous solution is sprayed into the low-temperature combustion zone. This step is a major requirement of the present invention in order to proceed with the smooth dealkalization reaction of the water glass component. If carbon dioxide gas is introduced through a route different from that of fuel hydrocarbons, or if both of these methods are implemented simultaneously, the concentration of carbon oxide in the low-temperature combustion zone becomes excessive, promoting the dealkalization reaction more uniformly and efficiently. becomes possible.

低温燃焼域に噴霧される水ガラス水溶液は、例えば安価
な工業用水ガラスを適宜な粘度になるように水に溶解し
たものでよく、燃焼ガス流と同軸または直角方向から窒
素ガスなどに同伴させながら噴霧状態で炉内に導入する
The water glass aqueous solution sprayed into the low-temperature combustion zone may be, for example, an inexpensive industrial water glass dissolved in water to an appropriate viscosity, and the water glass solution sprayed into the low-temperature combustion zone may be made by dissolving inexpensive industrial water glass in water to an appropriate viscosity. Introduce into the furnace in a sprayed state.

水ガラス水溶液の濃度は、20〜80重量%の範囲とす
ることが望ましい。この理由は、20重量%を下廻る濃
度では水分の蒸発に燃焼発熱蓋が消費される副台が大き
くなるとともに脱アルカリに要する炉内滞留時間が長く
なり、一方、811%を越える場合には水溶液の粘度が
高くなって炉内への送入が困難となり噴霧液滴も大きく
なるからである。
The concentration of the water glass aqueous solution is preferably in the range of 20 to 80% by weight. The reason for this is that when the concentration is less than 20% by weight, the auxiliary stage where the combustion heating lid is consumed for water evaporation becomes larger and the residence time in the furnace required for dealkalization becomes longer.On the other hand, when the concentration exceeds 811% This is because the viscosity of the aqueous solution increases, making it difficult to feed it into the furnace and resulting in larger spray droplets.

炉内に噴霧された水ガラス水溶液は2速に熱分解して脱
アルカリ反応を起こし、純度の高いけい酸質ガラス微粒
子からなる中間体に転化する。このようにして生成した
ガラス微粒子中間体は、弓続き一定時間高温炉内を滞留
する過程で発泡し超微粒状のシリカバルーンに転化する
。形成されたシリカバルーンは炉の後段で水冷され、融
点以下に冷却したのち捕集工程に送られて回収される。
The aqueous water glass solution sprayed into the furnace is thermally decomposed in two speeds to cause a dealkalization reaction and is converted into an intermediate consisting of fine silicic acid glass particles with high purity. The glass fine particle intermediate produced in this manner foams and is converted into ultrafine silica balloons while remaining in the high temperature furnace for a certain period of time. The formed silica balloon is water-cooled in the latter stage of the furnace, cooled to below its melting point, and then sent to a collection process and recovered.

なお、燃焼ガス流に水ガラス水溶液と同時もしくは別ル
ートを介して炭化水素を導入して炉内にカーボンブラン
クを生成共存させることにより、炉内に広く分散したシ
リカバルーン同士の相互融着を防止させることができる
In addition, by introducing hydrocarbons into the combustion gas stream at the same time as the water glass aqueous solution or through a separate route, a carbon blank is generated and coexisted in the furnace, thereby preventing silica balloons widely dispersed in the furnace from adhering to each other. can be done.

本発明のプロセスにおいて、生成するシリカバルーンの
粒径調整は、水ガラス水溶液の粘度(溶解濃度)、ガラ
ス微粒子中間体の炉内滞留時間などの条件を適宜制御す
ることによっておこなうことができる。例えば、大粒側
への調整には水ガラス水溶液の粘度を高めるとともにガ
ラス微粒子中間体の炉内滞留時間を増すことが有効とな
る。
In the process of the present invention, the particle size of the produced silica balloons can be adjusted by appropriately controlling conditions such as the viscosity (dissolution concentration) of the water glass aqueous solution and the residence time of the glass fine particle intermediate in the furnace. For example, in order to make the particles larger, it is effective to increase the viscosity of the water glass aqueous solution and to increase the residence time of the glass fine particle intermediate in the furnace.

〔作 用〕[For production]

一般に、水ガラス中のナトリウムはNaz 01Na 
OHの形態で含有されており、これらは二酸化炭素と接
触すると下記(1)および(2)式の反応を介して炭酸
ナトリウムとなる。
Generally, the sodium in water glass is Naz 01Na
It is contained in the form of OH, and when it comes into contact with carbon dioxide, it becomes sodium carbonate through the reactions of formulas (1) and (2) below.

Naz O十CO□−+Na2CO3−<1)2NaO
H+CO,−+Na2Co、+H,0・=(2)これら
の反応は熱力学的試算からも明らかであり、低温はど良
く進行する。
Naz O + CO□−+Na2CO3−<1)2NaO
H+CO, -+Na2Co, +H,0.=(2) These reactions are clear from thermodynamic calculations, and proceed faster at low temperatures.

本発明において200〜500℃の低温燃焼域に噴霧さ
れた水ガラス水溶液は、溶媒である水の蒸発と同時に同
燃焼域に多量に存在する二酸化炭素と接触反応し、ナト
リウム成分が炭酸ナトリウムとなって脱アルカリ化され
、けい酸水和物を生成する。この脱アルカリ化は、低温
燃焼域に導入する燃焼用酸化剤として酸素ガスを併用し
、もしくは低温燃焼域に燃料油とは別ルートを介して二
酸化炭素ガスを導入して該区域内における二酸化炭素分
圧を高めることにより一層促進され、均一かつ迅速に進
行する。
In the present invention, the water glass aqueous solution sprayed into the low-temperature combustion zone of 200 to 500°C undergoes a catalytic reaction with carbon dioxide present in large amounts in the combustion zone at the same time as the solvent water evaporates, and the sodium component turns into sodium carbonate. It is dealkalized to produce silicic acid hydrate. This dealkalization is carried out by using oxygen gas as a combustion oxidant introduced into the low-temperature combustion zone, or by introducing carbon dioxide gas into the low-temperature combustion zone through a route other than that of the fuel oil. It is further promoted by increasing the partial pressure and progresses uniformly and rapidly.

また、水ガラス水溶液は200〜500℃の低温燃焼域
に噴霧されるから、1300℃を越える高温燃焼域に直
接噴霧する場合に起こる噴霧ノズル先端のナトリウムガ
ラス、シリカ等による凝固付着現象は発生しない。
In addition, since the water glass aqueous solution is sprayed into the low-temperature combustion region of 200 to 500°C, the phenomenon of coagulation and adhesion caused by sodium glass, silica, etc. at the tip of the spray nozzle, which occurs when directly spraying into the high-temperature combustion region of over 1300°C, does not occur. .

生成したけい酸水和物は、引き続く1300’Cの高温
燃焼域に入って更に脱水され、純度の高いけい酸1j(
SiO□)に転化する。この際、同時に脱離する水分に
よって粒子が発泡しバルーンを形成する。
The produced silicic acid hydrate enters the subsequent high-temperature combustion zone of 1300'C, where it is further dehydrated and becomes highly pure silicic acid 1j (
Converts to SiO□). At this time, the particles are foamed by the moisture released at the same time to form a balloon.

上記のi構により、水ガラス水溶液は低高温度に制御さ
れた密閉筒状炉の燃焼ガス中で一連的に脱水、脱アルカ
リおよび発泡化が進行するから、目的とする超微粒状の
シリカバルーンを常に操業性よく安定生産することが可
能となる。
With the above i-structure, the water glass aqueous solution undergoes a series of dehydration, dealkalization, and foaming in the combustion gas of the closed cylindrical furnace controlled at low and high temperatures, so that the desired ultrafine silica balloon can be produced. This makes it possible to consistently produce with good operability and stability.

〔実施例〕〔Example〕

以下、本発明を各実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically explained based on each example.

実施例1〜4 炉頭部に燃焼バーナーを装着した直径300mm、長さ
500mmの低温燃焼域と引き続き連設された燃焼バー
ナーを備える直径300IllI、長さ1200avの
高温燃焼域からなる構造の横型密閉筒状炉において、水
ガラス水溶液用の噴霧ノズルを先端部分が炉頭部から5
0mm下流側に位置するように炉軸に沿ってセットし、
高温燃焼域の後部位置に反応停止用の冷却水注入ノズル
を設置した。
Examples 1 to 4 Horizontal sealed structure consisting of a low-temperature combustion zone with a diameter of 300 mm and a length of 500 mm with a combustion burner attached to the furnace head, and a high-temperature combustion zone with a diameter of 300 IllI and a length of 1200 av with a combustion burner connected thereto. In a cylindrical furnace, the tip of the spray nozzle for the water glass aqueous solution is located 5 minutes from the furnace head.
Set along the furnace axis so that it is located 0mm downstream,
A cooling water injection nozzle was installed at the rear of the high-temperature combustion area to stop the reaction.

この炉を用い、表1に示す各種の生成条件によりシリカ
バルーンを製造した。原料としては、5i0236〜3
8%、NazO17〜18%、Nano : 5i02
モル比l:2.1の組成をもつ市販の工業用水ガラス1
号を用いた。
Using this furnace, silica balloons were produced under various production conditions shown in Table 1. As a raw material, 5i0236-3
8%, NazO17-18%, Nano: 5i02
Commercially available industrial water glass 1 with a composition of molar ratio l:2.1
The number was used.

得られたシリカバルーンの特性性状を、生成条件と対比
させて表1に示した。
The characteristics of the obtained silica balloon are shown in Table 1 in comparison with the production conditions.

なお、生成シリカバルーンの粒子径ならびに流度分布の
測定にはDCF法を適用し、ディスク回転数1100O
rp 、試料濃度100mg/100m1.so+、、
試料注入量0.5ml 、バッファー液10.0mlの
条件を用いた。この測定値は、走査型電子顕微鏡法で得
た結果とよく一致している。また、生成シリカバルーン
のNa含有量は、原子吸光分析法および蛍光X線分析法
により定量測定した。
In addition, the DCF method was applied to measure the particle size and flow rate distribution of the produced silica balloon, and the disk rotation speed was 1100 O.
rp, sample concentration 100mg/100ml. so+,,
The conditions were that the sample injection volume was 0.5 ml and the buffer solution was 10.0 ml. This measurement is in good agreement with the results obtained by scanning electron microscopy. Further, the Na content of the produced silica balloon was quantitatively measured by atomic absorption spectrometry and fluorescent X-ray spectrometry.

表1の結果から、本発明によれば外径10IIgA以下
の高品質性状を備えるシリカバルーンが操業性よく連続
生産できることを示している。
The results in Table 1 indicate that according to the present invention, silica balloons with high quality properties and an outer diameter of 10 II gA or less can be continuously produced with good operability.

比較例 炉頭部に燃焼バーナーと原料噴射ノズルとを袋着した燃
焼室(直径200ffiIl、長さ500mm)、該燃
焼室と同軸的に連結する広径反応室(直径1201、長
さ2000mm)から構成され、前記広径反応室の所定
位置に冷却水噴霧孔を設けた密閉筒状炉を設置した。こ
の炉を用いて表1に示す条件でシリカバルーンを製造し
た。
Comparative Example From a combustion chamber (diameter 200ffil, length 500 mm) with a combustion burner and raw material injection nozzle attached to the furnace head, and a wide-diameter reaction chamber (diameter 1201, length 2000 mm) coaxially connected to the combustion chamber. A closed cylindrical furnace having a cooling water spray hole provided at a predetermined position of the wide-diameter reaction chamber was installed. Using this furnace, silica balloons were manufactured under the conditions shown in Table 1.

得られたシリカバルーンの特性・性状を生成条件と対比
して表1に併載した。
The characteristics and properties of the obtained silica balloons are listed in Table 1 in comparison with the production conditions.

表1の結果から判るように、比較例によるシリカバルー
ンは低温燃焼域に水ガラス水溶液を噴霧しないため実施
例に比べて脱アルカリ反応が劣り、水中比重が重く、純
度が低く、操業性も悪いものであった。
As can be seen from the results in Table 1, the silica balloon according to the comparative example does not spray water glass aqueous solution into the low-temperature combustion zone, so the dealkalization reaction is inferior to that of the example, the specific gravity in water is high, the purity is low, and the operability is poor. It was something.

(発明の効果〕 以上のとおり、本発明に従えば超微粒状で優れた純度お
よび粒性状を備えるシリカバルーンを常に安定した操業
性で連続生産することができる。
(Effects of the Invention) As described above, according to the present invention, ultrafine silica balloons having excellent purity and grain properties can be continuously produced with always stable operability.

したがって、製造されるシリカバルーンは、金属、プラ
スチック、セララミック等の充填材、焼結フィルター、
軽量断熱材などの原材料のほか、半導体封止用、超微粒
性と透光性を抑止する光学的性質を利用した白色顔料の
素材等として有用性が期待される。
Therefore, the manufactured silica balloons are made of metal, plastic, ceramic fillers, sintered filters, etc.
In addition to being a raw material for lightweight heat insulating materials, it is expected to be useful as a material for semiconductor encapsulation and white pigments that take advantage of its ultra-fine grain size and optical properties that suppress translucency.

出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也Applicant: Tokai Carbon Co., Ltd. Agent: Patent Attorney Masaya Takahata

Claims (1)

【特許請求の範囲】 1、密閉筒状炉内を流通する燃焼ガス流に水ガラス水溶
液を噴霧して脱アルカリし、生成したガラス微粒子中間
体を一定時間高温炉内に滞留させてシリカバルーンに転
化させる方法において、炉内を200〜500℃の低温
燃焼域とそれに引き続く1300℃以上の高温燃焼域と
に区分形成し、前記低温燃焼域に水ガラス水溶液を噴霧
することを特徴とするシリカバルーンの製造方法。 2、低温燃焼域に導入する燃焼用酸化剤として酸素ガス
を併用し、および/または低温燃焼域に燃料炭化水素と
は別ルートを介して二酸化炭素ガスを導入する請求項1
記載のシリカバルーンの製造方法。
[Claims] 1. A water glass aqueous solution is sprayed onto a combustion gas flow flowing in a closed cylindrical furnace to dealkalize it, and the resulting glass fine particle intermediate is retained in a high temperature furnace for a certain period of time to form a silica balloon. In the method for converting the silica balloon, the inside of the furnace is divided into a low-temperature combustion zone of 200 to 500°C and a subsequent high-temperature combustion zone of 1300℃ or higher, and a water glass aqueous solution is sprayed into the low-temperature combustion zone. manufacturing method. 2. Claim 1, in which oxygen gas is also used as a combustion oxidant introduced into the low-temperature combustion zone, and/or carbon dioxide gas is introduced into the low-temperature combustion zone through a route different from that of fuel hydrocarbons.
The method for producing the described silica balloon.
JP10361390A 1990-04-19 1990-04-19 Silica balloon manufacturing method Expired - Lifetime JPH0764547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10361390A JPH0764547B2 (en) 1990-04-19 1990-04-19 Silica balloon manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10361390A JPH0764547B2 (en) 1990-04-19 1990-04-19 Silica balloon manufacturing method

Publications (2)

Publication Number Publication Date
JPH042607A true JPH042607A (en) 1992-01-07
JPH0764547B2 JPH0764547B2 (en) 1995-07-12

Family

ID=14358626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10361390A Expired - Lifetime JPH0764547B2 (en) 1990-04-19 1990-04-19 Silica balloon manufacturing method

Country Status (1)

Country Link
JP (1) JPH0764547B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087047A1 (en) * 2007-01-19 2008-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing glass vacuum hollow spheres, vacuum hollow spheres and use thereof
EP3181527A1 (en) * 2015-12-17 2017-06-21 DENNERT PORAVER GmbH Method and device for manufacturing foamed glass particles
JP2019025384A (en) * 2017-07-26 2019-02-21 太平洋セメント株式会社 Method for manufacturing hollow particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087047A1 (en) * 2007-01-19 2008-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing glass vacuum hollow spheres, vacuum hollow spheres and use thereof
EP3181527A1 (en) * 2015-12-17 2017-06-21 DENNERT PORAVER GmbH Method and device for manufacturing foamed glass particles
JP2019025384A (en) * 2017-07-26 2019-02-21 太平洋セメント株式会社 Method for manufacturing hollow particle

Also Published As

Publication number Publication date
JPH0764547B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US5849055A (en) Process for producing inorganic microspheres
US7900474B2 (en) Hollow glass microspheres comprising selenium oxide and method of making thereof
WO2009064548A1 (en) Composition and method of making a glass product with reduced greenhouse gas emission
JPH0151455B2 (en)
US8117867B2 (en) Process for producing spherical inorganic particle
JPH042607A (en) Production of silica balloon
JPH052606B2 (en)
JPH0891874A (en) Glass spherical powder and its production
US7059153B2 (en) Method for producing glass powders
JPS58207938A (en) Manufacture of fine ceramic particle
JPH04243911A (en) Production of silica balloon
US5147630A (en) Method of producing alumina foams
JP4330298B2 (en) Method for producing spherical inorganic powder
JP2001261328A (en) Spherical inorganic powder and method of producing the same
JP3270448B2 (en) Glycol containing silicon dioxide
JPH07277768A (en) Production of hollow glass sphere
JPH02296711A (en) Spherical silica particle and its production
JPH0412014A (en) Preparation of fine powdery silica
JP4230554B2 (en) Method for producing spherical particles
JP4145855B2 (en) Method for producing spherical fused silica powder
JPH10338542A (en) Production of high refractive index fine spherical glass
JPH10324539A (en) Fine spherical glass and its production
JPH0437017B2 (en)
JP5674484B2 (en) Surface-modified alkali metal silicate and method for producing the same
JPH0624771A (en) High-purity opaque quartz glass and its production