JPH0412014A - Preparation of fine powdery silica - Google Patents

Preparation of fine powdery silica

Info

Publication number
JPH0412014A
JPH0412014A JP11146190A JP11146190A JPH0412014A JP H0412014 A JPH0412014 A JP H0412014A JP 11146190 A JP11146190 A JP 11146190A JP 11146190 A JP11146190 A JP 11146190A JP H0412014 A JPH0412014 A JP H0412014A
Authority
JP
Japan
Prior art keywords
water glass
aqueous solution
silica
furnace
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11146190A
Other languages
Japanese (ja)
Inventor
Shinichi Makino
真一 牧野
Fumio Takemura
文男 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP11146190A priority Critical patent/JPH0412014A/en
Publication of JPH0412014A publication Critical patent/JPH0412014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare high quality fine powdery silica in a readily particle size- controllable state and in good productivity by spraying a water glass aqueous solution in the center of a high temperature combustion gas flow passing through a closed cylindrical oven with revolving. CONSTITUTION:A water glass aqueous solution is sprayed in the center of a high temperature combustion gas flow passing through a closed cylindrical oven with revolving to remove water and alkali from the water glass for providing the objective silica. In the method, the particles of the resultant fine silica are rarely fused with each other to produce bulky flocculates in a process in which the fine silica passes through a high temperature oven, but the phenomenon can be prevented by feeding a hydrocarbon into the high temperature combustion gas flow through a route different from the route of the water glass aqueous solution in an atomized state to prepare carbon black. The hydrocarbon for preparing the carbon black including styrene monomer and benzene.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水ガラス原料から高品質の微粉状シリカを操
業性よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing high quality fine powder silica from water glass raw materials with good operability.

〔従来の技術〕[Conventional technology]

従来、シリカ微粉の製造技術としては、ハロゲン化珪素
化合物またはシラン化合物などを火炎加水分解する方法
、珪酸ナトリウムをイオン交換して得うれるコロイダル
シリカをオストワルド成長させる方法、珪酸アルカリ塩
水溶液を中和反応させる方法、アルコキシシランを湿式
加水分解する方法など、多様な方法が知られている。
Conventional techniques for producing fine silica powder include flame hydrolysis of halogenated silicon compounds or silane compounds, Ostwald growth of colloidal silica obtained by ion exchange of sodium silicate, and neutralization of an aqueous solution of alkali silicate. Various methods are known, such as a reaction method and a method of wet hydrolyzing alkoxysilane.

〔発明が解決しようとする課題] しかしながら、これら従来技術では形成するシリカの微
粒化ならびに粒度の調整化に難点があり、3μ−以下の
整粒化されたシリカ微粉を効率よく製造することは困難
であった。
[Problems to be Solved by the Invention] However, with these conventional techniques, there are difficulties in atomizing the formed silica and adjusting the particle size, and it is difficult to efficiently produce sized silica fine powder of 3μ or less. Met.

発明者らは、従来技術とは異なる製造手段により整粒性
の良好なシリカ微粉を得る方法について鋭意研究を重ね
た結果、水ガラス水溶液を特定の条件を与えながら高温
燃焼ガス中で脱水、脱アルカリすると粒子径が0.01
〜2μ−範囲で高品位のシリカ微粉が生成することを確
認して本発明の開発に至ったものである。
As a result of intensive research into a method for obtaining finely sized silica powder using a manufacturing method different from conventional techniques, the inventors dehydrated and dehydrated a water glass solution in high-temperature combustion gas under specific conditions. When alkali is used, the particle size is 0.01
The present invention was developed after confirming that high-grade silica fine powder was produced in the ~2μ range.

したがって、本発明の目的は粒子径0.O1〜2μ蒙の
微細粒域にある高品質の微粉状シリカを粒度調整容易に
且つ生産性よく製造する方法を提供するところにある。
Therefore, the object of the present invention is to have a particle size of 0. The object of the present invention is to provide a method for producing high-quality fine powder silica in the fine particle range of 01 to 2 μm with easy particle size adjustment and high productivity.

〔課題を解決するための手段] 上記の目的を達成するための本発明による微粉状シリカ
の製造方法は、密閉筒状炉内を旋回しながら流通する高
温燃焼ガス流の中心部に水ガラス水溶液を噴霧して脱水
、脱アルカリ化することを構成上の特徴とする。
[Means for Solving the Problems] A method for producing pulverized silica according to the present invention to achieve the above-mentioned object includes a water glass aqueous solution placed in the center of a high-temperature combustion gas flow circulating in a closed cylindrical furnace. The structural feature is that it dehydrates and dealkalizes by spraying it.

密閉筒状炉内を流通する高温燃焼ガス流は、燃料炭化水
素を酸素含有気流とともに炉頭部に噴射して完全燃焼さ
せることによって形成するが、装置としては頭部燃焼室
と円筒反応室が連結した形態のカーボンブラック発生炉
と同−設計の構造炉が有効に適用される。この際、燃焼
ガスを対向する2方向から炉軸に対し接線方向に噴射す
る2分割旋回導入方式を採ることにより炉内を旋回しな
がら流通する高温燃焼ガスの流れを形成することができ
る。
The high-temperature combustion gas flow flowing through the closed cylindrical furnace is formed by injecting fuel hydrocarbons into the furnace head together with an oxygen-containing air stream and completely combusting them. A connected carbon black generating furnace and a structured furnace of the same design can be effectively applied. At this time, by adopting a two-part swirling introduction method in which combustion gas is injected from two opposing directions in a tangential direction to the furnace axis, a flow of high-temperature combustion gas that circulates in the furnace can be formed.

燃料炭化水素には、軽油、重油、タレオソート油、エチ
レンボトム油などカーボンブラック製造用として常用さ
れる燃料油を用いることもできるが、生成させる微粉状
シリカに高純度を付与する面からプロパン、メタン、ブ
タン等のガス体を使用することが望ましい。また、炉内
の温度は少なくとも水ガラス水溶液を噴霧する位置にお
いて1300°C以上の高温水準を保持する必要がある
As fuel hydrocarbons, fuel oils commonly used for producing carbon black, such as light oil, heavy oil, taleosote oil, and ethylene bottom oil, can be used, but propane, methane, etc. It is preferable to use a gaseous medium such as , butane. Further, the temperature inside the furnace needs to be maintained at a high temperature level of 1300° C. or higher at least at the position where the water glass aqueous solution is sprayed.

原料となる水ガラス水溶液は、例えば安価な工業用水ガ
ラスを適宜な粘度になるように水に溶解したものでよく
、旋回しながら流通する高温燃焼ガス流の中心部に窒素
ガスなどに同伴させながら噴霧状態で炉内に導入する。
The water glass aqueous solution used as a raw material may be, for example, an inexpensive industrial water glass dissolved in water to an appropriate viscosity. Introduce into the furnace in a sprayed state.

したがって、水ガラス水溶液の導入は炉頭部の中心に炉
軸方向に設置した噴霧ノズルを介しておこなうことが好
ましい形態となる。
Therefore, it is preferable to introduce the water glass aqueous solution through a spray nozzle installed in the center of the furnace head in the direction of the furnace axis.

炉内に導入する水ガラス水溶液の濃度は、20重量%以
下に設定することが望ましい。20重量を越す濃度にな
ると、噴霧される液滴が大きくなるうえ脱水による一次
液滴の粉砕効果が減退するのに加えて粉砕された二次液
滴中の珪酸分が多くなり、結果的に得られるシリカの粒
子径が増大する傾向を与えることになる。
The concentration of the water glass aqueous solution introduced into the furnace is desirably set to 20% by weight or less. When the concentration exceeds 20% by weight, the sprayed droplets become larger, the effect of crushing the primary droplets due to dehydration decreases, and the silicic acid content in the crushed secondary droplets increases, resulting in This will tend to increase the particle size of the silica obtained.

また、水ガラス水溶液の均一な微小液滴を炉内に噴霧す
るためには、二流体式の噴霧ノズルを用い、その先端部
からの流体線速度(TVF : Tip Veloci
ty Factor)として2000 ft/sec、
以上の条件を適用することが好ましい。このような高速
噴射条件を与えることにより、バーナー先端部へのナト
リウムガラスやシリカの凝固が有効に防止されるばかり
でなく、噴霧される水ガラス水溶液の液滴を一層微細化
して熱分解の均一かつ迅速化を円滑に進行させ、生成シ
リカをサブミクロン水準まで微粉化させる効果がもたら
される。
In addition, in order to spray uniform microdroplets of water glass aqueous solution into the furnace, a two-fluid type spray nozzle is used, and the fluid linear velocity (TVF: Tip Velocity) from the tip of the spray nozzle is used.
ty Factor) as 2000 ft/sec,
It is preferable to apply the above conditions. By providing such high-speed injection conditions, not only can solidification of sodium glass and silica at the tip of the burner be effectively prevented, but also the droplets of the sprayed water glass aqueous solution can be made even finer, resulting in uniform thermal decomposition. Moreover, the speed-up process proceeds smoothly, and the effect of pulverizing the produced silica to a submicron level is brought about.

上記の条件で炉内に噴霧された水ガラス水溶液は旋回す
る高温燃焼ガス流と直ちに会合接触し、強力な剪断作用
を受けながら急速に熱分解して脱アルカリ反応を起こし
、粒子径の整った純度の高い微粉状シリカに転化する。
The water glass aqueous solution sprayed into the furnace under the above conditions immediately comes into contact with the swirling high-temperature combustion gas flow, undergoes rapid thermal decomposition under strong shearing action, and causes a dealkalization reaction, resulting in particles of uniform particle size. Converts into fine powdered silica with high purity.

生成した微粉状シリカは炉の後段で水冷され、融点以下
に冷却されたのち捕集工程に送られて回収される。
The generated fine powdered silica is water-cooled in the latter stage of the furnace, cooled to below its melting point, and then sent to a collection process and recovered.

上記の工程においては、生成した微粉状ソリ力が高温炉
内を流通する過程で粒子同士が相互に融着して団塊状の
凝集体を混在させることがあるが、この現象は高温燃焼
ガス流に水ガラス水溶液とは別のルートを介して炭化水
素を噴霧状態で炉内に導入してカーボンブラックを生成
共存させることにより有効に防止することができる。
In the above process, as the generated fine powder warping force flows through the high-temperature furnace, the particles may fuse together and form nodular aggregates, but this phenomenon is caused by the flow of high-temperature combustion gas. This can be effectively prevented by introducing hydrocarbons into the furnace in a sprayed state through a route different from that of the water glass aqueous solution to produce carbon black.

カーボンブラックを生成させる炭化水素としては、例え
ばスチレンモノマー、ヘンゼンなどが使用される。この
際の炭化水素の噴霧位置は、水ガラス水溶液の噴霧箇所
より上流側に導入するとソリ力微粒子中間体の生成時に
カーボンブラックを巻き込むことがあるため、水ガラス
水溶液の噴霧位置よりも下流域の炉内に設定することが
好ましい。また、共存させるカーボンブラックは微粉状
シリカの生成量に対し50重量%以下で融着防止の目的
には十分に足り、これ以上の発生は寧ろその後の補集、
除去などの操作を煩雑化する。補集後の微粉状シリカに
混在するカーボンブラックは燃焼酸化することにより除
去することができ、必要に応じて鉱酸で洗浄処理してさ
らに精製する。
As the hydrocarbon for producing carbon black, for example, styrene monomer, Hensen, etc. are used. At this time, the spraying position of the hydrocarbon should be downstream from the spraying position of the water glass aqueous solution, since if it is introduced upstream from the spraying position of the water glass aqueous solution, carbon black may be dragged in during the generation of the warping force fine particle intermediate. Preferably, it is set in a furnace. In addition, the amount of carbon black coexisting is less than 50% by weight based on the amount of finely powdered silica produced, which is sufficient for the purpose of preventing fusion, and the generation of more than this is rather than the subsequent collection.
Makes operations such as removal complicated. Carbon black mixed in the collected fine powder silica can be removed by combustion and oxidation, and if necessary, it can be further purified by washing with mineral acid.

更に、熱分解過程で水ガラスの脱アルカリ反応を一層促
進させるためには、炉内に無機酸の水溶液を噴霧導入す
ることが有効な手段となる。
Furthermore, in order to further promote the dealkalization reaction of water glass during the thermal decomposition process, it is an effective means to spray an aqueous solution of an inorganic acid into the furnace.

無機酸には、高温雰囲気下でも安定な塩酸、硝酸、gM
などが使用されるが、取扱いの面から塩酸を用いること
が好適である。例えば、塩酸を使用する場合には、C!
イオンとNaイオンとの中和反応は熱力学での平衡定数
試算からも高温下で容易に進行することが認められてい
る。
Inorganic acids include hydrochloric acid, nitric acid, and gM, which are stable even in high-temperature atmospheres.
However, from the viewpoint of handling, it is preferable to use hydrochloric acid. For example, when using hydrochloric acid, C!
It has been recognized that the neutralization reaction between ions and Na ions proceeds easily at high temperatures, based on thermodynamic equilibrium constant calculations.

無機酸の水溶液を噴霧する炉内位置は、水ガラス水溶液
の導入位置より上流側とすることが好ましく、この位置
からの噴霧により水ガラス液滴との接触度合が増大して
短時間内に脱アルカリ化が完結する。無機酸水溶液の噴
霧位置を水ガラス水溶液のそれより下流側とすると、中
和反応の効率が低下して脱アルカリ化の促進効果が半減
する。
The position in the furnace where the inorganic acid aqueous solution is sprayed is preferably upstream of the introduction position of the water glass aqueous solution, and spraying from this position increases the degree of contact with the water glass droplets and causes them to be desorbed within a short time. Alkalinization is completed. If the aqueous inorganic acid solution is sprayed downstream from the aqueous water glass solution, the efficiency of the neutralization reaction will decrease and the effect of promoting dealkalization will be halved.

また、無機酸水溶液の噴霧方式は、水ガラス液滴との相
互接触を良くするためアトマイズ法によることが望まし
い。
Further, as the method of spraying the aqueous inorganic acid solution, it is preferable to use an atomization method in order to improve mutual contact with the water glass droplets.

無機酸水溶液の噴霧量は、酸成分が水ガラス中のアルカ
リ含有量と化学量論的に中和反応するための等モル量で
足りるが、若干過剰量として導入することが脱アルカリ
化の促進と完全を図るうえで好適である。最も好ましい
導入量は、酸が水ガラス中のナトリウム含有量に対しモ
ル比で1.2倍以上になる量とすることである。
An equimolar amount of the inorganic acid aqueous solution is sufficient for the acid component to undergo a stoichiometric neutralization reaction with the alkali content in the water glass, but introducing a slightly excessive amount may promote dealkalization. This is suitable for achieving completeness. The most preferable amount of acid to be introduced is such that the molar ratio of the acid is at least 1.2 times the sodium content in the water glass.

このような条件で炉内に噴霧された無機酸は、熱分解し
た水ガラス液滴と接触して中和反応を起こし、極めて短
時間内に脱アルカリ化を完了させるために機能する。
The inorganic acid sprayed into the furnace under these conditions causes a neutralization reaction when it comes into contact with the thermally decomposed water glass droplets, thereby functioning to complete the dealkalization within a very short time.

なお、本発明に使用する密閉筒状炉の型式は横型、竪型
のいずれであっても−差し支えないが、竪型の場合には
重力下での自然沈降効果の助けもあってガラス物質の炉
壁付着が有効に防止されるため、操業性の面で有利とな
る。
Note that the type of closed cylindrical furnace used in the present invention may be either horizontal or vertical, but in the case of a vertical type, the glass material will be more stable due to the natural settling effect under gravity. Since adhesion to the furnace wall is effectively prevented, it is advantageous in terms of operability.

〔作 用〕[For production]

本発明によれば、密閉筒状炉内を旋回しながら流通する
高温燃焼ガス流の中心部に噴霧された水ガラス水溶液は
、直ちに燃焼ガス気流と接触して混合し、旋回流の剪断
作用と脱水時の拡散作用とによって一次液滴は均一かつ
急速に粉砕されながら脱アルカリ化が進行する。この作
用を介して粒子径0.01〜2μm範囲内で整粒化した
中実球状形の微粉状シリカが連続的に生成する。
According to the present invention, the water glass aqueous solution sprayed into the center of the high-temperature combustion gas flow that circulates in the closed cylindrical furnace immediately contacts and mixes with the combustion gas flow, and the shearing action of the swirling flow is activated. Due to the diffusion effect during dehydration, the primary droplets are pulverized uniformly and rapidly, and dealkalization progresses. Through this action, solid spherical fine powder silica with particle diameters in the range of 0.01 to 2 μm is continuously produced.

また、プロセス過程で高温燃焼ガス中にカーボンブラッ
クを生成共存させる構成を採ると、生成した微粉状シリ
カ同士の相互融着を完全に防止することができ、常に真
球状の単一粒として形成することが可能となる。
In addition, by adopting a configuration in which carbon black is generated and coexists in the high-temperature combustion gas during the process, it is possible to completely prevent the generated fine powder silica from adhering to each other, and it is always formed as a single true spherical particle. becomes possible.

更に、炉内に無機酸の水溶液を注入すると脱アルカリ反
応が促進され、生成ソリ力の純度が著しく向上するうえ
、この機能でシリカ微粒子中間体の融点が引上げられる
ため、シリカ微粒子同志の融着による二次凝集物の生成
やナトリウムガラスが炉壁面に付着して操業性が低下す
る現象が防止される。
Furthermore, injecting an aqueous solution of inorganic acid into the furnace accelerates the dealkalization reaction, significantly improving the purity of the generated warping force, and this function also raises the melting point of the silica fine particle intermediate, which reduces the fusion of silica fine particles with each other. This prevents the formation of secondary agglomerates and the adhesion of sodium glass to the furnace wall, which reduces operability.

上記の作用が相乗して、高品質の微粉状シリカが生産性
よく製造されることになる。
The above effects work together to produce high quality fine powder silica with good productivity.

〔実施例] 以下、本発明の実施例を比較例と対比して説明する。〔Example] Examples of the present invention will be described below in comparison with comparative examples.

実施例1〜3 炉頭部に2本の燃焼バーナーを対向させて炉軸との垂直
断面上の接線方向に装着した燃焼室(直径400mm 
、長さ300mm)と、これと同軸的に連設した円筒反
応室(直径300mm 、長さ1500mm)とから構
成された横型密閉筒状炉において、水力ラス水溶液用の
噴霧ノズルを先端部分が炉頭部から80mm下流側に位
置するように炉軸に沿ってセ・ノドし、反応室の後部位
置に反応停止用の冷却水注入ノズルを設置した。
Examples 1 to 3 A combustion chamber (400 mm diameter
, length 300 mm) and a cylindrical reaction chamber (diameter 300 mm, length 1500 mm) connected coaxially with the horizontal closed cylindrical furnace. The reactor was installed along the axis of the reactor so as to be located 80 mm downstream from the head, and a cooling water injection nozzle for stopping the reaction was installed at the rear of the reaction chamber.

この炉を用い、2分割旋回方式で導入された高温燃焼ガ
ス旋回流の中心部に水ガラス水溶液を連続的に噴霧して
微粉状シリカを生成させた。原料の水ガラスとしては、
SiO□ :28〜30%、Na、O:9〜10%の組
成をもつ市販の工業用水ガラス3号を用いた(以下、同
様)。
Using this furnace, a water glass aqueous solution was continuously sprayed into the center of a high-temperature combustion gas swirling flow introduced in a two-part swirling method to produce fine powdered silica. As the raw material for water glass,
Commercially available industrial water glass No. 3 having a composition of SiO□: 28 to 30% and Na, O: 9 to 10% was used (the same applies hereinafter).

得られた各微粉状シリカの特性・性状を生成条件に対比
させて表1に示した。
Table 1 shows the characteristics and properties of each of the obtained fine powder silicas in comparison with the production conditions.

なお、特性のうち粒子径の測定にはDCF法を適用し、
ディスク回転数1100Orp、試料液濃度100mg
/100m1 sol、 、試料注入量0. 5ml。
In addition, among the characteristics, the DCF method is applied to measure the particle size,
Disk rotation speed 1100Orp, sample liquid concentration 100mg
/100m1 sol, Sample injection amount 0. 5ml.

ハソファ−110,0mlの条件でおこなった。この測
定値は、走査型電子顕微鏡法で求めた結果とよく一致し
ている。また、シリカ中のNa含有量は1.原子吸光法
および蛍光X線法により定量分析した。
The test was carried out under the conditions of Hasofa-110.0ml. This measured value is in good agreement with the results obtained by scanning electron microscopy. Moreover, the Na content in silica is 1. Quantitative analysis was performed by atomic absorption spectrometry and fluorescent X-ray method.

表1の結果から、実施例2では水ガラス水溶液濃度が5
0重量%と高く、実施例3では水ガラス水溶液を噴霧す
る流体線速度(TVF)を1200ft/sec、と低
く設定したため、いずれも実施例1に比べて生成シリカ
の粒子径が大きくなる傾向が認られた。
From the results in Table 1, it can be seen that in Example 2, the water glass aqueous solution concentration was 5
In Example 3, the linear fluid velocity (TVF) for spraying the water glass aqueous solution was set as low as 1200 ft/sec, so the particle size of the produced silica tended to be larger in both cases than in Example 1. Approved.

実施例4 実施例1と同型の密閉筒状炉を用い、炉頭部から100
mm下流側に先端部が位置するように水ガラス水溶液噴
霧ノズルを炉軸方向に挿着し、更に炉頭部から400I
wIII下流位置にカーボンプラック生成用炭化水素の
噴霧ノズルを設置した。
Example 4 Using the same type of closed cylindrical furnace as in Example 1, 100 mm from the furnace head
Insert the water glass aqueous solution spray nozzle in the axial direction of the furnace so that the tip is located on the downstream side by 400 mm from the furnace head.
A hydrocarbon spray nozzle for carbon plaque generation was installed downstream of wIII.

この炉を用い、表1に示した生成条件を適用してカーボ
ンブラックを発生させながら微粉状シリカを生成させた
Using this furnace, finely powdered silica was produced while generating carbon black under the production conditions shown in Table 1.

得られた結果を、生成条件と対比させて表1に併載した
。この例では、カーボンブラックの生成共存化により生
成シリカ微粉が相互接触による二次凝集を起こすことが
なく、真球状の単一粒として回収された。
The obtained results are also listed in Table 1 in comparison with the production conditions. In this example, due to the coexistence of carbon black, the produced silica fine powder did not cause secondary aggregation due to mutual contact, and was recovered as a single perfectly spherical particle.

実施例5〜6 実施例1と同型の密閉筒状炉を用い、炉頭部から100
+m下流側に先端部が位置する状態に水ガラス水溶液ノ
ズルを炉軸方向に挿着し、これとは別に炉頭部から50
mm下流位置に無機酸噴射ノズルを設置した。
Examples 5 to 6 Using the same type of closed cylindrical furnace as in Example 1, 100 mm from the furnace head
A water glass aqueous solution nozzle is inserted in the axial direction of the furnace with the tip located on the +m downstream side, and separately from the furnace head.
An inorganic acid injection nozzle was installed at a position mm downstream.

この炉を用い、表1に示した生成条件を適用して炉内に
HCj2を噴霧しながら微粉状シリカを生成させた。得
られた結果を、生成条件と対比させて表1に併載した。
Using this furnace, pulverized silica was produced while spraying HCj2 into the furnace under the production conditions shown in Table 1. The obtained results are also listed in Table 1 in comparison with the production conditions.

無機酸を噴霧したこれらの例(実施例5.6)では、水
ガラスの脱アルカリ化が急速に進み、二次凝集物が混在
しない単一粒の微粉状シリカが得られた。
In these examples (Example 5.6) in which an inorganic acid was sprayed, the dealkalization of the water glass proceeded rapidly, and a single particle of finely powdered silica without secondary agglomerates was obtained.

比較例 炉頭部に1系統の燃焼バーナーと水ガラス水溶液用の噴
霧ノズルとを炉軸方向に装着した燃焼室(直径400m
m 、長さ300mm)、該燃焼室と同軸的に連設され
た円筒反応室(直径300mm 、長さ1500mm)
からなり、反応室の後段位置に反応停止用の冷却水噴霧
孔を配した密閉筒状炉を設置した。
Comparative Example A combustion chamber (diameter 400 m) equipped with one system of combustion burners and a spray nozzle for water glass aqueous solution in the axial direction of the furnace head.
m, length 300 mm), a cylindrical reaction chamber (diameter 300 mm, length 1500 mm) coaxially connected to the combustion chamber.
A closed cylindrical furnace was installed at the rear of the reaction chamber with cooling water spray holes for stopping the reaction.

上記構造の炉を用い表1に示す生成条件を適用してシリ
カを製造した。得られた生成シリカは表1に示したよう
ムこ粒子径が2μmを越える水中比重の低い粉体であり
、一部は中空化したバルーン形態を示すものであった。
Silica was produced using the furnace having the above structure and applying the production conditions shown in Table 1. As shown in Table 1, the obtained silica was a powder with a muco particle size of more than 2 μm and a low specific gravity in water, and some of the powder had a hollow balloon shape.

m範囲において優れた純度ならびに粒性状を備える微粉
状シリカを常に安定した操業性で連続生産することがで
きる。
Fine powder silica having excellent purity and grain properties in the m range can be continuously produced with stable operability.

したがって、金属、プラスチック、セラノミツク等の充
填材、焼結フィルター、軽量断熱材などの原材料のほか
、半導体封止用、白色顔料用等のフィラー用途に使用さ
れるシリカ微粉の製造方法として有用である。
Therefore, it is useful as a method for producing fine silica powder, which is used as raw materials for fillers for metals, plastics, ceramics, etc., sintered filters, lightweight insulation materials, etc., as well as for filler applications such as semiconductor encapsulation and white pigments. .

出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也Applicant: Tokai Carbon Co., Ltd. Agent: Patent Attorney Masaya Takahata

Claims (1)

【特許請求の範囲】 1、密閉筒状炉内を旋回しながら流通する高温燃焼ガス
流の中心部に水ガラス水溶液を噴霧して脱水、脱アルカ
リ化することを特徴とする微粉状シリカの製造方法。 2、水ガラス水溶液の噴霧位置より下流側の炉内に炭化
水素を噴霧してカーボンブラックを生成共存させる請求
項1記載の微粉状シリカの製造方法。 3、炉内に無機酸の水溶液を噴霧する請求項1記載の微
粉状シリカの製造方法。
[Claims] 1. Production of pulverized silica characterized by spraying a water glass aqueous solution into the center of a high-temperature combustion gas flow circulating in a closed cylindrical furnace for dehydration and dealkalization. Method. 2. The method for producing pulverized silica according to claim 1, wherein hydrocarbon is sprayed into the furnace downstream of the spraying position of the water glass aqueous solution to generate and coexist carbon black. 3. The method for producing finely divided silica according to claim 1, wherein an aqueous solution of an inorganic acid is sprayed into the furnace.
JP11146190A 1990-04-26 1990-04-26 Preparation of fine powdery silica Pending JPH0412014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11146190A JPH0412014A (en) 1990-04-26 1990-04-26 Preparation of fine powdery silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11146190A JPH0412014A (en) 1990-04-26 1990-04-26 Preparation of fine powdery silica

Publications (1)

Publication Number Publication Date
JPH0412014A true JPH0412014A (en) 1992-01-16

Family

ID=14561826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11146190A Pending JPH0412014A (en) 1990-04-26 1990-04-26 Preparation of fine powdery silica

Country Status (1)

Country Link
JP (1) JPH0412014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606638A1 (en) * 1993-01-13 1994-07-20 BASF Aktiengesellschaft SiO2 aerogels containing carbon particles and process for their preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606638A1 (en) * 1993-01-13 1994-07-20 BASF Aktiengesellschaft SiO2 aerogels containing carbon particles and process for their preparation

Similar Documents

Publication Publication Date Title
US6887566B1 (en) Ceria composition and process for preparing same
US5849055A (en) Process for producing inorganic microspheres
US2819151A (en) Process for burning silicon fluorides to form silica
WO2001036332A1 (en) Ceria composition and process for preparing same
US3323888A (en) Method for manufacturing glass beads
US7722849B2 (en) Pyrogenic silicon dioxide and a dispersion thereof
JPH10167717A (en) Oxide obtained by thermal decomposition and doped
US3161468A (en) Process for producing hollow spheres of silica
KR19990067324A (en) Method of making them by melting at least partially molten particles and sparks
JPH0151455B2 (en)
JPS6117766B2 (en)
JP3740745B2 (en) Method for producing fine hollow glass sphere
JP3579966B2 (en) Method for producing micro hollow glass sphere
JPH0412014A (en) Preparation of fine powdery silica
US3642453A (en) Process for the production of finely divided silica
JPS58207938A (en) Manufacture of fine ceramic particle
JPH052606B2 (en)
US5147630A (en) Method of producing alumina foams
JP3270448B2 (en) Glycol containing silicon dioxide
JPH0764547B2 (en) Silica balloon manufacturing method
JP4416936B2 (en) Method for producing fine silica powder
JPH04243911A (en) Production of silica balloon
JPH10297915A (en) Silica-based fine spherical non-porous material and production thereof
JPH10338542A (en) Production of high refractive index fine spherical glass
JPH10324539A (en) Fine spherical glass and its production