JPH02296711A - Spherical silica particle and its production - Google Patents

Spherical silica particle and its production

Info

Publication number
JPH02296711A
JPH02296711A JP11909289A JP11909289A JPH02296711A JP H02296711 A JPH02296711 A JP H02296711A JP 11909289 A JP11909289 A JP 11909289A JP 11909289 A JP11909289 A JP 11909289A JP H02296711 A JPH02296711 A JP H02296711A
Authority
JP
Japan
Prior art keywords
flame
silica
particle size
spherical silica
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11909289A
Other languages
Japanese (ja)
Other versions
JPH0470257B2 (en
Inventor
Toshihiro Ochika
尾近 敏博
Takaaki Shimizu
孝明 清水
Masatoshi Takita
滝田 政俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP11909289A priority Critical patent/JPH02296711A/en
Publication of JPH02296711A publication Critical patent/JPH02296711A/en
Publication of JPH0470257B2 publication Critical patent/JPH0470257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Abstract

PURPOSE:To easily and efficiently obtain nonporous spherical silica particles of limited particle size distribution by drying the silica prepared by hydrolyzing alkoxysilane in a flame of a specific temp. and making the above silica nonporous. CONSTITUTION:Alkoxysilane is hydrolyzed. The resulting solution containing fine spherical silica is dried in a flame of 500-1300 deg.C flame temp. and made nonporous so as to be formed into spherical silica particles. In these silica particles, porosity, average particle size, and the coefficient of variation of the average particle size are regulated to 1.0-2.0, 0.2-5.0mum, and <=0.15, respectively. Since these silica particles are practically made nonporous, they are useful as filler for plastic package.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は球状シリカ微粒子、特にはアルコキシシランの
加水分解で得られたシリカを火炎で乾燥、無孔化してな
る、粒度分布が狭く無孔質なことからプラスチックパッ
ケージ用充填剤として有用とされる球状シリカ微粒子お
よびその製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is made by drying spherical silica fine particles, particularly silica obtained by hydrolyzing alkoxysilane, with a flame to make it non-porous, and which has a narrow particle size distribution and is non-porous. The present invention relates to spherical silica fine particles that are useful as fillers for plastic packages due to their high quality, and a method for producing the same.

[従来の技術] シリカの製造方法については各種の方法が知られており
、アルコキシシランを加水分解して得られるシリカは粒
度分布が狭く、高純度のものになるが、これにはアルカ
リ触媒としてアンモニアを用いたNH,−H,0−アル
コール溶液中にアルコキシシラン−アルコール溶液を滴
下して粒径が0.02〜1 μmのシリカを得る方法(
J、 Co11oid InterfaceSci、 
26.62(1968)参照]、塩酸などの酸性触媒の
存在下に水および/またはアルコール溶液をアルコキシ
シランに添加して粒径1〜500μmのシリカを得る方
法(特開昭62−138335号公報参照)が)是案さ
れている。
[Prior Art] Various methods are known for producing silica, and the silica obtained by hydrolyzing alkoxysilane has a narrow particle size distribution and is highly pure. A method of obtaining silica with a particle size of 0.02 to 1 μm by dropping an alkoxysilane-alcohol solution into an NH, -H, 0-alcohol solution using ammonia (
J, Co11oid Interface Sci.
26.62 (1968)], a method of obtaining silica with a particle size of 1 to 500 μm by adding water and/or alcohol solution to alkoxysilane in the presence of an acidic catalyst such as hydrochloric acid (Japanese Patent Application Laid-open No. 138335/1982). ) is recommended.

しかし、これらの方法で得られるシリカは微細な細孔を
有するためにBET法による比表面積が10〜300+
++27gと非常に大きいので、これを例えばICなど
のプラスチックパッケージ用充填剤として使用すると、
その細孔内の空気を除去できず、パッケージの熱伝導度
が低下したり、またこの細孔を無孔化するためにスプレ
ードライヤーや抵抗加熱炉で加熱すると粒子同志が融着
したり、焼結を起こすという不利がある。
However, since the silica obtained by these methods has fine pores, the specific surface area by the BET method is 10 to 300+.
++It is very large at 27g, so if you use it as a filler for plastic packages such as ICs,
If the air inside the pores cannot be removed, the thermal conductivity of the package will decrease, and if the pores are heated with a spray dryer or resistance heating furnace to make them non-porous, the particles may fuse together or burn out. It has the disadvantage of causing knots.

そのため、このシリカを無孔化する方法が検討されてお
り、これについてはシリカ微粒子をスプレードライヤー
を用いて造粒し、酸水素火炎中で溶融する方法(特開昭
60−131868号公報参照)、シリカ微粒子含有ゾ
ルを凍結乾燥し、ついで焼成する方法(特開昭61−2
77527号公報参照)、アルコキシシランの部分加水
分解で得たシリカゾルをrIfi霧乾燥し、ついで熱分
解する方法(特開昭62−178208号公報参照)が
提案されている。
Therefore, a method of making this silica non-porous is being considered, and for this method, silica fine particles are granulated using a spray dryer and melted in an oxyhydrogen flame (see JP-A-60-131868). , a method of freeze-drying a sol containing fine silica particles and then firing it (Japanese Patent Laid-Open No. 61-2
77527), and a method in which silica sol obtained by partial hydrolysis of alkoxysilane is subjected to rIfi mist drying and then thermally decomposed (see Japanese Patent Laid-Open No. 178208/1983).

[発明が解決しようとする課題] しかし、シリカの無孔化のために造粒後、酸水素火炎で
溶融する方法にはスプレードライヤーで造粒すると粒度
分布が広くなるし、これを酸水素火炎で溶融すると粒子
同志が融着して得られる粒子の粒度分布がさらに広くな
り、さらには工程が長くなるという欠点があり、シリカ
ゾルを凍結乾燥し、焼成する方法には焼成工程での粒子
の融着を完全に抑えることができず、これも工程が長く
なるという不利がある。また、シリカゾルを噴霧し、熱
分解するという方法では得られる粒子の粒径が噴霧時に
おける液滴の径によって決定されるので粒度分布の広い
粒子しか得られないという欠点がある。
[Problems to be Solved by the Invention] However, in order to make silica non-porous, the method of granulating it and then melting it with an oxyhydrogen flame results in a wide particle size distribution when the silica is granulated with a spray dryer. If the silica sol is melted, the particles will fuse together, resulting in a wider particle size distribution, and the process will be longer. This has the disadvantage that it is not possible to completely suppress wear, and this also lengthens the process. Furthermore, the method of spraying silica sol and thermally decomposing it has the disadvantage that only particles with a wide particle size distribution can be obtained because the particle size of the particles obtained is determined by the diameter of the droplets at the time of spraying.

なお、このシリカ微粒子の無孔化についてはアルコキシ
シランの加水分解で得られたシリカ微粒子を含む溶液を
火炎中に導入することも提案されているが、これには火
炎の熱によって粒子同志が融着することを避けることが
できないという不利があり、この解決が望まれている。
In order to make the silica particles non-porous, it has been proposed to introduce a solution containing silica particles obtained by hydrolyzing alkoxysilane into a flame, but this method requires that the particles fuse together due to the heat of the flame. There is a disadvantage that it is impossible to avoid wearing clothes, so a solution to this problem is desired.

[課題を解決するための手段] 本発明はこのような不利・欠点を解決した球状シリカ微
粒子およびその製造方法に関するものであり、これは多
孔質度が1.0〜2.0であり、平均粒径が0.2〜5
.0μmで、平均粒径の変動係数が0.15以下である
ことを特徴とする球状微粒子シリカ、およびアルコキシ
シランを加水分解して得たシリカを火炎温度が500〜
1,300℃の火炎中で乾燥、無孔化してなることを特
徴とする前記球状シリカ微粒子の製造方法に関するもの
である。
[Means for Solving the Problems] The present invention relates to spherical silica fine particles that solve these disadvantages and drawbacks, and a method for producing the same, which has a porosity of 1.0 to 2.0 and an average Particle size is 0.2-5
.. Spherical fine particle silica characterized by having an average particle diameter of 0 μm and a coefficient of variation of 0.15 or less, and silica obtained by hydrolyzing alkoxysilane with a flame temperature of 500 to
The present invention relates to a method for producing the spherical silica fine particles, characterized in that the spherical silica particles are dried in a flame at 1,300°C to make them non-porous.

すなわち、本発明者らは粒度分布が狭く、無孔質である
球状シリカ微粒子の製造方法について種々検討した結果
、アルコキシシランを公知の加水分解法で処理して得た
シリカを火炎処理して無孔化する際に、この火炎の温度
を余り高くせず500〜1,300℃のものとすればシ
リカ微粒子を融着せずに無孔化し得ることを見出し、こ
れによれば粒度分布が狭く、無孔質とされた球状シリカ
微粒子を容易に、かつ効率的に得ることができることを
確認して本発明を完成させた。
That is, as a result of various studies by the present inventors on the production method of spherical silica fine particles that have a narrow particle size distribution and are non-porous, the present inventors have found that silica obtained by treating alkoxysilane with a known hydrolysis method is flame-treated to make it non-porous. It has been discovered that when forming pores, if the temperature of the flame is not too high and is set at 500 to 1,300°C, it is possible to make the silica fine particles non-porous without fusing them. According to this, the particle size distribution is narrow, The present invention was completed by confirming that nonporous spherical silica particles can be easily and efficiently obtained.

以下にこれをさらに詳述する。This will be explained in further detail below.

[作 用] 本発明の球状シリカ微粒子はアルコキシシランを加水分
解して得たシリカを火炎処理することによって得ること
ができる。
[Function] The spherical silica fine particles of the present invention can be obtained by flame treating silica obtained by hydrolyzing alkoxysilane.

このアルコキシシランの加水分解は公知の方法で行えば
よい。したがってこのアルコキシシランは一般式5t(
OR)iで示され、Rが炭素数1〜4のアルキル基であ
るもの、例えばテトラメトキシシラン、テトラエトキシ
シラン、テトラプロポキシシラン、テトラブトキシシラ
ンなどとすればよいが、これらのうちでは高純度化が容
易であり、安価であるテトラメトキシシラン、テトラエ
トキシシランが好ましいものとされる。
Hydrolysis of this alkoxysilane may be carried out by a known method. Therefore, this alkoxysilane has the general formula 5t (
OR) i and R is an alkyl group having 1 to 4 carbon atoms, such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, among which high purity Tetramethoxysilane and tetraethoxysilane are preferred because they are easy to prepare and are inexpensive.

このアルコキシシランの加水分解はこれまでに提案され
ているいかなる方法で行なってもよく、したがってこれ
はアルカリ性触媒、酸性触媒のいずれを使用してもよい
し、この加水分解の際に添加される有機溶媒の種類、量
についても制限はない、しかし、後記する火炎処理にお
いて残漬、不純物を発生するような物質は使用すべぎで
はなく、シたがって例えばアルカリ性触媒としてNaO
Hを使用すると火炎処理したあとにNaが残留し、これ
が金属不純物となるのでこのようなものは使用してはな
らない。
Hydrolysis of this alkoxysilane may be carried out by any method proposed so far, and therefore it may be carried out using either an alkaline catalyst or an acidic catalyst, or an organic catalyst added during this hydrolysis. There are no restrictions on the type or amount of solvent, but substances that leave residue or generate impurities during the flame treatment described later should not be used, so for example, NaO as an alkaline catalyst should not be used.
If H is used, Na will remain after flame treatment, and this will become a metal impurity, so such materials should not be used.

この加水分解により得られるシリカ球状微粒子について
は粒径が0.2μm以下であるとこの粒子の熱容量が小
さいために後記する火炎処理で融着してしまうし、これ
が5μm以上であるとその分散性の調整が難しくなるの
で、これは反応条件を調整して粒径が0.2〜5μmの
ものとする必要があるが、この反応条件についてはこの
シリカが調整すべき粒径となるように、そのアルコキシ
シランの種類、量、添加する水の量、触媒の種類、量、
有機溶媒の種類、量をこれまで提案されている方法にし
たがって決定すればよく、例えばテトラエトキシシラン
、アンモニア、水、エタノールを用いて0.5μ田の球
状シリカを得る場合には、前記した公知例の処理によっ
てテトラエトキシシランを0.28モル/1、アノモニ
アを0.8モル/1、水を12.5モル/JZとすれば
よい。
If the particle size of the silica spherical fine particles obtained by this hydrolysis is 0.2 μm or less, the particles will have a small heat capacity and will be fused during the flame treatment described later, whereas if the particle size is 5 μm or more, the dispersibility will be poor. This makes it difficult to adjust the particle size of silica, so it is necessary to adjust the reaction conditions so that the particle size is 0.2 to 5 μm. The type and amount of the alkoxysilane, the amount of water added, the type and amount of the catalyst,
The type and amount of the organic solvent may be determined according to the method proposed so far. For example, when obtaining 0.5 μm spherical silica using tetraethoxysilane, ammonia, water, and ethanol, the above-mentioned known method can be used. By the treatment in the example, the amount of tetraethoxysilane may be 0.28 mol/1, the amount of anomonia may be 0.8 mol/1, and the amount of water may be 12.5 mol/JZ.

このようにして得られたシリカスラリーは、ついで火炎
処理によって無孔化するのであるが、これはシリカスラ
リーを火炎中に噴霧して処理すればよい。しかし、この
火炎処理に当っては火炎の温度が500℃以下では無孔
化が完全に終了せず、しかもスラリー中の有機溶剤の不
完全燃焼によってシリカ中に微量の炭素分が残留するこ
とになり、1,300℃以上とするとシリカ粒子同志が
融着して分散性のよいシリカ球を得ることができなくな
るので、これは500〜1,300℃の範囲とする必要
がある。この火炎温度はフィードされた可燃性成分(可
燃性ガス、スラリー中の有機溶媒など)の燃焼により発
生する熱量と、これらを顕熱、潜熱として吸収するイナ
ート成分の量により決定されるため、これら可燃ガス、
スラリー イナートのフィード量により調整すればよい
、この火炎は酸水素炎でもメタン−酸素炎であってもよ
く、ここに使用する酸素ガスは必要量の70%未満とす
るとスラリー中の有機溶媒、可燃性ガスの不完全燃焼を
招くので70%以上とすることが必要とされるが、この
燃焼ガスに窒素、ヘリウム、水などの不活性成分を添加
することは火炎温度を調整することから有用とされる。
The silica slurry thus obtained is then rendered non-porous by flame treatment, which can be done by spraying the silica slurry into a flame. However, in this flame treatment, if the flame temperature is below 500°C, the process of making the silica non-porous will not be completed completely, and furthermore, a trace amount of carbon will remain in the silica due to incomplete combustion of the organic solvent in the slurry. If the temperature is 1,300°C or higher, the silica particles will fuse together, making it impossible to obtain silica spheres with good dispersibility. Therefore, the temperature needs to be in the range of 500 to 1,300°C. This flame temperature is determined by the amount of heat generated by the combustion of the fed combustible components (combustible gas, organic solvent in the slurry, etc.) and the amount of inert components that absorb these as sensible heat and latent heat. combustible gas,
This flame can be adjusted by adjusting the feed rate of the slurry inert. This flame may be an oxyhydrogen flame or a methane-oxygen flame. If the oxygen gas used here is less than 70% of the required amount, the organic solvent in the slurry However, adding inert components such as nitrogen, helium, and water to this combustion gas is useful because it adjusts the flame temperature. be done.

この火炎中へのシリカスラリーの噴霧は液体噴霧、超音
波噴霧など従来公知の方法で行えばよく、火炎中に噴霧
された液滴は火炎により瞬時に乾燥され、これに含有さ
れていた有機溶媒は燃焼するので、上記した加水分解で
得られた多孔質のシリカはこの燃焼熱によって無孔化さ
れて容易に、かつ効率よく無孔化された球状シリカ微粒
子となる。
Spraying of the silica slurry into the flame can be carried out by conventionally known methods such as liquid spraying or ultrasonic spraying, and the droplets sprayed into the flame are instantly dried by the flame, and the organic solvent contained in the droplets is instantly dried by the flame. is combusted, the porous silica obtained by the above-mentioned hydrolysis is made non-porous by the heat of combustion, and easily and efficiently becomes non-porous spherical silica fine particles.

このようにして得られた無孔質の球状シリカ微粒子はこ
の火炎処理によっても火炎温度が500〜1.300℃
とされているので融着せず、したがって平均粒径は上記
した加水分解時の平均粒径0.2〜5μmのままのもの
となる。
The nonporous spherical silica fine particles obtained in this way have a flame temperature of 500 to 1.300°C even after this flame treatment.
Therefore, the average particle size remains the same as the above-mentioned average particle size during hydrolysis of 0.2 to 5 μm.

また、多孔質度は細孔のない球状シリカ微粒子の比表面
積AS [m2/g]が平均粒径をD [rv]とする
と式 %式%(1) で示されるし、Dの単位をμmとすればA、 =2.7
2/D       ・・・(2)で示され、多孔質の
球状シリカ徹粒子は細孔が形成する表面があるために細
孔のない球状シリカ微粒子よりもその比表面積が大きく
なり、この細孔による表面を含む実測の比表面積S A
 [m2/glと上記した粒径より計算された理論値で
ある比表面積A3との比が多孔質度Pとして表わされる
In addition, the degree of porosity is expressed by the formula % (1) where the specific surface area AS [m2/g] of spherical silica fine particles without pores is the average particle diameter D [rv], and the unit of D is μm. Then A, =2.7
2/D...(2), porous spherical silica particles have a surface with pores, so their specific surface area is larger than that of spherical silica particles without pores, and these pores Measured specific surface area including the surface S A
[The ratio between m2/gl and the specific surface area A3, which is a theoretical value calculated from the above particle size, is expressed as the degree of porosity P.

P = S A/A、         ・・・(3)
したがって、完全な無孔賞球では実測される比表面積は
平坦な外皮表面分のみであるので、粒径基準の理論比表
面積(^、)と一致し、多孔質度Pは1.0となる。一
方、微細な細孔をもつ多孔質床では実測される比表面積
が外皮表面に加え、細孔による表面を含むので、理論比
表面積(八、)より大きくなり、Pは1.0以上となる
。上記した加水分解により得られた球状シリカは多くの
細孔をもつものであることから、例えば粒径が0.5μ
mのものはその実測比表面積S^が約sow”/gであ
り、このものの理論比表面積は上記(2)式からAs 
=2.7210.5 =5.44となるので、このとき
のPは5075.44= 9.19となるのである。こ
のようにP値が2以上では無孔化が不充分で充填剤とし
て用いた場合、問題が生じる。−力木発明の球状シリカ
微粒子は上記の条件の火炎処理で無孔質化されているの
で実質的に細孔をもたないものとなり、それ故に(3)
式中のSAが減少し、P値も2.0以下のものとなり、
充填剤としてすぐれたものとなる。
P=SA/A, ...(3)
Therefore, in a completely non-porous ball, the measured specific surface area is only the flat surface of the outer shell, so it matches the theoretical specific surface area (^,) based on the particle size, and the porosity P is 1.0. . On the other hand, in the case of a porous bed with fine pores, the actually measured specific surface area includes the surface of the pores in addition to the outer skin surface, so it is larger than the theoretical specific surface area (8), and P is 1.0 or more. . Since the spherical silica obtained by the above hydrolysis has many pores, the particle size is, for example, 0.5μ.
The actual specific surface area S^ of the one with m is about sow''/g, and the theoretical specific surface area of this one is given by the above equation (2).
=2.7210.5 =5.44, so P at this time becomes 5075.44=9.19. As described above, when the P value is 2 or more, the non-porous property is insufficient and problems arise when used as a filler. - The spherical silica fine particles of Rikiki's invention are made non-porous by flame treatment under the above conditions, so they have virtually no pores, and therefore (3)
The SA in the formula decreases, the P value also becomes less than 2.0,
It is an excellent filler.

また、ここに得られた球状シリカ微粒子の粒径のバラつ
き(単分散性)は標準偏差σと平均粒径りとの比で示さ
れる変動係数CVで表わされ、CV−σ/D     
  ・・・(4)このCvはバラつきの少ない程小さく
なるが、本発明の球状シリカ微粒子はアルコキシシラン
の加水分解によって得られた単分散性の良好な状態のも
のがそのまま火炎処理によって乾燥、無孔化され、この
ものは融着することもないのでこの変動係数CVは0.
15以下と非常に小さいものになる。
In addition, the variation in particle size (monodispersity) of the obtained spherical silica fine particles is expressed by the coefficient of variation CV, which is the ratio of the standard deviation σ to the average particle size, and CV-σ/D
(4) This Cv becomes smaller as the variation decreases, but the spherical silica fine particles of the present invention are obtained by hydrolyzing alkoxysilane and are in a good state of monodispersity. The coefficient of variation CV is 0.
It is very small, less than 15.

[実施例] つぎに本発明の実施例および比較例をあげるが、例示し
た写真は走査型電子顕微fiT−20[日本電子■製]
を用いて撮影した電子顕微鏡写真であり、この球状シリ
カ微粒子の平均粒径、標準偏差はこの電子顕微鏡から測
定したもの、また比表面積はマイクロメテリックス・フ
ローソーブn −2300形[島原製作所■製]を用い
て測定したものである。
[Example] Next, Examples and Comparative Examples of the present invention will be given. The illustrated photographs are taken using a scanning electron microscope fiT-20 [manufactured by JEOL Ltd.]
This is an electron micrograph taken using an electron microscope.The average particle size and standard deviation of the spherical silica particles are those measured using this electron microscope, and the specific surface area is Micrometelix Flowsorb N-2300 type [manufactured by Shimabara Seisakusho ■] It was measured using

実施例1 温度計およびプロペラ型攪拌翼を設けた51のフラスコ
に、2.9%アンモニア水880m! 、水410mA
’ 、メタノール2 、086m1!を仕込んで内温を
20℃に保ち、フラスコ内を600rpmで攪拌しなが
らここにテトラメトキシシラン68.4mjとメタノー
ル440mjどの混合溶液を75分かけて滴下し、滴下
終了後も15分間攪拌を行なったところ、白色のスラリ
ーが得られ、このスラリーにはシリカ分7.0%、水2
0.9%、メタノール67.0%、アンモニア5.1%
が含まれていた。
Example 1 880 m of 2.9% ammonia water was placed in a 51 flask equipped with a thermometer and a propeller type stirring blade! , water 410mA
', methanol 2, 086ml! While stirring the inside of the flask at 600 rpm, a mixed solution of 68.4 mj of tetramethoxysilane and 440 mj of methanol was added dropwise over 75 minutes, and stirring was continued for 15 minutes after the addition was completed. As a result, a white slurry was obtained, and this slurry contained 7.0% silica and 22% water.
0.9%, methanol 67.0%, ammonia 5.1%
was included.

ついで、このスラリーを酸素ガスと共に火炎温度を1,
180℃に調整した酸水素火炎中に噴霧し、生成した微
粒子をバッグフィルターで捕集したところ、白色のシリ
カ粉末が得られた。
Next, this slurry was heated with oxygen gas to a flame temperature of 1.
When it was sprayed into an oxyhydrogen flame adjusted to 180°C and the generated fine particles were collected with a bag filter, white silica powder was obtained.

なお、この火炎温度はバーナーに供給する水素量および
発生する燃焼熱を顕然として奪うためバーナーに供給す
るイナートとしてのN2ガス量により調整した。
Note that this flame temperature was adjusted by the amount of hydrogen supplied to the burner and the amount of N2 gas as inert supplied to the burner in order to clearly take away the generated combustion heat.

つぎにこのシリカ粉末を電子顕微鏡で撮影したところ、
第1図に示したものが得られ、これよりその平均粒径、
標準偏差をしらべたところ、この平均粒径は0.64μ
m%標準偏差は0.078μmであり、変動係数は0.
122 、またBET表面積は4.5m27gでその多
孔質度は1.06であった。
Next, when we photographed this silica powder using an electron microscope, we found that
The particles shown in Figure 1 were obtained, and from this, the average particle size,
When we looked at the standard deviation, the average particle size was 0.64μ.
The m% standard deviation is 0.078 μm, and the coefficient of variation is 0.
122, and the BET surface area was 4.5 m27 g, and its porosity was 1.06.

実施例2.比較例1〜2 実施例1で得られたスラリーを酸素ガスと共に火炎温度
を804℃(実施例2 ) 、 1,380℃(比較例
1 ) 、450℃(比較例2)に調整した酸水素火炎
中に噴霧して乾燥、無孔化処理し、生成した微粒子をバ
ッグフィルターで捕集したところ、実施例2.比較例1
では白色粉末が得られたが、比較例2では薄茶色に着色
した粉末が得られた。
Example 2. Comparative Examples 1 to 2 Oxyhydrogen prepared by adding oxygen gas to the slurry obtained in Example 1 and adjusting the flame temperature to 804°C (Example 2), 1,380°C (Comparative Example 1), or 450°C (Comparative Example 2) Example 2 was sprayed into a flame, dried and treated to make it non-porous, and the generated fine particles were collected with a bag filter. Comparative example 1
In Comparative Example 2, a white powder was obtained, but in Comparative Example 2, a light brown colored powder was obtained.

つぎにこれらの粉末の電子顕微鏡写真を撮影したところ
、実施例のものは第2図、比較例1のものは第3図、比
較例2のものは第゛4図に示したとおりのものとなり、
これから測定したこれらの粉末の平均粒径、標準偏差、
および変動係数、ならびに比表面積、多孔質度について
は第1表に示したとおりの結果が得られ、これより比較
例1ではシリカの融着があり、比較例2では無孔化の完
了していないことが確認された。
Next, electron micrographs of these powders were taken, and the results were as shown in Figure 2 for Example, Figure 3 for Comparative Example 1, and Figure 4 for Comparative Example 2. ,
The average particle size, standard deviation, and
The results shown in Table 1 were obtained for the coefficient of variation, specific surface area, and porosity, and it can be seen that in Comparative Example 1, there was fusion of silica, and in Comparative Example 2, no porosity was completed. It was confirmed that there was no such thing.

第  1  表 [発明の効果] 本発明は前記したように、多孔質度が1.0〜2.0で
あり、平均粒径が0.2〜5.0μmで、平均粒径の変
動係数が0.15である球状シリカ微粒子およびアルコ
キシシランの加水分解で得たシリカを500〜1,30
0℃の火炎中で乾燥、無孔化した上記した球状シリカ微
粒子の製造方法に関するものであるが、この球状シリカ
微粒子は実質的に無孔質化されているのでプラスチック
パッケージ用充填剤として有用とされるものであり、こ
の製造方法によれば目的とする球状シリカ微粒子を容易
にかつ効率的に得ることができるという有利性が与えら
れる。
Table 1 [Effects of the Invention] As described above, the present invention has a porosity of 1.0 to 2.0, an average particle size of 0.2 to 5.0 μm, and a coefficient of variation of the average particle size. Spherical silica fine particles with a particle size of 0.15 and silica obtained by hydrolysis of alkoxysilane have a particle size of 500 to 1,30
The present invention relates to a method for producing the above-mentioned spherical silica fine particles which are dried in a flame at 0°C and made non-porous.Since the spherical silica fine particles are substantially non-porous, they are useful as fillers for plastic packages. This production method has the advantage that the desired spherical silica fine particles can be obtained easily and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1で得られた球状シリカ微粒子
の構造を示す電子顕微鏡写真、第2図は本発明の実施例
2で得られた球状シリカ微粒子の構造を示す電子顕微鏡
写真、第3図は比較例1で得られた球状シリカ微粒子の
構造を示す電子顕微鏡写真、第4図は比較例2で得られ
た球状シリカ微粒子の構造を示す電子顕微鏡写真である
。 図
FIG. 1 is an electron micrograph showing the structure of spherical silica fine particles obtained in Example 1 of the present invention, FIG. 2 is an electron micrograph showing the structure of spherical silica fine particles obtained in Example 2 of the present invention, FIG. 3 is an electron micrograph showing the structure of the spherical silica fine particles obtained in Comparative Example 1, and FIG. 4 is an electron micrograph showing the structure of the spherical silica fine particles obtained in Comparative Example 2. figure

Claims (1)

【特許請求の範囲】 1、多孔質度が1.0〜2.0であり、平均粒径が0.
2〜5.0μmで、平均粒径の変動係数が0.15以下
であることを特徴とする球状シリカ微粒子。 2、アルコキシシランを加水分解して得た微細球状シリ
カを含む溶液を火炎温度が500〜1,300℃の火炎
中で乾燥、無孔化してなることを特徴とする請求項1に
記載の球状シリカ微粒子の製造方法。
[Claims] 1. The porosity is 1.0 to 2.0, and the average particle size is 0.
Spherical silica fine particles having a mean particle diameter of 2 to 5.0 μm and a coefficient of variation of 0.15 or less. 2. The spherical shape according to claim 1, which is obtained by drying a solution containing fine spherical silica obtained by hydrolyzing an alkoxysilane in a flame at a flame temperature of 500 to 1,300°C to make it non-porous. Method for producing silica fine particles.
JP11909289A 1989-05-12 1989-05-12 Spherical silica particle and its production Granted JPH02296711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11909289A JPH02296711A (en) 1989-05-12 1989-05-12 Spherical silica particle and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11909289A JPH02296711A (en) 1989-05-12 1989-05-12 Spherical silica particle and its production

Publications (2)

Publication Number Publication Date
JPH02296711A true JPH02296711A (en) 1990-12-07
JPH0470257B2 JPH0470257B2 (en) 1992-11-10

Family

ID=14752702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11909289A Granted JPH02296711A (en) 1989-05-12 1989-05-12 Spherical silica particle and its production

Country Status (1)

Country Link
JP (1) JPH02296711A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786505A2 (en) * 1996-01-25 1997-07-30 W.L. GORE &amp; ASSOCIATES, INC. Adhesive-filler film composite and method of making
WO2000068300A1 (en) * 1999-05-06 2000-11-16 Merck Patent Gmbh Method for producing bead polymers
WO2006030782A1 (en) * 2004-09-14 2006-03-23 Japan Science And Technology Agency Ceramic particle group and method for production thereof and use thereof
US7070748B2 (en) 2000-09-27 2006-07-04 Mitsubishi Rayon Co., Ltd. Non-porous spherical silica and method for production thereof
JP2012504094A (en) * 2008-09-30 2012-02-16 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Zirconium oxide powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272514A (en) * 1985-09-25 1987-04-03 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Spherical sio2 particle
JPS63310714A (en) * 1988-06-07 1988-12-19 Tokuyama Soda Co Ltd Silica particles
JPH01145317A (en) * 1987-12-01 1989-06-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of spherical fine particle of silica
JPH02288A (en) * 1987-12-18 1990-01-05 Beecham Group Plc Substituted penem derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272514A (en) * 1985-09-25 1987-04-03 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Spherical sio2 particle
JPH01145317A (en) * 1987-12-01 1989-06-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of spherical fine particle of silica
JPH02288A (en) * 1987-12-18 1990-01-05 Beecham Group Plc Substituted penem derivative
JPS63310714A (en) * 1988-06-07 1988-12-19 Tokuyama Soda Co Ltd Silica particles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786505A2 (en) * 1996-01-25 1997-07-30 W.L. GORE &amp; ASSOCIATES, INC. Adhesive-filler film composite and method of making
EP0786505A3 (en) * 1996-01-25 1998-10-21 W.L. GORE &amp; ASSOCIATES, INC. Adhesive-filler film composite and method of making
WO2000068300A1 (en) * 1999-05-06 2000-11-16 Merck Patent Gmbh Method for producing bead polymers
US6492471B1 (en) 1999-05-06 2002-12-10 Merck Patent Gesellschaft Mit Beschraenkter Haftung Method for producing bead polymers
US7070748B2 (en) 2000-09-27 2006-07-04 Mitsubishi Rayon Co., Ltd. Non-porous spherical silica and method for production thereof
WO2006030782A1 (en) * 2004-09-14 2006-03-23 Japan Science And Technology Agency Ceramic particle group and method for production thereof and use thereof
JPWO2006030782A1 (en) * 2004-09-14 2008-05-15 独立行政法人科学技術振興機構 Ceramic particle group, method for producing the same and use thereof
KR100898218B1 (en) * 2004-09-14 2009-05-18 재팬 사이언스 앤드 테크놀로지 에이젼시 Ceramic Particle Group and Method for Production Thereof and Use Thereof
US7749429B2 (en) 2004-09-14 2010-07-06 Japan Science And Technology Agency Ceramic particle group and method for production thereof and use thereof
US8153255B2 (en) 2004-09-14 2012-04-10 Japan Science And Technology Agency Ceramic particle group comprising sintered particles of hydroxyapatite
JP2012504094A (en) * 2008-09-30 2012-02-16 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Zirconium oxide powder

Also Published As

Publication number Publication date
JPH0470257B2 (en) 1992-11-10

Similar Documents

Publication Publication Date Title
JP3938426B2 (en) Oxides obtained by pyrolysis, doped with aerosols
US6360563B1 (en) Process for the manufacture of quartz glass granulate
KR100232438B1 (en) Pyrogenic silica, process for the production thereof and use
US6423331B1 (en) Bactericidal silicon dioxide doped with silver
JPS6022665B2 (en) Method of manufacturing insulation mixture
JPH02296711A (en) Spherical silica particle and its production
TW593182B (en) Glass powder and manufacturing method therefor
JP3270448B2 (en) Glycol containing silicon dioxide
US20030029194A1 (en) Pyrogenic oxides doped with erbium oxide
JPS58207938A (en) Manufacture of fine ceramic particle
JP2002179409A (en) Method of manufacturing fine spherical inorganic powder
JP2001199719A (en) Method for producing spherical alumina powder
JP3525677B2 (en) Filler for IC substrate and resin composition for IC encapsulation
JPS59152215A (en) Production of high-purity silica beads
JP4313924B2 (en) Spherical silica powder and method for producing the same
TW202016023A (en) A fabirication method of fine spherical alumina powder
JP4392097B2 (en) Method for producing ultrafine spherical silica
JPH0764547B2 (en) Silica balloon manufacturing method
JP4231014B2 (en) Method for producing spherical inorganic oxide powder
JP4145855B2 (en) Method for producing spherical fused silica powder
JP2000143229A (en) DRYING METHOD OF SILICON DIOXIDE (SiO2)-SUSPENSION AT HIGH TEMPERATURE
JP2023135320A (en) Method for manufacturing granulated silica powder
JPH0733427A (en) Production of spherical silica fine powder controlled in pore structure
JP4353404B2 (en) Method for producing bubble-containing silica glass
JPS62270415A (en) Production of spherical silica