JPH0733427A - Production of spherical silica fine powder controlled in pore structure - Google Patents

Production of spherical silica fine powder controlled in pore structure

Info

Publication number
JPH0733427A
JPH0733427A JP5202738A JP20273893A JPH0733427A JP H0733427 A JPH0733427 A JP H0733427A JP 5202738 A JP5202738 A JP 5202738A JP 20273893 A JP20273893 A JP 20273893A JP H0733427 A JPH0733427 A JP H0733427A
Authority
JP
Japan
Prior art keywords
silicate ion
spherical silica
aqueous solution
silicate
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5202738A
Other languages
Japanese (ja)
Inventor
Akishi Ueno
晃史 上野
Noriyoshi Tsunoda
範義 角田
Ikutomo Mizushima
生智 水嶋
Takahiro Tanabe
貴弘 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie Catalysts Japan Inc
Original Assignee
Nissan Girdler Catalysts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Girdler Catalysts Co Ltd filed Critical Nissan Girdler Catalysts Co Ltd
Priority to JP5202738A priority Critical patent/JPH0733427A/en
Publication of JPH0733427A publication Critical patent/JPH0733427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain spherical silica fine powder controlled in a pore structure by controlling the viscosity of silicate ion-containing aq. soln. as the indication of the polymerization degree of the silicate ion and thermal decomposition temp. in a atomized combustion method. CONSTITUTION:In the production method for the atmized combustion method spherical silica in which the aq. soln. containing the silicate ion consisting of alkoxy-silicon, water and small amount of acid is changed into misty state by an ultrasonic vibrator, then the mist is introduced to a high temp. heating combustion device together with air or gaseous oxygen to decompose by heat, the objective spherical silica powder is obtained by controlling the viscosity of silicate ion-containing aq. soln. as the indication of the polymerization degree of the silicate ion and thermal decomposition temp. The concn. of silicate ion in the silicate ion aq. soln. is within the range of 0.05-2.0mol/l. When the concn. is <=0.05mol/l, the efficiency of an oxide powder production is low, and the concn. is >=2.0mol/l, the gelation of the silicate ion is liable to occur according to the progress of an aging, and it becomes difficult to maintain a solution state, on the other hand, the acid amount to be added is required to be 0.01-0.03 times per the concn. of the silicate ion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルコキシシリコンを熱
分解することによリ球状シリカ粉体を製造するものであ
り、この方法によって製造されたシリカ粉体は吸着剤、
触媒担体、或いは分離、分析用クロマトグラフ担体とし
て使用することが出来る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to produce a spherical silica powder by thermally decomposing an alkoxy silicon. The silica powder produced by this method is an adsorbent,
It can be used as a catalyst carrier or a chromatographic carrier for separation and analysis.

【0002】[0002]

【従来の技術】シリカは一般に高表面積、高細孔容積を
有しており、脱水剤、乾燥剤、クロマトグラフ用吸着
剤、或いは触媒担体等として広く利用されており、特に
シリカゲルは工業用材料としての他に一般家庭における
各種日用品の品質を保持するための吸湿防止剤としても
大量に使用される等、シリカ製品の適用は多岐にわたっ
ており、産業活動を支える基礎材料の一つとして無くて
はならない物質である。
Silica generally has a high surface area and a high pore volume, and is widely used as a dehydrating agent, a desiccant, a chromatographic adsorbent, a catalyst carrier, etc. In particular, silica gel is an industrial material. Besides, it is used in large quantities as a moisture absorption inhibitor to maintain the quality of various daily necessities in general households, and the application of silica products is wide-ranging, and it is indispensable as one of the basic materials supporting industrial activities. It is a substance that does not become.

【0003】通常使用されるシリカは珪酸ナトリウム
(水ガラス)水溶液を塩酸等の鉱酸で中和することによ
り沈殿物として析出させ、これを水洗、乾燥、必要に応
じて焼成することによっているが、その他にも幾種類か
の製造法があり、例えばシリカゾルを加熱された非極性
溶媒中に噴霧圧入することによってゲル化させる方法、
珪酸塩水溶液をエマルジョン化し、次いで界面重合させ
る方法、アルコキシシリコンを有機溶媒中にて加水分解
する方法、或いは珪素化合物を加熱下に熱分解する方法
等によって製造することが出来る。
[0003] Normally used silica is formed by precipitating as a precipitate by neutralizing an aqueous solution of sodium silicate (water glass) with a mineral acid such as hydrochloric acid, washing it with water, drying it, and firing it if necessary. , There are several other manufacturing methods, for example, a method of gelling by spray-pressing silica sol into a heated non-polar solvent,
It can be produced by a method of emulsifying an aqueous solution of silicate and then performing interfacial polymerization, a method of hydrolyzing alkoxy silicon in an organic solvent, a method of thermally decomposing a silicon compound under heating, and the like.

【0004】これら製造法は湿式法及び乾式法に区分す
ることが出来、夫々特徴あるシリカ粉体が得られ、例え
ば湿式法によるシリカ粉体の場合、特にアルコキシシリ
コンを有機溶媒中で加水分解することによって製造され
たシリカ粉体はその粒度分布が狭く分散性に優れた粉体
を得る方法であるとされているが、通常は微細一次粒子
が複雑に凝集した粒子として得られるためにその形状は
不均一になり易く、高表面積、高細孔容積を有する粉体
ではあるがその粒度分布はブロードで、分散性の良好な
粉体を得ることは困難である。
These production methods can be classified into a wet method and a dry method, and each has a characteristic silica powder. For example, in the case of a silica powder by a wet method, alkoxy silicon is hydrolyzed in an organic solvent. The silica powder produced by the method is said to be a method of obtaining a powder having a narrow particle size distribution and excellent dispersibility, but since the fine primary particles are usually obtained as complicatedly agglomerated particles, their shape Is likely to be non-uniform and has a high surface area and a high pore volume, but its particle size distribution is broad and it is difficult to obtain a powder having good dispersibility.

【0005】これに対して乾式法による場合は通常のシ
リカとは物性を異にしたものが得られ、例えば珪素を予
め揮発性を有する塩化物となし、次いで気化した後酸素
及び水素の混合気流炎中に導入し、熱分解することによ
って得たシリカは超微粒子状無水シリカと呼ばれ、ほぼ
完全な球状微粒子からなる粒子径の揃った粉体が得ら
れ、凝集性が少なく、小嵩比重であると共に分散性の優
れた通称アエロシルと呼ばれるシリカ微粒子を得ること
が出来る。
On the other hand, in the case of the dry method, those having physical properties different from those of ordinary silica can be obtained. For example, silicon is made into a chloride having volatility in advance, and then vaporized and then mixed gas flow of oxygen and hydrogen is obtained. Silica obtained by introducing it into a flame and thermally decomposing it is called ultrafine anhydrous silica, and it is possible to obtain a powder of almost perfect spherical fine particles with a uniform particle size, low cohesiveness, and small bulk specific gravity. It is also possible to obtain silica fine particles commonly referred to as "Aerosil" having excellent dispersibility.

【0006】このシリカ微粒子製造においては珪素は予
め塩化珪素のような揮発性物質に変換され、次いで気化
した後に熱分解されるのに対し、最近無機化合物水溶液
或いはその混合水溶液、若しくは珪素化合物含有水溶液
等を超音波振動器によって霧化させ、空気或いは酸素ガ
スに同伴させて高温加熱焼成器中に送入し、熱分解する
ことによる金属酸化物或いは金属複合酸化物微粒子、若
しくはシリカ粉体等の製造法が提案されている。
In the production of silica fine particles, silicon is converted into a volatile substance such as silicon chloride in advance, and then vaporized and then thermally decomposed, whereas recently, an inorganic compound aqueous solution or a mixed aqueous solution thereof, or a silicon compound-containing aqueous solution is used. Etc. are atomized by an ultrasonic vibrator, entrained in air or oxygen gas and fed into a high temperature heating / calcining device, and thermally decomposed to produce metal oxide or metal composite oxide fine particles, or silica powder, etc. Manufacturing methods have been proposed.

【0007】この方法は噴霧熱分解法或いは噴霧燃焼法
と呼ばれ、高機能性焼結セラミックス用原料としてその
形状、粒度分布、平均粒子径等の粉体の微細構造が制御
された粉体原料への要求に応えるために考案された微粉
体製造方法であり、例えば窯業協会誌、第94巻、8号
(1986年)、813〜817ページ中には金属アル
コキサイドの超音波噴霧熱分解法によるチタン酸ストロ
ンチウム球状粒子の製造法が、日本セラミック協会学術
論文誌、第97巻、4号(1989年)、407〜41
2ページ中には噴霧熱分解法によるチタン酸鉛或いはジ
ルコン酸鉛の製造法が夫々示されている。
This method is called a spray pyrolysis method or a spray combustion method and is a raw material for highly functional sintered ceramics in which the fine structure of the powder such as shape, particle size distribution and average particle diameter is controlled. Is a method for producing fine powders that has been devised in order to meet the demands of, for example, ceramics association magazine, Vol. 94, No. 8 (1986), pages 813 to 817 by ultrasonic spray pyrolysis of metal alkoxide. A method of producing spherical particles of strontium titanate is described in Journal of Ceramic Society of Japan, Vol. 97, No. 4, (1989), 407-41.
On page 2, the production method of lead titanate or lead zirconate by spray pyrolysis is shown, respectively.

【0008】一方、化学工業、第40巻、12号(19
89年)、1030〜1034ページには噴霧燃焼法に
よる球状シリカの製造法が示されおり、その方法として
珪酸メチル水溶液に硝酸を添加し、次いで超音波振動器
によって霧状となした後熱分解することによっている
が、その中で生成シリカ微粒子の粒子径を揃える方法が
示されており、珪酸メチル水溶液を予め熱処理すること
によって珪酸イオンの加水分解或いは縮重合を生起さ
せ、その高分子化を促進するか、若しくは珪酸イオン含
有水溶液にメタノールを添加した後熱分解することによ
っている。
On the other hand, Chemical Industry, Vol. 40, No. 12 (19
(1989), pages 1030 to 1034 show a method for producing spherical silica by the spray combustion method. As the method, nitric acid is added to an aqueous solution of methyl silicate, and then atomized by an ultrasonic vibrator and then pyrolyzed. However, there is a method of making the particle diameters of the silica fine particles produced therein uniform, in which the aqueous solution of methyl silicate is pre-heated to cause hydrolysis or polycondensation of silicate ions and to increase the polymerization. It is promoted or by adding methanol to the silicate ion-containing aqueous solution and then thermally decomposing it.

【0009】微粒子粉体の工業的な利用において、その
粒子径が揃っていることはその焼結によってセラミック
スを製造するような場合は重要であるが、吸着剤或いは
触媒担体としての利用においては高表面積、高細孔容積
を有する粉体であることが一般に重要であり、更により
優れた材料としてこれらの用途に高度利用出来るように
するためには、表面積、細孔容積に加えて平均細孔径或
いは細孔径分布等が制御された粉体であることが好まし
く、例えばシリカと並んで触媒担体等への利用が普遍化
しているアルミナにおいては、これら物性の制御法につ
いて多くの研究が見られるのに対し、シリカの場合物性
制御に関する研究は少なく、とくに噴霧燃焼法による球
状シリカにおいてはその製造法自身が新しく、これ迄に
はシリカ粒子径の制御法についての知見が学術誌中に若
干示されているに過ぎない。
In industrial use of fine particle powders, it is important that the particle diameters are uniform when ceramics are produced by sintering, but it is high in use as an adsorbent or a catalyst carrier. It is generally important that the powder has a surface area and a high pore volume, and in order to be highly applicable to these applications as an even better material, in addition to the surface area and the pore volume, the average pore diameter Alternatively, it is preferable that the powder has a controlled pore size distribution and the like. For example, in the case of alumina, which is commonly used as a catalyst carrier along with silica, many studies have been made on methods for controlling these physical properties. On the other hand, in the case of silica, there have been few studies on physical property control, and in particular, in the case of spherical silica produced by the spray combustion method, the production method itself is new, and the silica particle size Knowledge of Minori is not only to have been shown slightly in academic journals.

【0010】[0010]

【発明が解決しようとする課題】シリカのような多孔質
無機酸化物の利用において、性能の優れた吸着剤或いは
触媒担体となすためには、制御された粒子径を有する粉
体であることは好ましいが、それ以上に表面積、細孔容
積、細孔径分布、或いは平均細孔径等の物性が所定の範
囲に調節されていることが望ましく、噴霧燃焼法におけ
るシリカ製造法においてはこれら物性制御に関しての技
術的手法は未知であり、その有効利用を図るためにも容
易に適用出来る物性制御法の確立が必要である。
In using a porous inorganic oxide such as silica, in order to form an adsorbent or a catalyst carrier having excellent performance, a powder having a controlled particle size is required. It is preferable, however, that the physical properties such as surface area, pore volume, pore size distribution, or average pore size are preferably adjusted within a predetermined range, and in the silica production method in the spray combustion method, these physical properties control The technical method is unknown, and it is necessary to establish a physical property control method that can be easily applied in order to effectively use it.

【0011】[0011]

【課題を解決するための手段】噴霧燃焼法は超音波振動
器を用いて原料水溶液を霧状となし、これを空気或いは
酸素ガスと共に高温加熱燃焼器中に導入し、熱分解する
ことによる酸化物微粒子を製造する方法であり、霧状化
した原料微液滴の燃焼を短時間で行うために緻密な微粒
子が得られること、その組成は原料水溶液の金属イオン
組成をそのまま反映していること、粒子の形状が真球状
で粒径分布が比較的狭いこと等の特徴ある酸化物粉体を
得ることが出来る方法である。
In the spray combustion method, an aqueous solution of raw material is atomized using an ultrasonic vibrator, and this is introduced into a high temperature heating combustor together with air or oxygen gas, and is oxidized by thermal decomposition. It is a method for producing fine particles of fine particles, and fine particles can be obtained because combustion of atomized raw material fine droplets is carried out in a short time, and its composition reflects the metal ion composition of the raw material aqueous solution as it is. It is a method that can obtain an oxide powder characterized in that the shape of particles is spherical and the particle size distribution is relatively narrow.

【0012】本発明者等は以前より噴霧燃焼法による球
状シリカの製造法について研究を重ね、原料用金属水溶
液の製造法、シリカの形状或いはその物理的性状を中心
に検討して来たが、その中で珪酸メチル水溶液に硝酸を
加え、次いで加熱処理することによって珪酸イオンの加
水分解及びその縮重合を生起させ、その高分子化を促進
させた水溶液、或いは珪酸メチル含有液にメタノールを
添加した水溶液を熱分解することによって高濃度珪酸イ
オン水溶液から粒子径の揃った球状シリカが得られるこ
とを明らかにした。
The inventors of the present invention have long conducted research on a method for producing spherical silica by the spray combustion method, and have mainly studied the method for producing an aqueous metal solution as a raw material, the shape of silica or its physical properties. Then, nitric acid was added to the aqueous solution of methyl silicate, and then heat treatment was performed to cause hydrolysis of the silicate ion and its polycondensation, and methanol was added to the aqueous solution in which its polymerization was promoted or the solution containing methyl silicate. It was clarified that spherical silica with uniform particle size can be obtained from highly concentrated silicate ion aqueous solution by pyrolyzing the aqueous solution.

【0013】噴霧燃焼法による球状シリカの有効利用を
図るためには、均一な粒子径の酸化物が得られることは
好ましいが、多孔質酸化物としてのシリカが有する表面
積、細孔容積、細孔径分布、平均細孔径等の細孔構造を
目的に合った物性に制御出来ればその適用範囲は拡大
し、例えば吸着剤、触媒担体等において優れた選択性を
確保することへの要求に応えることが出来、その高度利
用が可能になることに鑑み、更に噴霧燃焼法による球状
シリカの製造法を検討した。
In order to effectively utilize spherical silica by the spray combustion method, it is preferable to obtain an oxide having a uniform particle diameter, but the surface area, pore volume, and pore diameter of silica as a porous oxide are preferable. If the pore structure such as distribution and average pore diameter can be controlled to physical properties suitable for the purpose, its application range will be expanded, and it is possible to meet the demand for securing excellent selectivity in adsorbents, catalyst carriers, etc. In view of the fact that it can be produced and can be used at a high level, a method for producing spherical silica by the spray combustion method was further investigated.

【0014】噴霧燃焼法による球状シリカ製造において
は、アルコキシシリコン水溶液が使用されるが、水溶液
をそのまま霧状化することによって熱分解を行うと、そ
の反応過程の中で炭素成分の燃焼による消失に加え、珪
素分の飛散が起こり、生成シリカ粒子が不均一化してし
まうので、その防止策として水溶液を前処理することに
より珪酸イオンの加水分解及び縮重合を行い、それを高
分子化させておくことが必要であり、その前処理法とし
て珪酸イオン含有水溶液を70〜90℃の範囲で設定し
た特定温度に保持すると共に、特定の時間熟成を行うこ
とによってその高分子化を促進し、許容される粘度範囲
の粘性を有する珪酸イオン含有水溶液となした後超音波
振動器によって霧状となし、次いで高温加熱燃焼器に導
いて熱分解することにより球状シリカを製造した。
In the production of spherical silica by the spray combustion method, an aqueous solution of alkoxysilicon is used. However, if the aqueous solution is atomized as it is for thermal decomposition, it disappears due to combustion of carbon components during the reaction process. In addition, since scattering of silicon occurs and the generated silica particles become non-uniform, as a preventive measure, the aqueous solution is pre-treated to hydrolyze and polycondense the silicate ions to polymerize them. As a pretreatment method, the silicate ion-containing aqueous solution is maintained at a specific temperature set in the range of 70 to 90 ° C., and aging is carried out for a specific time to accelerate the polymerization thereof, which is acceptable. After it is made into an aqueous solution containing silicate ions having a viscosity within the range of viscosity, it is atomized by an ultrasonic vibrator and then introduced into a high temperature heating combustor for thermal decomposition. It was produced spherical silica by.

【0015】得られた球状シリカの物性を測定したとこ
ろ、驚くべきことに非常に大きな表面積を有した酸化物
粉体が得られ、球状シリカ粒子粉体の粒子径を揃えるこ
とを目的とした珪酸イオン含有水溶液前処理としての単
なる加熱処理の後、熱分解して得た球状シリカ粉体が2
0〜30m2/gの表面積であったのに対して、本前処
理法を施した後に熱分解することによって得たシリカ粉
体はこれよりもはるかに大きな200〜400m2/g
の表面積を有していた。
When the physical properties of the obtained spherical silica were measured, surprisingly, an oxide powder having a very large surface area was obtained, and silicic acid for the purpose of making the particle diameters of the spherical silica particle powder uniform. Spherical silica powder obtained by thermal decomposition after mere heat treatment as a pretreatment for an ion-containing aqueous solution is 2
While the surface area was 0 to 30 m 2 / g, the silica powder obtained by subjecting this pretreatment method to thermal decomposition had a much larger surface area of 200 to 400 m 2 / g.
Had a surface area of.

【0016】本発明における珪酸イオン水溶液はアルコ
キシシリコン水溶液に少量の酸を加えた水溶液であり、
アルコキシシリコン化合物としては珪酸メチル、珪酸エ
チル、珪酸プロピル、珪酸ブチル等の珪酸エステル類を
使用することが出来、又添加される酸としては硝酸、塩
酸等の鉱酸類、或いは蟻酸、酢酸、プロピオン酸、蓚
酸、酒石酸等の有機酸類を使用することが出来る。
The silicate ion aqueous solution in the present invention is an aqueous solution obtained by adding a small amount of acid to an alkoxysilicon aqueous solution,
Silicic acid esters such as methyl silicate, ethyl silicate, propyl silicate and butyl silicate can be used as the alkoxy silicon compound, and mineral acids such as nitric acid and hydrochloric acid, or formic acid, acetic acid and propionic acid can be used as the added acid. Organic acids such as oxalic acid and tartaric acid can be used.

【0017】珪酸イオン水溶液における珪酸イオン濃度
は0.05〜2.0モル/リットル、好ましくは0.1
〜1.0モル/リットルの範囲であり、その濃度が0.
05モル/リットル以下では酸化物粉体製造の効率が悪
く、又2.0モル/リットル以上の濃度においては熟成
が進行するにつれて珪酸イオンのゲル化を生じ易く、溶
液状態を維持するのに困難を来たし、一方添加される酸
量は珪酸イオン濃度に対して0.01〜0.03倍モル
であることが必要である。
The silicate ion concentration in the aqueous silicate ion solution is 0.05 to 2.0 mol / liter, preferably 0.1.
The range is from 1.0 to 1.0 mol / liter, and the concentration is 0.1.
If the amount is less than 05 mol / liter, the efficiency of oxide powder production is poor, and if the concentration is more than 2.0 mol / liter, gelation of silicate ions is likely to occur as aging proceeds, making it difficult to maintain a solution state. On the other hand, it is necessary that the amount of acid added is 0.01 to 0.03 times the molar amount of the silicate ion concentration.

【0018】珪酸イオン水溶液は少量の酸を添加した
後、70〜90℃において熟成し、珪酸イオンの加水分
解及びその縮重合を行なうことにより高分子化を促進さ
せるが、熟成時間に伴って水溶液粘度は徐々に上昇し、
或る時点より急激な粘度増加が見られるので、原料水溶
液の霧状化を勘案してその粘度は1.0〜3.0センチ
ポイズの範囲であることが必要であり、珪酸イオン熟成
において相当時間経過後に観察される急激な粘度上昇直
前迄に熟成を終了することが好ましく、80℃の熟成に
おいては6〜10時間である。
After adding a small amount of acid, the aqueous solution of silicate ion is aged at 70 to 90 ° C. to accelerate the polymerization by hydrolyzing the silicate ion and its polycondensation. Viscosity gradually increases,
Since a sharp increase in viscosity is seen from a certain point in time, it is necessary that the viscosity be in the range of 1.0 to 3.0 centipoise in consideration of atomization of the raw material aqueous solution. It is preferable to complete the aging just before the rapid increase in viscosity observed after the lapse of time, and for aging at 80 ° C., it is 6 to 10 hours.

【0019】珪酸イオン水溶液の熟成は噴霧燃焼法によ
って得られる球状シリカ粉体を高表面積化するための支
配因子であり、熟成の程度が進み珪酸イオンの高分子化
が促進される程より大きな比表面積、細孔容積を有した
シリカ粉体が得られるので、その粘度が所定の値を越え
ない範囲においてその熟成の程度を任意に調節すること
により、これら物性が制御されたシリカ粉体を製造する
ことが出来る。
The aging of the aqueous solution of silicate ion is a controlling factor for increasing the surface area of the spherical silica powder obtained by the spray combustion method. Since a silica powder having a surface area and a pore volume can be obtained, a silica powder whose physical properties are controlled can be produced by arbitrarily adjusting the degree of aging within a range in which the viscosity does not exceed a predetermined value. You can do it.

【0020】70〜90℃での熟成を終了した珪酸イオ
ン水溶液は次いで超音波噴霧器によって霧状となし、空
気又は酸素含有ガスに同伴させて高温加熱された燃焼器
中に導入され熱分解されるが、分解温度は400〜1、
000℃の範囲であることが必要で、400℃以下の温
度では炭素成分の燃焼除去が不充分となり、シリカ粒子
中に炭素の残存が認められ、又1、000℃以上の温度
ではシリカ骨格のシロキサン結合(−Si−O−Si−
O)に影響が生じ、シリカ粉体の一部が溶融するために
好ましい物性を有する粉体を得ることが出来ない。
The silicate ion aqueous solution that has been aged at 70 to 90 ° C. is then atomized by an ultrasonic atomizer, introduced into a combustor heated at high temperature by being entrained in air or an oxygen-containing gas, and thermally decomposed. However, the decomposition temperature is 400-1,
It is necessary to be in the range of 000 ° C. At a temperature of 400 ° C or lower, combustion removal of carbon components becomes insufficient, and carbon remains in the silica particles, and at a temperature of 1,000 ° C or higher, the silica skeleton Siloxane bond (-Si-O-Si-
O) is affected and a part of the silica powder is melted, so that a powder having preferable physical properties cannot be obtained.

【0021】又本発明による球状シリカ微粒子製造法に
おいて、熱分解温度は生成シリカの平均細孔径に影響を
与え、低温熱分解においては平均細孔径の小さな粉体が
得られるのに対し、高温熱分解においては平均細孔径の
大きなシリカ粉体が得られ、その分解温度の調節によっ
て生成シリカの平均細孔径を制御することが出来、本発
明に於いて適用される温度、400〜1、000℃にお
いては6〜50Åの範囲で平均細孔径を制御することが
出来、又その細孔分布はシャープである。
In the method for producing spherical silica fine particles according to the present invention, the thermal decomposition temperature affects the average pore diameter of the produced silica, and powders having a small average pore diameter can be obtained in low temperature thermal decomposition, whereas high temperature thermal decomposition is required. In the decomposition, a silica powder having a large average pore diameter is obtained, and the average pore diameter of the produced silica can be controlled by adjusting the decomposition temperature, and the temperature applied in the present invention is 400 to 1,000 ° C. In, the average pore diameter can be controlled in the range of 6 to 50Å, and the pore distribution is sharp.

【0022】[0022]

【実施例】次に本発明の内容を実施例によって具体的に
説明するが、その中で記載されている噴霧燃焼装置によ
る珪酸イオン含有水溶液の熱分解法は下記の通りであ
り、又その物性測定は通常の窒素吸着を利用する方法に
よった。以下に噴霧燃焼法装置による熱分解について説
明する。本発明において使用した噴霧燃焼装置は図1に
示した概念図通りであり、噴霧発生器(超音波振動
器)、熱分解用反応管付き管状電気炉より構成され、超
音波振動器の振動数は1.5メガヘルツであり、振動器
により霧状化された珪酸イオン水溶液の微液滴は流量1
5リットル/min.の酸素ガスに同伴されて熱分解反
応管内に供給され、熱的に瞬時に分解することにより球
状の微粒子シリカ粉体とされ、次いで反応管の出口側に
設置された捕集器によって水中捕集される。
EXAMPLES Next, the contents of the present invention will be specifically described by way of examples. The thermal decomposition method of the silicate ion-containing aqueous solution by the spray combustion device described therein is as follows, and the physical properties thereof are as follows. The measurement was performed by a method utilizing ordinary nitrogen adsorption. The thermal decomposition by the spray combustion method device will be described below. The spray combustion apparatus used in the present invention is as in the conceptual diagram shown in FIG. 1, and is composed of a spray generator (ultrasonic vibrator) and a tubular electric furnace with a reaction tube for thermal decomposition, and the frequency of the ultrasonic vibrator. Is 1.5 megahertz, and the flow rate of fine droplets of the silicate ion aqueous solution atomized by the vibrator is 1
5 liter / min. It is supplied to the pyrolysis reaction tube along with the oxygen gas of the powder, and is thermally decomposed instantaneously to form spherical fine-particle silica powder. To be done.

【0023】熱分解用反応管は内径3.2cm、長さ6
0cmの石英管であり、霧状化した珪酸イオン水溶液の
微液滴は15リットル/min.の酸素ガスに同伴して
反応管内に供給されるので、反応ゾーンでの滞留時間は
3秒以下であり、又微液滴を分解するための熱は管状電
気炉によって供給されるが、ヒーターは上部、中部、下
部に三分割されており、夫々が独立して温度コントロー
ルされ、任意の温度で微液滴の熱分解を行うことが出来
るようになっている。
The reaction tube for thermal decomposition has an inner diameter of 3.2 cm and a length of 6
It is a quartz tube of 0 cm, and the fine droplets of the atomized silicate ion solution are 15 l / min. Since the oxygen gas is supplied together with the oxygen gas into the reaction tube, the residence time in the reaction zone is 3 seconds or less, and the heat for decomposing the fine droplets is supplied by the tubular electric furnace, but the heater is It is divided into three parts, an upper part, a middle part, and a lower part, and the temperature of each part is independently controlled, so that the thermal decomposition of fine droplets can be performed at any temperature.

【0024】実施例1−1 珪酸エチル25gを500ccビーカー中に秤取し、純
水200ccを徐々に加えつつ撹拌溶解した後、稀硝酸
(3規定)1ccを添加混合することにより珪酸イオン
含有水溶液を調製し、次いでこの水溶液を80℃にて8
時間熟成させたが、熟成終了後の珪酸イオン含有水溶液
の粘度は2.7センチポイズであった。
Example 1-1 25 g of ethyl silicate was weighed in a 500 cc beaker, 200 cc of pure water was gradually added and dissolved by stirring, and then 1 cc of dilute nitric acid (3N) was added and mixed to obtain a silicate ion-containing aqueous solution. Was prepared and then this aqueous solution was heated at 80 ° C. for 8 hours.
After the aging, the viscosity of the silicate ion-containing aqueous solution after the aging was 2.7 centipoise.

【0025】これと平行して熱分解用反応管を所定の温
度(850℃)に加熱準備しておき、熟成済珪酸イオン
含有水溶液を噴霧発生器により霧状化し、同伴ガスとし
ての酸素ガス(15リットル/min.)と共に熱分解
用反応管に供給することにより球状シリカ微粒子とな
し、更に水中捕集することによって回収した後乾燥し、
電気炉中で500℃、4時間焼成することによって噴霧
燃焼法によるシリカ微粉体を得たが、この粉体の比表面
積、細孔容積、平均細孔径測定結果を表1に、細孔分布
測定結果を表2に示した。
In parallel with this, the reaction tube for thermal decomposition is prepared by heating to a predetermined temperature (850 ° C.), the aged silicate ion-containing aqueous solution is atomized by a spray generator, and oxygen gas ( 15 liters / min.) To form a spherical silica fine particle by supplying it to a reaction tube for thermal decomposition, further collecting by collecting in water and then drying,
Silica fine powder was obtained by the spray combustion method by firing at 500 ° C. for 4 hours in an electric furnace. The specific surface area, pore volume, and average pore diameter measurement results of this powder are shown in Table 1, and the pore distribution measurement The results are shown in Table 2.

【0026】実施例1−2及び実施例1−3 実施例1−1において、珪酸イオン含有水溶液の熟成時
間を4、及び6時間とした以外は、実施例1−1と全く
同一処理法によって実施例1−2、1−3の球状シリカ
微粒子を調製したが、得られたシリカ粉体の比表面積、
細孔容積、平均細孔径の測定結果は表1の通りであっ
た。
Example 1-2 and Example 1-3 By the same treatment method as in Example 1-1, except that the aging time of the silicate ion-containing aqueous solution was changed to 4 and 6 hours in Example 1-1. Spherical silica fine particles of Examples 1-2 and 1-3 were prepared, and the specific surface area of the obtained silica powder,
Table 1 shows the measurement results of the pore volume and the average pore diameter.

【0027】実施例2 実施例1−1において、熱分解用反応管の温度を500
℃に設定し、霧状化した珪酸イオン水溶液の微液滴分解
温度を低くした以外は、実施例1−1と全く同一処理法
によって実施例2の球状シリカ粉体を調製したが、得ら
れたシリカ粉体の比表面積、細孔容積、平均細孔径の測
定結果は表1の通りであった。
Example 2 In Example 1-1, the temperature of the reaction tube for thermal decomposition was set to 500.
The spherical silica powder of Example 2 was prepared by the same treatment method as in Example 1-1, except that the temperature was set to 0 ° C. and the fine droplet decomposition temperature of the atomized silicate ion solution was lowered. Table 1 shows the measurement results of the specific surface area, pore volume, and average pore diameter of the silica powder.

【0028】比較例1 実施例1−1において、珪酸イオン含有水溶液の80℃
における熟成を全く行わなかった以外は、実施例1−1
と同一処理法によって比較例1の球状シリカ粉体を調製
したが、得られた粉体の比表面積、細孔容積、平均細孔
径の測定結果は表1の通りであった。
Comparative Example 1 In Example 1-1, the silicate ion-containing aqueous solution was heated to 80 ° C.
Example 1-1, except that no aging in Example 1 was performed.
A spherical silica powder of Comparative Example 1 was prepared by the same treatment method as in Example 1. The measurement results of the specific surface area, pore volume and average pore diameter of the obtained powder are shown in Table 1.

【0029】比較例2 実施例1−1において、熱分解用反応管の温度を1、2
00℃に設定し、霧状化した珪酸イオン水溶液の微液滴
分解温度を高くした以外は、実施例1−1と全く同一処
理法によって比較例2の球状シリカ粉体を調製したが、
得られたシリカ粉体の比表面積、細孔容積、平均細孔径
の測定結果は表1の通りであった。
Comparative Example 2 In Example 1-1, the temperature of the reaction tube for thermal decomposition was set to 1, 2
A spherical silica powder of Comparative Example 2 was prepared by the same treatment method as that of Example 1-1, except that the temperature was set to 00 ° C. and the fine droplet decomposition temperature of the atomized silicate ion solution was increased.
Table 1 shows the measurement results of the specific surface area, pore volume, and average pore diameter of the obtained silica powder.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 表2 球状シリカ粉体の細孔分布測定結果(実施例1−1) ───────────────────────── 細孔直径 (Å) 10 20 30 50 100 ───────────────────────── 微分細孔容積 (cc/g・Å) 0.14 0.35 0.08 0.02 0.00 ─────────────────────────[Table 2] Table 2 Pore distribution measurement results of spherical silica powder (Example 1-1) ───────────────────────── Diameter (Å) 10 20 30 50 100 ───────────────────────── Differential pore volume (cc / g ・ Å) 0.14 0.35 0.08 0.02 0.00 ─────────────────────────

【0032】[0032]

【発明の効果】珪酸イオンを霧状化し、次いで熱分解す
ることによる球状シリカ製造法において、水溶液中の珪
酸イオンを加水分解及び縮重合させ、その高分子化を促
進する手段として、70〜90℃熟成を行う方法によれ
ば、その熟成時間を変えることによって生成シリカの比
表面積、細孔容積を、又分解温度を変えることによって
その平均細孔径を任意に制御することが出来る。
In the method for producing spherical silica by atomizing silicate ions and then thermally decomposing them, the silicate ions in the aqueous solution are hydrolyzed and polycondensed to accelerate their polymerization to 70 to 90. According to the method of aging at 0 ° C, the specific surface area and pore volume of the produced silica can be controlled by changing the aging time, and the average pore diameter can be arbitrarily controlled by changing the decomposition temperature.

【0033】[0033]

【図面の簡単な説明】[Brief description of drawings]

【図1】噴霧燃焼装置の全体図を示す。FIG. 1 shows an overall view of a spray combustion device.

【符号の説明】[Explanation of symbols]

1;石英管 2;ガラス管 3;電気炉 4;捕集器 5;酸素流量計 6;超音波振動子 7;超音波コントローラ 8;原料溶液 1; Quartz tube 2; Glass tube 3; Electric furnace 4; Collector 5; Oxygen flow meter 6; Ultrasonic vibrator 7; Ultrasonic controller 8; Raw material solution

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルコキシシリコン、水及び少量の酸よ
りなる珪酸イオン含有水溶液を超音波振動器によって霧
状化した後、空気又は酸素ガスと共に高温加熱燃焼器中
に導入し熱分解する噴霧燃焼法球状シリカ製造法におい
て、珪酸イオン重合度の指標としての珪酸イオン含有水
溶液粘度及び熱分解温度を調節することによる細孔構造
を制御した球状シリカ粉体の製造方法。
1. A spray combustion method in which a silicate ion-containing aqueous solution consisting of alkoxysilicon, water and a small amount of acid is atomized by an ultrasonic vibrator and then introduced into a high temperature heating combustor together with air or oxygen gas for thermal decomposition. In the method for producing spherical silica, a method for producing spherical silica powder in which the pore structure is controlled by adjusting the viscosity of a silicate ion-containing aqueous solution as an index of the degree of polymerization of silicate ion and the thermal decomposition temperature.
【請求項2】 アルコキシシリコン、水及び少量の酸よ
りなる珪酸イオン含有水溶液を70〜90℃で熟成する
ことによりその粘度を1〜3センチポイズとなし、次い
で超音波振動器によって霧状化後、空気又は酸素ガスと
共に高温加熱燃焼器に導入する請求項1記載の細孔構造
を制御した球状シリカ粉体の製造方法。
2. A silicate ion-containing aqueous solution consisting of alkoxy silicon, water and a small amount of acid is aged at 70 to 90 ° C. to have a viscosity of 1 to 3 centipoise, and then atomized by an ultrasonic vibrator, The method for producing spherical silica powder having a controlled pore structure according to claim 1, which is introduced into a high temperature heating combustor together with air or oxygen gas.
【請求項3】 珪酸イオン含有水溶液中の珪酸イオン濃
度が0.05〜2.0モル/リットルであり、その霧状
水溶液微液滴の燃焼器中での分解温度が400〜100
0℃である請求項1記載の細孔構造を制御した球状シリ
カ粉体の製造方法。
3. The silicate ion concentration in the silicate ion-containing aqueous solution is 0.05 to 2.0 mol / liter, and the decomposition temperature of the atomized aqueous solution fine droplets in the combustor is 400 to 100.
The method for producing spherical silica powder having a controlled pore structure according to claim 1, which is 0 ° C.
JP5202738A 1993-07-23 1993-07-23 Production of spherical silica fine powder controlled in pore structure Pending JPH0733427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202738A JPH0733427A (en) 1993-07-23 1993-07-23 Production of spherical silica fine powder controlled in pore structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202738A JPH0733427A (en) 1993-07-23 1993-07-23 Production of spherical silica fine powder controlled in pore structure

Publications (1)

Publication Number Publication Date
JPH0733427A true JPH0733427A (en) 1995-02-03

Family

ID=16462350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202738A Pending JPH0733427A (en) 1993-07-23 1993-07-23 Production of spherical silica fine powder controlled in pore structure

Country Status (1)

Country Link
JP (1) JPH0733427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187335A (en) * 1999-11-17 2001-07-10 Degussa Huels Ag Method of producing nitrogen oxide-occluding material and occluding material produced by this method
KR100477200B1 (en) * 2002-06-05 2005-03-21 (주)나노닉스 Method to manufacture silica powder using ultrasonic aerosol pyrolysis
JP2006087965A (en) * 2004-09-21 2006-04-06 Univ Of Yamanashi Production method for particulate catalyst, alloy particulate catalyst or composite oxide particulate catalyst, its apparatus and its usage
WO2021251440A1 (en) * 2020-06-12 2021-12-16 テイカ株式会社 Spherical silica particle, and method for producing same
CN116462204A (en) * 2022-10-04 2023-07-21 汶川县神州锆业科技有限公司 Modified superfine silicon dioxide powder and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187335A (en) * 1999-11-17 2001-07-10 Degussa Huels Ag Method of producing nitrogen oxide-occluding material and occluding material produced by this method
KR100477200B1 (en) * 2002-06-05 2005-03-21 (주)나노닉스 Method to manufacture silica powder using ultrasonic aerosol pyrolysis
JP2006087965A (en) * 2004-09-21 2006-04-06 Univ Of Yamanashi Production method for particulate catalyst, alloy particulate catalyst or composite oxide particulate catalyst, its apparatus and its usage
JP4560621B2 (en) * 2004-09-21 2010-10-13 国立大学法人山梨大学 Method for producing fine particle catalyst, alloy fine particle catalyst or composite oxide fine particle catalyst, apparatus therefor, and method for using the same
WO2021251440A1 (en) * 2020-06-12 2021-12-16 テイカ株式会社 Spherical silica particle, and method for producing same
CN116462204A (en) * 2022-10-04 2023-07-21 汶川县神州锆业科技有限公司 Modified superfine silicon dioxide powder and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3938426B2 (en) Oxides obtained by pyrolysis, doped with aerosols
US20060039846A1 (en) Ceria composition and process for preparing same
JP2001130910A (en) Silicon dioxide doped with silver and having germicidal action
EP1232117A1 (en) Ceria composition and process for preparing same
Zawrah et al. Facile and economic synthesis of silica nanoparticles
Ingebrethsen et al. Preparation of uniform colloidal dispersions by chemical reactions in aerosols: III. mixed titania/alumina colloidal spheres
JP2009184923A (en) Method of manufacturing approximately nano-degree oxide obtained by thermal decomposition method for metal
JPS6354642B2 (en)
JP2009512621A (en) Method for producing doped metal oxide particles
Do Kim et al. Formation of spherical hollow silica particles from sodium silicate solution by ultrasonic spray pyrolysis method
JP5248054B2 (en) Method for producing spherical alumina particles
JPH0733427A (en) Production of spherical silica fine powder controlled in pore structure
Janaćković et al. Synthesis, morphology, and formation mechanism of mullite particles produced by ultrasonic spray pyrolysis
Ocotlán-Flores et al. Catalyst-free SiO 2 sonogels
Kanno et al. Estimation of formation mechanism of spherical fine ZrO 2-SiO 2 particles by ultrasonic spray pyrolysis
KR100917969B1 (en) The manufacturing method of Ceramic hollow micro sphere using sprayed sol by ultrasonic
JP4015543B2 (en) Layer containing silicon-titanium mixed oxide powder produced by flame hydrolysis, process for its production, dispersion of silicon-titanium mixed oxide powder and use of layer
TW593182B (en) Glass powder and manufacturing method therefor
TWI496615B (en) Method for prepareing silver particles and core-shell silver particles
Jodhani et al. Flame spray pyrolysis processing to produce metastable phases of metal oxides
US5147630A (en) Method of producing alumina foams
JP3270448B2 (en) Glycol containing silicon dioxide
Moravec et al. Vapor phase synthesis of zirconia fine particles from zirconium Tetra-Tert-Butoxide
JPH0764547B2 (en) Silica balloon manufacturing method
JP3195269B2 (en) Fine abrasive for silicon wafer comprising cerium oxide and silicon dioxide, and method for producing the same