JPH0425750A - Solder amount inspecting method - Google Patents

Solder amount inspecting method

Info

Publication number
JPH0425750A
JPH0425750A JP2132025A JP13202590A JPH0425750A JP H0425750 A JPH0425750 A JP H0425750A JP 2132025 A JP2132025 A JP 2132025A JP 13202590 A JP13202590 A JP 13202590A JP H0425750 A JPH0425750 A JP H0425750A
Authority
JP
Japan
Prior art keywords
amount
solder
image
lead
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2132025A
Other languages
Japanese (ja)
Other versions
JP3031956B2 (en
Inventor
Takahiro Yamamoto
隆弘 山本
Takefumi Watabe
渡部 武文
Munetoshi Numata
宗敏 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lossev Technology Corp
Original Assignee
Lossev Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lossev Technology Corp filed Critical Lossev Technology Corp
Priority to JP2132025A priority Critical patent/JP3031956B2/en
Publication of JPH0425750A publication Critical patent/JPH0425750A/en
Application granted granted Critical
Publication of JP3031956B2 publication Critical patent/JP3031956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To accurately grasp the amount of solder at a concave soldering part by measuring the movement quantity between two bright points before and after the switching of different-directional illumination light and the mean distance to them from a lead end surface by image processing and determining the amount of solder. CONSTITUTION:An image pickup camera 6 picks up an image of the soldering part 2 together with parts of a lead 3 and a conductive pattern 4 and the optical image in converted into an analog image signal, which is stored in an image memory 8. This photography is performed by using a light source 5a and then a light source 5b and the image including the bright points Ra and Rb formed at different positions is processed by a CPU 9 to determine the mean distance (x) to the bright points Ra and Rb from the movement quantity (d) between the bright points and the end surface of the lead 3, thereby determining the amount Q of solder at the soldering part 2 according to those values and a preset data table. Consequently, accurate determination becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半田付は部の半田量を画像処理の分野で検査
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for inspecting the amount of solder in a soldered part in the field of image processing.

〔従来の技術〕[Conventional technology]

特許出願人は、特願平2−2749号の特許出願によっ
て、半田検査方法を提案している。その半田検査方法は
、リード端部と導電パターンとの間に形成された半田付
は部の表面に照射光を異なる方向から切り換えて照射し
、半田付は部の表面に各照明光ごとに輝点を発生させ、
照明光の切り換え前後で、2つの輝点の移動方向および
移動量から半田付は部の形状や半田量を推測し、その良
否を判定している。
The patent applicant has proposed a solder inspection method by filing a patent application No. 2-2749. The solder inspection method is to detect the solder formed between the lead end and the conductive pattern by irradiating the surface of the solder by switching irradiation light from different directions. generate a point,
Before and after the illumination light is switched, the shape of the soldered part and the amount of solder are estimated from the moving direction and amount of movement of the two bright spots, and the quality of the soldering is determined.

〔従来技術の課題〕[Issues with conventional technology]

半田付は部がリードの端面に対し常に一定の高さ位置ま
で付着しておれば、上記の方法によって、半田の形状の
ばか半田量がほぼ正確に把握できる。
As long as the soldering part always adheres to the end surface of the lead up to a certain height position, the amount of solder in the shape of the solder can be determined almost accurately by the above method.

ところが、リードの端面に対し半田の付着位置がリード
の高さ方向つまり厚み方向で変化すると、照明光の切り
換え前後の輝点の移動方向および移動量だけによって、
半田の形状や半田量が正確に識別できなくなり、検査結
果の信頼性が低下することになる。
However, if the adhesion position of the solder to the end face of the lead changes in the height direction of the lead, that is, in the thickness direction, the difference will depend only on the direction and amount of movement of the bright spot before and after switching the illumination light.
The shape of the solder and the amount of solder cannot be accurately identified, resulting in a decrease in the reliability of the inspection results.

また、半田付は部の良好な表面形態として、凸面よりも
凹面が採用される傾向にあり、また半田付は時の条件特
に半田付けの温度や半田量の供給制御などから、凹面形
状の半田付は部の形状が多くなっている。
In addition, there is a tendency for concave surfaces to be used rather than convex surfaces as a good surface shape for soldering parts, and due to the soldering conditions, especially the soldering temperature and solder amount supply control, concave-shaped solders tend to be used. There are many shapes of the attached parts.

〔発明の目的〕[Purpose of the invention]

したがって、本発明の目的は、凹面の半田付6部を対象
とし、リード端面に対する半田付は部と付着位置の変化
にかかわらず、その半田量を画や処理の分野で正確に把
握できるようにすること1ある。
Therefore, it is an object of the present invention to target the six soldered parts on the concave surface, and to make it possible to accurately grasp the amount of solder soldered to the lead end face in the field of drawing and processing, regardless of changes in the soldered part and the adhesion position. There is one thing to do.

〔発明の解決手段およびその作用〕[Solution means of the invention and its effects]

上記目的の下に、本発明は、リードの端部とAtパター
ンとの間に形成された半田付は部の表Uに照明光を異な
る方向から切り換えて照射し、刈田付は部の表面に各照
明光ごとに輝点を発生さ千るという従来の基本的な原理
を採用しながら、声明光の切り換え前後の2つの輝点の
移動量、おJびリードの端面から各輝点までの平均距離
を1偵処理の分野で測定し、その測定値と、測定値に文
応する半田量のデータ表から半田付は量を決定するよう
にしている。
In view of the above object, the present invention switches and irradiates illumination light from different directions to the surface U of the soldering part formed between the end of the lead and the At pattern, and the soldering part formed between the end of the lead and the At pattern. While adopting the conventional basic principle of generating a bright spot for each illumination light, the amount of movement of the two bright spots before and after the switching of the statement light, and the amount of movement from the end face of the lead to each bright spot. The average distance is measured in the field of one-shot processing, and the amount of soldering is determined from the measured value and a data table of the amount of solder corresponding to the measured value.

ここで、輝点のある移動量およびリードの端■から各輝
点までのある平均距離に対する半田付は量は、理論計算
によって、または実測などによって予めデータとして集
計されている。
Here, the amount of movement of a bright spot and the amount of soldering for a certain average distance from the end 1 of the lead to each bright spot are compiled in advance as data through theoretical calculations or actual measurements.

この半田量検査方法によると、リード端面に対する半田
付は部の付着位置が厚み方向に変化していても、半田付
は部の表面形状が凹面状である限り、半田付は量が正確
に検出できる。
According to this solder amount inspection method, even if the adhesion position of the solder on the lead end surface changes in the thickness direction, the solder amount can be accurately detected as long as the surface shape of the solder is concave. can.

〔実施例] 第1図は、画像処理システム1の概要示している。〔Example] FIG. 1 shows an overview of an image processing system 1. As shown in FIG.

検査対象の半田付は部2は、ICパンケージなどのり−
ド3の端面と回路基板などの導電パターン4との間で凹
面状として形成されており、そのやや斜め上方の光源5
a、5bを切り換えることによって、異なる方向の照明
光によって照射され、その表面に各照明光ごとに輝点R
a、Rbを発生させている。なお、この2つの光源5a
、5bは、切り換え器14によって択一的に切/:J換
えられるようになっている。
The soldering part 2 to be inspected is the soldering part 2, which is the soldering part 2 of the inspection target.
A concave surface is formed between the end surface of the board 3 and a conductive pattern 4 such as a circuit board, and a light source 5 is located slightly diagonally above the conductive pattern 4.
By switching between a and 5b, it is irradiated with illumination light in different directions, and a bright spot R is created on the surface for each illumination light.
a and Rb are generated. Note that these two light sources 5a
, 5b can be selectively switched to/:J by a switch 14.

半田付は部2は、上方の撮像カメラ6によって光学像か
ら電気的な画像に変換され、A−D変換器7により、ア
ナログ量の信号からデジタル量の信号に変換され、画像
メモリ8に記憶される。
The soldering part 2 is converted from an optical image to an electrical image by an upper imaging camera 6, and is converted from an analog signal to a digital signal by an A-D converter 7, and is stored in an image memory 8. be done.

そして、画像処理は、メモリ10、デイスプレィ11お
よび入カユニッ)12などに接続されたCPU (中央
処理ユニット)9によって実行される。なお、これらは
、制御回路13によって同期・割り込み制御の下におか
れている。
Image processing is executed by a CPU (central processing unit) 9 connected to a memory 10, a display 11, an input unit 12, and the like. Note that these are placed under synchronization/interrupt control by the control circuit 13.

検査対象の半田付は部2が撮像カメラ6の視野内に位置
決めされたとき、撮像カメラ6は、検査対象の半田付は
部2をリード3および導電パターン4の一部とともに撮
影し、光学像を電気的な画像に変換し、アナログ量の画
像信号をデジタル量の画像信号にA−D変換器7によっ
て変換した後、画像メモリ8に記憶させる。最初の撮影
では、方の光fi5aからの照明光が用いられ、その次
の撮影では、光源5bからの照明光が利用される。
When the soldering part 2 to be inspected is positioned within the field of view of the imaging camera 6, the imaging camera 6 photographs the soldering part 2 to be inspected together with the leads 3 and part of the conductive pattern 4, and creates an optical image. is converted into an electrical image, and the analog image signal is converted into a digital image signal by the AD converter 7, and then stored in the image memory 8. In the first photographing, the illumination light from the first light fi5a is used, and in the next photographing, the illumination light from the light source 5b is used.

それぞれの撮影過程で、第2図に示すように、半田付は
部2の表面に輝点Ra、Rbが異なる位1で発生してい
るため、照明光が光源5aから光源5bに切り換えられ
る過程で、輝点Raが輝点Rbの位置に移動するように
見える。画像メモリ8は、これらの輝点Ra、Rbを含
む画像をそれぞれ記憶することになる。
In each photographing process, as shown in Fig. 2, the soldering occurs at different points 1 on the surface of the part 2, so the illumination light is switched from the light source 5a to the light source 5b. The bright spot Ra appears to move to the position of the bright spot Rb. The image memory 8 stores images including these bright spots Ra and Rb.

その後の画像処理の段階で、CPU9は、画像処理のプ
ログラムを実行し、検査対象の半田付は部2の部分のみ
を例えば40X40 (ドツト〕程度の大きさの窓とし
て切り出し、光源5bによる画像の輝点Raを識別する
とともに、光源5bによる画像の輝点Rbを識別し、そ
の位置を割り出すとともに、Wi者の輝点Ra、Rbの
移動1−d、およびリード3の端面から各輝点Ra、R
bまでの平均距離Xをドツト数などから画像処理的に決
定する。
At the subsequent image processing stage, the CPU 9 executes an image processing program, cuts out only part 2 of the solder to be inspected as a window of, for example, about 40 x 40 (dots), and creates an image using the light source 5b. In addition to identifying the bright spot Ra, the bright spot Rb in the image produced by the light source 5b is identified and its position determined. ,R
The average distance X to b is determined by image processing from the number of dots and the like.

このあと、CPU9は、測定後の移動量dおよび平均距
離Xの値とこれらの値ごとに予め設定された半田付は量
Qのデータ表から検査対象の半田付は部2についての半
田付は量Qを決定する。ここで、移動量d、平均距離X
に対応する半田付は量Qは、理論計算によって、または
実験的なデータによって予め数表として設定され、メモ
リ10などに記憶されている。したがって、CPU9は
、画像上で、移動lidおよび平均距HXを確定した後
、これらの数表を参照して、該当数値の一致位置から半
田付は量Qを決定することになる。
After this, the CPU 9 calculates the soldering for part 2 of the soldering to be inspected from the data table of the measured movement amount d and average distance X and the soldering amount Q preset for each of these values. Determine the quantity Q. Here, the amount of movement d, the average distance
The amount of soldering Q corresponding to 2 is set in advance as a numerical table based on theoretical calculations or experimental data, and is stored in the memory 10 or the like. Therefore, after determining the movement lid and the average distance HX on the image, the CPU 9 refers to these numerical tables and determines the soldering amount Q from the matching position of the corresponding numerical values.

なお、半田付は部2の稜線は、第3図に示すように、Y
zbe−”の曲線によって近似できる。
Note that the ridgeline of soldering part 2 is Y as shown in Figure 3.
It can be approximated by a curve of zbe-''.

また、移動量dは、第3図に示すように、Y軸に対する
点すの値が小さくなるほど大きくなっている。したがっ
て、移動量dおよび平均距離Xは、上記曲線を決定する
ための要素として利用されていることになる。
Further, as shown in FIG. 3, the movement amount d increases as the value of the point with respect to the Y axis decreases. Therefore, the movement amount d and the average distance X are used as elements for determining the above curve.

〔発明の効果〕〔Effect of the invention〕

本発明では、異なる方向からの照明光によって形成され
る半田付は部表面上の輝点の移動量およびリード端面か
ら各輝点までの平均距離から半田付は部の形態が特定さ
れ、この形態に基づいて半田付は量が決定されるため、
リード端面の厚み方向に対し半田付は部の付着位置が変
化したとしても、その変化にかかわらず、半田付は量が
ほぼ正確に把握でき、半田量の検査の信頼性が高められ
る。
In the present invention, the form of a soldered part formed by illumination light from different directions is identified from the amount of movement of a bright spot on the part surface and the average distance from the lead end face to each bright spot, and this form is Since the amount of soldering is determined based on
Even if the adhesion position of the solder part changes in the thickness direction of the lead end face, the amount of solder can be determined almost accurately regardless of the change, and the reliability of the solder amount inspection is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は画像処理システムのブロック線図、第2図は半
田付は部の拡大平面図、第3図は半田付は部表面の曲線
のグラフである。 工・・画像処理システム、2・・半田付は部、3・・リ
ード、4・・導電パターン、5a、5b・・光源、6・
・撮像カメラ、7・・A−D変換器、8・・・画像メモ
リ、9・・CPU (中央処理ユニット)10・・メモ
リ、11・・デイスプレィ、12・・入カニニット、1
3・・11 jB回路、14・・切り換え器。 特 許 出 願 人 株式会社ロゼフテクノロジー代 
  理   人 弁理士 中 川 國 実弟 図 2:半田付は部 3:リード 4;導電パターン 5a、5b:光源 6;撮像カメラ 第 図
FIG. 1 is a block diagram of the image processing system, FIG. 2 is an enlarged plan view of the soldering section, and FIG. 3 is a graph of a curved line on the surface of the soldering section. Engineering... Image processing system, 2... Soldering part, 3... Lead, 4... Conductive pattern, 5a, 5b... Light source, 6...
・Image camera, 7...A-D converter, 8...Image memory, 9...CPU (central processing unit) 10...Memory, 11...Display, 12...Input crab unit, 1
3...11 jB circuit, 14...switcher. Patent applicant Rozef Technology Co., Ltd.
Patent Attorney Kuni Nakagawa Younger brother Figure 2: Soldering part 3: Lead 4; Conductive patterns 5a, 5b: Light source 6; Imaging camera Figure

Claims (1)

【特許請求の範囲】[Claims] リードの端部と導電パターンとの間に形成された半田付
け部の表面に照明光を異なる方向から切り換えて照射し
、半田付け部の表面に各照明光ごとに輝点を発生させ、
照明光の切り換え前後の2つの輝点の移動量と、リード
の端面から各輝点までの平均距離とから半田付け量を決
定することを特徴とする半田量検査方法。
Illumination light is switched from different directions and irradiated onto the surface of the soldered part formed between the end of the lead and the conductive pattern, and a bright spot is generated for each illumination light on the surface of the soldered part,
A solder amount inspection method characterized in that the amount of solder is determined from the amount of movement of two bright spots before and after switching the illumination light and the average distance from the end face of the lead to each bright spot.
JP2132025A 1990-05-22 1990-05-22 Solder amount inspection method Expired - Lifetime JP3031956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2132025A JP3031956B2 (en) 1990-05-22 1990-05-22 Solder amount inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2132025A JP3031956B2 (en) 1990-05-22 1990-05-22 Solder amount inspection method

Publications (2)

Publication Number Publication Date
JPH0425750A true JPH0425750A (en) 1992-01-29
JP3031956B2 JP3031956B2 (en) 2000-04-10

Family

ID=15071749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2132025A Expired - Lifetime JP3031956B2 (en) 1990-05-22 1990-05-22 Solder amount inspection method

Country Status (1)

Country Link
JP (1) JP3031956B2 (en)

Also Published As

Publication number Publication date
JP3031956B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
KR20040088467A (en) Three-dimensional measuring instrument
TW201741620A (en) Three-dimensional measuring device
JP2011112374A (en) Gap/step measuring instrument, method of gap/step measurement, and program therefor
JP2006208259A (en) Method and device for inspecting defect
JP2019100753A (en) Printed circuit board inspection device and printed circuit board inspection method
JP3609325B2 (en) 3D measuring device
JPH0425750A (en) Solder amount inspecting method
JP2007242944A (en) Method and device for evaluating solder wettability
JP2735217B2 (en) Surface defect inspection equipment
JP4034325B2 (en) Three-dimensional measuring device and inspection device
US20020005498A1 (en) Cream solder inspection method and apparatus therefor
JP3868917B2 (en) Three-dimensional measuring device and inspection device
JPH0668442B2 (en) Printed circuit board pattern inspection device
JP2004317291A (en) Solder appearance inspection apparatus
JPS62127602A (en) Parts inspecting device
JP3031955B2 (en) Soldering inspection method
JPS61205808A (en) Shape detection apparatus
JPS6180212A (en) Automatic focus detecting mechanism
JPH0476443A (en) Soldering checking method
JP2002081924A (en) Three-dimensional measuring device
JP3054513B2 (en) Method for detecting lead lift of electronic components
JP2762657B2 (en) Center search method for fiducial marks on substrate
JPH10103933A (en) Inspecting instrument for mounted substrate
JPS61293659A (en) Method for inspecting soldering appearance
JPH07234116A (en) Warpage rate measuring method for plate material