JPH04256920A - Manufacture of spatial optical modulating element - Google Patents

Manufacture of spatial optical modulating element

Info

Publication number
JPH04256920A
JPH04256920A JP3787791A JP3787791A JPH04256920A JP H04256920 A JPH04256920 A JP H04256920A JP 3787791 A JP3787791 A JP 3787791A JP 3787791 A JP3787791 A JP 3787791A JP H04256920 A JPH04256920 A JP H04256920A
Authority
JP
Japan
Prior art keywords
single crystal
plate
substrate
insulating layer
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3787791A
Other languages
Japanese (ja)
Other versions
JP2599832B2 (en
Inventor
Yukihisa Osugi
幸久 大杉
Akihiko Honda
昭彦 本多
Masaji Tange
正次 丹下
Akira Hamashima
章 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3037877A priority Critical patent/JP2599832B2/en
Publication of JPH04256920A publication Critical patent/JPH04256920A/en
Application granted granted Critical
Publication of JP2599832B2 publication Critical patent/JP2599832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the area of the spatial optical modulating element large, to improve the yield at the time of machining an insulating layer and a single crystal layer, to make the insulating layer and single crystal layer homogeneous, and to reduce a wave front aberration when the spatial optical modulating element which uses single crystal such as Bi12SiO20 single crystal having electrooptic effect and photoconductive effect is manufactured. CONSTITUTION:An insulating plate is adhered onto a substrate 1 which has a transparent electrode film 2 and the end surface of this insulating plate is machined to form the insulating layer 4. Further, a single crystal plate 5 is adhered to the insulating layer 4 and the end surface 5a of the single crystal plate 5 is ground and optically polished to form the single crystal layer. A taper surface 8 is formed preferably on a surface 6 for machining, the substrate 1 is adhered to the tapered surface e8, and the single crystal plate 5 is machine along a surface A parallel to the lower flank of the substrate for machining.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、Bi12SiO 20
(BSO) 単結晶等の、電気光学効果と光伝導効果を
有する単結晶を用いた空間光変調素子(PROM, P
ockels Readout Optical Mo
dulator) に関するものである。
[Industrial Application Field] The present invention relates to Bi12SiO20
(BSO) Spatial light modulator (PROM, P
Ockels Readout Optical Mo
dulator).

【0002】0002

【従来の技術】空間光変調素子のうち、BSO 単結晶
等の電気光学効果と光伝導効果を有する単結晶を使用し
たPROM素子は、前記単結晶の光電導効果を利用して
、書き込み画像情報の光強度分布を単結晶板内の電荷分
布に変換して記憶し、次いでこの電荷分布がつくる電界
によって生ずる電気光学効果を利用し、読み出し光の強
度分布に変換するものである。従って、この型の空間光
変調素子は、前記単結晶板とこれをはさむ絶縁層及び透
明電極によって構成される。
2. Description of the Related Art Among spatial light modulators, a PROM element using a single crystal having an electro-optic effect and a photoconductive effect, such as a BSO single crystal, uses the photoconductive effect of the single crystal to write image information. The light intensity distribution is converted into a charge distribution within a single crystal plate and stored, and then converted into a readout light intensity distribution using the electro-optic effect produced by the electric field created by this charge distribution. Therefore, this type of spatial light modulation element is composed of the single crystal plate, an insulating layer sandwiching the single crystal plate, and transparent electrodes.

【0003】従来、こうした空間光変調素子は、両面を
光学研摩した前記単結晶板と、パリレン薄膜又は雲母の
へき開膜(絶縁体)とを用いて構成されてきた。また、
絶縁層を蒸着により膜付けする方法があった。しかし、
パリレン薄膜は絶縁耐圧が低いため、前記単結晶の電気
光学効果特性を充分に発揮させることができない。雲母
膜は固有の複屈折性を有しているため、素子の電気光学
効果特性が複雑なものになるうえ、厚さが均一で均質な
大面積の薄板を作ることが困難であり、絶縁層形成時の
歩留りが悪い。
Conventionally, such a spatial light modulation element has been constructed using the above-mentioned single crystal plate whose both sides are optically polished and a parylene thin film or a mica cleavage film (insulator). Also,
There is a method of forming an insulating layer by vapor deposition. but,
Since the parylene thin film has a low dielectric strength voltage, it cannot fully exhibit the electro-optical effect characteristics of the single crystal. Mica films have inherent birefringence, which complicates the electro-optic properties of the device, and makes it difficult to create thin plates with uniform thickness and large area, making it difficult to create insulating layers. Yield during formation is poor.

【0004】また、特に、インコヒーレント光画像をコ
ヒーレント光画像に変換する空間光変調素子においては
、干渉縞を防止するために前記単結晶板にテーパを設け
ることが検討されている。このとき必要なテーパ角の大
きさは、素子、装置によって異なるけれども、例えば1
5分程度の大きさが必要である。このため、空間光変調
素子を作製する際、前記単結晶板をテーパ状に加工し、
その両面に絶縁板、電極板を順次接着している。
[0004] In particular, in spatial light modulation elements that convert an incoherent light image into a coherent light image, it has been considered to provide a taper in the single crystal plate in order to prevent interference fringes. The size of the taper angle required at this time varies depending on the element and device, but for example, 1
It needs to be about 5 minutes long. Therefore, when manufacturing a spatial light modulator, the single crystal plate is processed into a tapered shape,
Insulating plates and electrode plates are successively glued to both sides.

【0005】しかし、前記単結晶板を加工用基盤上に置
いて研削加工、光学研摩した後、接着する方法をとると
、接着剤の硬化時に接着応力が単結晶に不均一にかかる
ため、前記単結晶に歪みが生じ、素子透過光の波面収差
の原因になる。また、例えば数百μm の厚さの前記単
結晶板を単体でテーパ加工しても、前記単結晶板の一方
の側に荷重を加えて研削加工することから、テーパ角の
精度を挙げることは困難であり、またこのテーパの向き
も決定できない。
However, if the single crystal plate is placed on a processing base, subjected to grinding processing and optical polishing, and then bonded, adhesive stress is applied non-uniformly to the single crystal when the adhesive hardens. Distortion occurs in the single crystal, causing wavefront aberration of light transmitted through the element. Furthermore, even if the single crystal plate with a thickness of several hundred μm is individually taper-processed, the precision of the taper angle cannot be improved because the grinding process is performed by applying a load to one side of the single-crystal plate. It is difficult to determine the direction of this taper.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、空間
光変調素子の大面積化が可能であり、絶縁層の加工時の
歩留りが高く、厚さが均一かつ均質な絶縁層が形成でき
るような、空間光変調素子の製造法を提供することであ
る。また、本発明の課題は、大面積の電気光学効果と光
伝導効果を有する単結晶層を形成でき、歩留りが高く、
前記単結晶層における波面収差を低減できるような、空
間光変調素子の製造法を提供することである。
[Problems to be Solved by the Invention] An object of the present invention is to make it possible to increase the area of a spatial light modulator, to achieve a high yield when processing an insulating layer, and to form an insulating layer with a uniform thickness and homogeneity. An object of the present invention is to provide a method for manufacturing a spatial light modulation element. Another object of the present invention is to be able to form a single crystal layer having a large area of electro-optic effect and photoconductive effect, and to have a high yield.
It is an object of the present invention to provide a method for manufacturing a spatial light modulation element that can reduce wavefront aberration in the single crystal layer.

【0007】[0007]

【課題を解決するための手段】本発明は、透明電極を有
する基板上に絶縁板を接着し、この絶縁板の端面を加工
して絶縁層を形成した後、この絶縁層の上に少なくとも
電気光学結晶層と絶縁層と基板とを設けたことを特徴と
する空間光変調素子の製造法に係るものである。また、
本発明は、透明電極と絶縁層とを有する基板上に電気光
学結晶板を接着し、この電気光学結晶板の端面を加工し
て電気光学結晶層を形成した後、この電気光学結晶層の
上に少なくとも絶縁層と基板を設けたことを特徴とする
空間光変調素子の製造法に係るものである。
[Means for Solving the Problems] The present invention involves bonding an insulating plate onto a substrate having a transparent electrode, processing the end face of the insulating plate to form an insulating layer, and then applying at least an electric current on the insulating layer. The present invention relates to a method of manufacturing a spatial light modulator characterized by providing an optical crystal layer, an insulating layer, and a substrate. Also,
The present invention involves bonding an electro-optic crystal plate onto a substrate having a transparent electrode and an insulating layer, processing the end face of the electro-optic crystal plate to form an electro-optic crystal layer, and then forming an electro-optic crystal layer on the electro-optic crystal layer. The present invention relates to a method for manufacturing a spatial light modulator, characterized in that at least an insulating layer and a substrate are provided on the top of the spatial light modulator.

【0008】[0008]

【実施例】まず、本発明の実施例による、空間光変調素
子の製造法を、図1〜図4を参照しながら説明する。ま
ず、基板1を準備するが、基板1としてはガラス基板等
を用いる。次いで、基板1に蒸着等によって透明電極膜
2を形成する。そして、絶縁板3を基板1へと接着した
後、絶縁板3の端面3aを研削加工及び光学研摩し、図
2に示すような絶縁層4を形成する。
Embodiments First, a method of manufacturing a spatial light modulator according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4. First, a substrate 1 is prepared, and a glass substrate or the like is used as the substrate 1. Next, a transparent electrode film 2 is formed on the substrate 1 by vapor deposition or the like. After bonding the insulating plate 3 to the substrate 1, the end face 3a of the insulating plate 3 is ground and optically polished to form an insulating layer 4 as shown in FIG.

【0009】次いで、図3に示すように、絶縁層4の表
面側に、電気光学効果と光伝導効果を有する単結晶板5
を接着し、この前記単結晶板5の端面5aを研削加工及
び光学研摩し、図4に示すような前記単結晶層7を形成
する。
Next, as shown in FIG. 3, a single crystal plate 5 having an electro-optical effect and a photoconductive effect is placed on the surface side of the insulating layer 4.
The end face 5a of the single crystal plate 5 is ground and optically polished to form the single crystal layer 7 as shown in FIG.

【0010】一方、これとは別に、基板1に蒸着等によ
って透明電極膜2を形成し、絶縁板3を基板1に接着し
、絶縁板3の端面3aを研削加工及び光学研摩し、図2
に示すような絶縁層4を形成する。そして、図4に示す
ように、この接着物の絶縁層4を、前記単結晶層7に接
着し、空間光変調素子を得る。
Separately, a transparent electrode film 2 is formed on the substrate 1 by vapor deposition or the like, an insulating plate 3 is bonded to the substrate 1, and the end surface 3a of the insulating plate 3 is ground and optically polished.
An insulating layer 4 as shown in FIG. Then, as shown in FIG. 4, the insulating layer 4 of this adhesive is adhered to the single crystal layer 7 to obtain a spatial light modulation element.

【0011】こうした製造法によれば、比較的厚さの大
きい絶縁板3の端面を研削加工及び光学研摩して絶縁層
4を形成しているので、最初から薄膜化した絶縁性薄板
を前記単結晶板に貼り合わせる方法と異なり、両者の接
着の段階での絶縁層の湾曲が生じず、従って従来よりも
厚さが均一かつ均質な絶縁層4を形成できるようになり
、また接着段階での歩留りが向上し、更には絶縁層4の
大面積化も可能となった。絶縁板3の厚さは1mm以上
が好ましい。絶縁板3の厚さが1mm以下であると、こ
れが接着時に変形し、絶縁層4の厚さを均一にできず、
絶縁耐圧のバラツキや放電による素子破壊の原因となる
。 更に好ましくは1.5mm 以上が良く、2mm以上が
一層良い。また、絶縁層4の厚さは5〜30μm が好
ましい。
According to this manufacturing method, since the insulating layer 4 is formed by grinding and optically polishing the end face of the relatively thick insulating plate 3, the insulating thin plate made into a thin film is used from the beginning. Unlike the method of bonding to a crystal plate, the insulating layer does not curve during the bonding process, making it possible to form the insulating layer 4 with a more uniform and homogeneous thickness than before. The yield has improved, and furthermore, it has become possible to increase the area of the insulating layer 4. The thickness of the insulating plate 3 is preferably 1 mm or more. If the thickness of the insulating plate 3 is less than 1 mm, it will be deformed during adhesion, and the thickness of the insulating layer 4 will not be uniform.
This can cause variations in dielectric strength and element destruction due to discharge. More preferably, it is 1.5 mm or more, and even more preferably 2 mm or more. Further, the thickness of the insulating layer 4 is preferably 5 to 30 μm.

【0012】また、前記単結晶板5の厚さは1mm以上
の比較的厚いものが良い。その端面5aを研削加工及び
光学研摩して前記単結晶層7を形成しているので、最初
から薄膜化した電気光学結晶層を基板等に貼り合わせる
方法と異なり、前記単結晶板5の接着の段階でこれに湾
曲が生じず、従って、従来よりも均質な前記単結晶層7
を形成できるようになり、また接着段階での歩留りが向
上し、更には電気光学結晶層7の大面積化も可能となっ
た。更に好ましくは結晶板5の厚さは1.5mm 以上
が良く、2mm以上が一層好ましい。
[0012] Furthermore, the thickness of the single crystal plate 5 is preferably relatively thick, such as 1 mm or more. Since the single crystal layer 7 is formed by grinding and optically polishing the end surface 5a, unlike the method of bonding a thin electro-optic crystal layer to a substrate etc. from the beginning, the adhesion of the single crystal plate 5 is difficult. The monocrystalline layer 7 does not undergo any curvature during the process and is therefore more homogeneous than before.
It has become possible to form the electro-optic crystal layer 7, the yield at the adhesion stage has improved, and it has also become possible to increase the area of the electro-optic crystal layer 7. More preferably, the thickness of the crystal plate 5 is 1.5 mm or more, and more preferably 2 mm or more.

【0013】前記単結晶板5の厚さが1mm以下である
と、接着剤の硬化時に単結晶に応力が不均一にかかり、
前記単結晶層4に歪みが生じ、素子透過光の波面収差の
原因になる。また、前記単結晶層4の厚さは30〜50
0 μm が好ましい。
[0013] If the thickness of the single crystal plate 5 is 1 mm or less, stress will be applied unevenly to the single crystal during curing of the adhesive, and
Distortion occurs in the single crystal layer 4, causing wavefront aberration of light transmitted through the element. Moreover, the thickness of the single crystal layer 4 is 30 to 50
0 μm is preferred.

【0014】次に、レーザー光等のコヒーレント光を読
み出し光として用いる空間光変調素子においては、前述
したように、干渉縞の発生を防止するために、前記単結
晶層7にテーパを付する必要がある。この目的のため、
本実施例では、予め例えば15分のテーパ面8を有する
加工用基盤6を準備し、このテーパ面8へと基板1を仮
留めし、図3の状態とする。この状態では、加工用基盤
6の下側面9とテーパ面8とは、所定のテーパ角、例え
ば15分をなし、テーパ面8と、前記単結晶板5の端面
5aとは平行となる。そして、破線Aに沿って前記単結
晶板5を水平に研削加工し、次いで光学研摩すると、前
記単結晶層7の両側の主面は互いに所定のテーパ角、つ
まり15分をなす。
Next, in a spatial light modulator that uses coherent light such as a laser beam as readout light, as described above, it is necessary to tape the single crystal layer 7 in order to prevent the generation of interference fringes. There is. For this purpose,
In this embodiment, a processing base 6 having a tapered surface 8 of, for example, 15 minutes is prepared in advance, and the substrate 1 is temporarily fixed to this tapered surface 8 to form the state shown in FIG. In this state, the lower surface 9 of the processing base 6 and the tapered surface 8 form a predetermined taper angle, for example, 15 minutes, and the tapered surface 8 and the end surface 5a of the single crystal plate 5 are parallel. Then, when the single crystal plate 5 is ground horizontally along the broken line A and then optically polished, the main surfaces on both sides of the single crystal layer 7 form a predetermined taper angle, that is, 15 minutes.

【0015】このような方法で前記単結晶層7にテーパ
を付けることとすると、研削加工の段階で前記単結晶板
5の全面に亘って均等に圧力が加わるので、平面精度の
良い加工が可能になる。また、加工用基盤6において、
下側面9とテーパ面8との間のテーパ角を所定角度に設
定するだけで、前記単結晶層7におけるテーパ角の精度
を保持することができ、またテーパの向きも自由に決定
できる。
[0015] If the single crystal layer 7 is tapered by such a method, pressure is applied evenly over the entire surface of the single crystal plate 5 during the grinding process, so processing with good planar accuracy is possible. become. In addition, in the processing base 6,
By simply setting the taper angle between the lower surface 9 and the tapered surface 8 to a predetermined angle, the accuracy of the taper angle in the single crystal layer 7 can be maintained, and the direction of the taper can also be freely determined.

【0016】次に、加工用基盤6の好適例について説明
する。図5は、好適例に係る加工用基盤6をテーパ面8
側からみた拡大平面図、図6はこの加工用基盤6の拡大
側面図である。加工用基盤6のテーパ面8側には、互い
に直交する縦横の線状凹部の交叉からなる網状凹部6a
が形成され、網状凹部6aによって突起6bが互いに区
分され、かつ突起6bが縦横に碁盤目状に配列されてい
る。そして、加工用基盤6のテーパ面8に基板1を仮留
めする際には、基板1と突起6bとの間に接着剤層が介
在する。 この際、テーパ面8が平坦であるとすると、仮に仮留め
時に基板1の全体に均等に圧力がかかったとしても、接
着剤層の厚さにはどうしても片寄りが生じ、このため前
記単結晶板5を研削加工する際にこれに起因する厚さの
誤差が生ずる。これに対し、本例では、基板1全体に均
等に圧力をかければ、平均よりも過剰な接着剤は硬化前
に網状凹部6aへと逃げるので、結果として接着剤層の
厚さは一定となり、前記単結晶板5の加工精度を一層向
上させることができる。
Next, a preferred example of the processing base 6 will be explained. FIG. 5 shows a processing base 6 according to a preferred example with a tapered surface 8.
FIG. 6 is an enlarged side view of this processing base 6, which is an enlarged plan view seen from the side. On the tapered surface 8 side of the processing base 6, a net-like recess 6a is formed by intersecting vertical and horizontal linear recesses that are perpendicular to each other.
are formed, the protrusions 6b are separated from each other by the mesh-like recesses 6a, and the protrusions 6b are arranged in a grid pattern vertically and horizontally. When temporarily fixing the substrate 1 to the tapered surface 8 of the processing base 6, an adhesive layer is interposed between the substrate 1 and the projections 6b. At this time, assuming that the tapered surface 8 is flat, even if pressure is applied uniformly to the entire substrate 1 during temporary fixing, the thickness of the adhesive layer will inevitably be uneven, and therefore the single crystal When the plate 5 is ground, an error in thickness occurs due to this. On the other hand, in this example, if pressure is applied evenly to the entire substrate 1, the adhesive in excess of the average will escape to the reticulated recesses 6a before curing, and as a result, the thickness of the adhesive layer will be constant. The processing accuracy of the single crystal plate 5 can be further improved.

【0017】また、前記単結晶板5を研削加工、光学研
摩した後、加工用基盤6から基板1を分離する必要があ
る。通常は仮留めには80℃程度の加熱により除去可能
な接着剤を用いるが、仮にこの接着剤を用いると前記単
結晶層7が基板1 と熱膨張率が異なることから、前記
単結晶層7の端面の平面度が悪くなったり、変形により
結晶層7にクラックが発生する。これに対し、本実施例
では、接着剤が可溶性である有機溶媒を準備し、この有
機溶媒中に少なくとも接着剤層を浸漬し、超音波洗浄に
よって接着剤を溶解させ、加工用基盤6から基板1を分
離する。この方法であれば、前記単結晶層7の端面の平
面度を良好に保持でき、また、前記単結晶層7中でのク
ラック発生も防止できる。尚、実施例では絶縁板3を研
削加工した後、光学研磨し、純縁層4を形成したが、絶
縁板3をエッチングした後、光学研磨してもよい。
Further, after the single crystal plate 5 is ground and optically polished, it is necessary to separate the substrate 1 from the processing base 6. Usually, an adhesive that can be removed by heating to about 80° C. is used for temporary fixing, but if this adhesive is used, the single crystal layer 7 will have a different coefficient of thermal expansion from the substrate 1. The flatness of the end face of the crystal layer 7 deteriorates or cracks occur in the crystal layer 7 due to deformation. In contrast, in this embodiment, an organic solvent in which the adhesive is soluble is prepared, at least the adhesive layer is immersed in this organic solvent, the adhesive is dissolved by ultrasonic cleaning, and the processing substrate 6 is removed from the substrate. Separate 1. With this method, the flatness of the end face of the single crystal layer 7 can be maintained well, and the occurrence of cracks in the single crystal layer 7 can also be prevented. In the embodiment, the insulating plate 3 was ground and then optically polished to form the pure edge layer 4, but the insulating plate 3 may be etched and then optically polished.

【0018】更に具体的な実験例について述べる。透明
電極膜2を設けたホウケイ酸ガラス基板1を準備した。 また厚さ3mmのホウケイ酸ガラス製絶縁板3を準備し
、この端面3aを平面研削盤で平面研削加工し、砂かけ
研摩し、更に使用砥粒として1)酸化セリウム、2)コ
ロイダルシリカを順に用いて光学研摩し、厚さ10μm
 のホウケイ酸ガラス製絶縁層4を形成した。また、厚
さ2.7mm のBSO 単結晶板5を準備し、これを
絶縁層4へと接着した。 また、図5、図6に示すような加工用基盤6を準備し、
加工用基盤6のテーパ面8へと基板1を接着した。テー
パ面8の下側面9に対する勾配は0度15分とし、網状
凹部6aの幅は2mm、平面正方形の突起6bの幅は5
mm、凹部6aの深さは0.5mm 、加工用基盤6全
体の厚さは4mmとした。そして、BSO 単結晶板5
の端面5a側の平面研削盤で平面研削加工し、次いで砂
かけ研摩し、砥粒としてコロイダルシリカを用いて光学
研摩し、中心厚300 μm のBSO 単結晶層7を
形成した。
A more specific experimental example will be described. A borosilicate glass substrate 1 provided with a transparent electrode film 2 was prepared. In addition, a borosilicate glass insulating plate 3 with a thickness of 3 mm is prepared, and its end face 3a is surface ground with a surface grinder, sand-polished, and the abrasive grains used are 1) cerium oxide and 2) colloidal silica in this order. optically polished to a thickness of 10 μm.
An insulating layer 4 made of borosilicate glass was formed. Further, a BSO single crystal plate 5 having a thickness of 2.7 mm was prepared and bonded to the insulating layer 4. In addition, a processing base 6 as shown in FIGS. 5 and 6 is prepared,
The substrate 1 was bonded to the tapered surface 8 of the processing substrate 6. The slope of the tapered surface 8 with respect to the lower surface 9 is 0 degrees and 15 minutes, the width of the reticulated recess 6a is 2 mm, and the width of the projection 6b having a square plane is 5 mm.
The depth of the recess 6a was 0.5 mm, and the overall thickness of the processing base 6 was 4 mm. And BSO single crystal plate 5
The end surface 5a of the end face 5a was ground by a surface grinder, then sand-polished, and optically polished using colloidal silica as an abrasive grain to form a BSO single crystal layer 7 having a center thickness of 300 μm.

【0019】そして、この試料について、通常の加熱に
よる剥離方法によって加工用基盤6からホウケイ酸ガラ
ス基板1を剥離させた(比較例)。また一方、溶剤とし
て1,1,1−トリクロロエタンを用い、超音波洗浄機
によって15分間超音波洗浄を行い、ホウケイ酸ガラス
基板1を加工用基盤6から剥離させた(実施例)。そし
て、上記の各サンプルについて干渉計写真を撮影したと
ころ、図7(実施例)、図8(比較例)の写真が得られ
た。ここで、縞模様が0.3 μm 間隔の等高線を示
すので、実施例のサンプルでは凹凸の大きさが0.3 
μm 以内にとどまり、比較例のサンプルは3μm 以
上の大きさの凹凸を持っている。
[0019] Regarding this sample, the borosilicate glass substrate 1 was peeled off from the processing base 6 by a normal peeling method using heating (comparative example). On the other hand, using 1,1,1-trichloroethane as a solvent, ultrasonic cleaning was performed for 15 minutes using an ultrasonic cleaner to peel the borosilicate glass substrate 1 from the processing base 6 (Example). Then, when interferometer photographs were taken for each of the above samples, the photographs shown in FIG. 7 (Example) and FIG. 8 (Comparative Example) were obtained. Here, since the striped pattern shows contour lines with an interval of 0.3 μm, the size of the unevenness in the example sample is 0.3 μm.
The roughness remains within 3 μm, and the sample of the comparative example has irregularities with a size of 3 μm or more.

【0020】次いで、透過波面歪みについて実験した。 即ち、サンプル中をレーザー光等のコヒーレント光が透
過するとき、サンプルの不均質性、歪み等のため、透過
光の電磁波波面がばらつく。このような歪を有する空間
光変調素子は、光画像処理、光情報処理等の用途に使え
ない。このため、次記の各サンプルについて、透過波面
歪みを評価した。具体的には、直径10μm φ位の円
形ピンホールにレーザー光を通し、このピンホールを通
過したレーザー光をサンプル中に透過させ、サンプルか
ら数m離れたスクリーン上に投影する。スクリーン上に
投影されたビーム形が円形であれば歪みはないと言える
が、透過波面歪みがあるとビーム形が真円から変形する
Next, an experiment was conducted regarding transmitted wavefront distortion. That is, when coherent light such as a laser beam is transmitted through a sample, the electromagnetic wave front of the transmitted light varies due to non-uniformity, distortion, etc. of the sample. A spatial light modulation element having such distortion cannot be used for applications such as optical image processing and optical information processing. For this reason, the transmitted wavefront distortion was evaluated for each of the following samples. Specifically, a laser beam is passed through a circular pinhole with a diameter of approximately 10 μm φ, and the laser beam that has passed through the pinhole is transmitted into the sample and projected onto a screen several meters away from the sample. If the beam shape projected onto the screen is circular, it can be said that there is no distortion, but if there is distortion in the transmitted wavefront, the beam shape deforms from a perfect circle.

【0021】a)  BSO ウエハー、 LiNbO
3 ウエハー、BK−7ガラス、青板ガラス(すべて厚
さは2mm) にレーザー光を透過させたところ、いず
れも透過波面歪みは見られなかった。 b)  上記のBSO ウエハー、 LiNbO3 ウ
エハー、BK−7ガラス、青板ガラス(すべて厚さは2
mm) を青板ガラスに接着し、レーザー光を透過させ
たところ、いずれも透過波面歪みは見られなかった。 c)  青板ガラスに厚さ2mmのBSO ウエハーを
接着し、そのままレーザー光を透過させた。また、この
接着BSO ウエハーを、前記したように研削加工及び
光学研摩し、厚さ50μm 又は厚さ100μm とし
、それぞれレーザー光を透過させた。これらのサンプル
については、いずれも透過波面歪みは見られなかった。 d)  青板ガラスに、厚さ2mm、3mm、300 
μmの各BSO ウエハーを接着し、上記のようにして
透過波面歪みを検査した。この結果、BSO ウエハー
の厚さが2mm, 3mmの場合は図9の写真に示すよ
うなスクリーン投影画像が得られ、BSO ウエハーの
厚さが300 μm の場合は図10の写真に示すよう
なスクリーン投影画像が得られた。これより、厚さ30
0 μm のBSO ウエハーを青板ガラスに接着する
と、透過波面歪みが生ずることが解る。透過波面歪みの
ない素子を得るには、BSO ウエハーの接着時の厚さ
を1mm以上にする必要がある。
a) BSO wafer, LiNbO
3 When laser light was transmitted through a wafer, BK-7 glass, and blue plate glass (all 2 mm thick), no transmitted wavefront distortion was observed in any of them. b) The above BSO wafer, LiNbO3 wafer, BK-7 glass, blue plate glass (all thickness is 2
mm) was adhered to blue plate glass and laser light was transmitted through it, and no transmitted wavefront distortion was observed in either case. c) A BSO wafer with a thickness of 2 mm was adhered to blue plate glass, and laser light was allowed to pass through it. The bonded BSO wafer was also ground and optically polished as described above to a thickness of 50 μm or 100 μm, respectively, and laser light was transmitted therethrough. No transmitted wavefront distortion was observed in any of these samples. d) Blue plate glass, thickness 2mm, 3mm, 300
Each .mu.m BSO wafer was glued together and inspected for transmitted wavefront distortion as described above. As a result, when the thickness of the BSO wafer is 2 mm and 3 mm, a screen projection image as shown in the photograph in Figure 9 is obtained, and when the thickness of the BSO wafer is 300 μm, a screen projection image as shown in the photograph in Figure 10 is obtained. A projected image was obtained. From this, the thickness is 30
It can be seen that when a 0 μm BSO wafer is bonded to blue plate glass, transmitted wavefront distortion occurs. In order to obtain a device without transmitted wavefront distortion, the thickness of the BSO wafer when bonded must be 1 mm or more.

【0022】[0022]

【発明の効果】本発明によれば、絶縁板を基板上に接着
し、この絶縁板の端面を加工して絶縁層を形成するので
、最初から薄膜化した絶縁性薄板を電気光学効果と光伝
導効果を有する単結晶板に貼り合わせる方法と異なり、
両者の接着の段階で絶縁層の湾曲が生じず、従って従来
よりも均質な絶縁層を形成できるようになり、また接着
段階での歩留りが向上し、更には絶縁層の大面積化も可
能となった。
According to the present invention, an insulating plate is bonded onto a substrate and the end face of this insulating plate is processed to form an insulating layer, so that the thin insulating plate can be made thin from the beginning to produce electro-optical effects and optical effects. Unlike the method of bonding to a single crystal plate that has a conductive effect,
The insulating layer does not curve during the bonding process between the two, making it possible to form a more homogeneous insulating layer than before, improving the yield at the bonding process, and making it possible to increase the area of the insulating layer. became.

【0023】また本発明によれば、前記単結晶板を基板
上に接着し、この前記単結晶板の端面を加工して前記単
結晶層を形成するので、最初から薄膜化した前記単結晶
薄板を基板等に貼り合わせる方法と異なり、前記単結晶
板の接着の段階でこれに湾曲が生じず、従って従来より
も均質な単結晶層を形成できるようになり、また接着段
階での歩留りが向上し、更には電気光学結晶層の大面積
化も可能となった。
Further, according to the present invention, since the single crystal plate is bonded onto a substrate and the end face of the single crystal plate is processed to form the single crystal layer, the single crystal thin plate is made thin from the beginning. Unlike the method of bonding single-crystal plates to substrates, etc., there is no curvature in the single-crystal plate during the bonding process, making it possible to form a more homogeneous single-crystal layer than before, and improving the yield at the bonding step. However, it has also become possible to increase the area of the electro-optic crystal layer.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】基板へと絶縁板を接着する直前の状態を示す正
面図である。
FIG. 1 is a front view showing a state immediately before bonding an insulating plate to a substrate.

【図2】絶縁板を研削加工及び光学研摩して絶縁層を形
成した状態を示す正面図である。
FIG. 2 is a front view showing a state in which an insulating layer is formed by grinding and optically polishing an insulating plate.

【図3】 基板を加工用基盤へと接着し、また電気光学効果と光伝
導効果を有する単結晶板を絶縁層に接着した状態を示す
正面図である。
FIG. 3 is a front view showing a state in which a substrate is bonded to a processing base and a single crystal plate having an electro-optical effect and a photoconductive effect is bonded to an insulating layer.

【図4】絶縁層を形成した後の基板を、前記単結晶層へ
と接着する直前の状態を示す正面図である。
FIG. 4 is a front view showing the state of the substrate after forming the insulating layer, just before it is bonded to the single crystal layer.

【図5】好適例に係る加工用基盤を示す平面図である。FIG. 5 is a plan view showing a processing base according to a preferred example.

【図6】好適例に係る加工用基盤を示す側面図である。FIG. 6 is a side view showing a processing base according to a preferred example.

【図7】基板を加工用基盤から有機溶剤を用いた超音波
洗浄によって剥離したサンプルの干渉計写真である。
FIG. 7 is an interferometer photograph of a sample in which the substrate was peeled off from the processing base by ultrasonic cleaning using an organic solvent.

【図8】基板を加工用基盤から加熱法で剥離したサンプ
ルの干渉計写真である。
FIG. 8 is an interferometer photograph of a sample in which a substrate is peeled off from a processing base by a heating method.

【図9】厚さ2mm、3mmのBSO ウエハーを青板
ガラスへと接着して得たサンプルに、レーザー光を透過
させて得たスクリーン投影画像を示す写真である。
FIG. 9 is a photograph showing a screen projection image obtained by transmitting a laser beam through a sample obtained by bonding a BSO wafer with a thickness of 2 mm and 3 mm to blue plate glass.

【図10】厚さが300 μm のBSO ウエハーを
青板ガラスへと接着して得たサンプルにレーザー光を透
過させて得たスクリーン投影画像を示す写真である。
FIG. 10 is a photograph showing a screen projection image obtained by transmitting laser light through a sample obtained by bonding a BSO wafer with a thickness of 300 μm to blue plate glass.

【符号の説明】[Explanation of symbols]

1  基盤 2  透明電極膜 3  絶縁板 3a  絶縁板の端面 4  絶縁層 5  電気光学結晶板 5a  電気光学結晶板の端面 6  加工用基盤 6a  網状凹部 6b  突起 7  電気光学結晶層 8  テーパ面 1. Foundation 2 Transparent electrode film 3 Insulating board 3a End face of insulating plate 4 Insulating layer 5 Electro-optic crystal plate 5a End face of electro-optic crystal plate 6 Processing base 6a Net-like recess 6b Protrusion 7 Electro-optic crystal layer 8 Tapered surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  透明電極を有する基板上に絶縁板を接
着し、この絶縁板の端面を加工して絶縁層を形成した後
、この絶縁層の上に少なくとも電気光学結晶層と絶縁層
と基板とを設けたことを特徴とする空間光変調素子の製
造法。
1. An insulating plate is bonded onto a substrate having a transparent electrode, an insulating layer is formed by processing the end face of the insulating plate, and then at least an electro-optic crystal layer, an insulating layer and a substrate are formed on the insulating layer. A method for manufacturing a spatial light modulator, comprising:
【請求項2】  透明電極と絶縁層とを有する基板上に
電気光学結晶板を接着し、この電気光学結晶板の端面を
加工して電気光学結晶層を形成した後、この電気光学結
晶層の上に少なくとも絶縁層と基板を設けたことを特徴
とする空間光変調素子の製造法。
2. An electro-optic crystal plate is bonded onto a substrate having a transparent electrode and an insulating layer, and an end face of the electro-optic crystal plate is processed to form an electro-optic crystal layer. 1. A method of manufacturing a spatial light modulator, comprising providing at least an insulating layer and a substrate thereon.
【請求項3】  透明電極と絶縁層とを有する基板上に
電気光学結晶板を接着した後、テーパ面を有する加工用
基盤のこのテーパ面に前記基板を接着し、前記電気光学
結晶板の端面を研削加工及び光学研摩してテーパを設け
て電気光学結晶層を形成する、請求項2記載の空間光変
調素子の製造法。
3. After bonding an electro-optic crystal plate onto a substrate having a transparent electrode and an insulating layer, the substrate is bonded to the tapered surface of a processing base having a tapered surface, and the end face of the electro-optic crystal plate is bonded to the tapered surface of a processing base having a tapered surface. 3. The method for manufacturing a spatial light modulator according to claim 2, wherein the electro-optic crystal layer is formed by grinding and optically polishing the electro-optic crystal layer.
【請求項4】  前記加工用基盤の前記テーパ面に網状
凹部を形成した、請求項3記載の空間光変調素子の製造
法。
4. The method for manufacturing a spatial light modulator according to claim 3, wherein a net-like recess is formed in the tapered surface of the processing base.
【請求項5】  前記テーパ面と前記基盤とを接着して
いる接着剤を、有機溶媒を用いた超音波洗浄によって除
去する、請求項4記載の空間光変調素子の製造法。
5. The method for manufacturing a spatial light modulator according to claim 4, wherein the adhesive bonding the tapered surface and the base is removed by ultrasonic cleaning using an organic solvent.
【請求項6】  前記電気光学結晶板の端面を研削加工
及び光学研摩して前記電気光学結晶層を形成し、また透
明電極を有する基板上に絶縁板を接着し、この絶縁板の
端面を研削加工及び光学研摩して絶縁層を形成した後、
前記電気光学結晶層と前記絶縁層とを接着する、請求項
2記載の空間光変調素子の製造法。
6. Grinding and optically polishing the end face of the electro-optic crystal plate to form the electro-optic crystal layer, bonding an insulating plate onto a substrate having a transparent electrode, and grinding the end face of the insulating plate. After processing and optical polishing to form an insulating layer,
3. The method for manufacturing a spatial light modulator according to claim 2, wherein the electro-optic crystal layer and the insulating layer are bonded.
JP3037877A 1991-02-08 1991-02-08 Manufacturing method of spatial light modulator Expired - Lifetime JP2599832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037877A JP2599832B2 (en) 1991-02-08 1991-02-08 Manufacturing method of spatial light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037877A JP2599832B2 (en) 1991-02-08 1991-02-08 Manufacturing method of spatial light modulator

Publications (2)

Publication Number Publication Date
JPH04256920A true JPH04256920A (en) 1992-09-11
JP2599832B2 JP2599832B2 (en) 1997-04-16

Family

ID=12509765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037877A Expired - Lifetime JP2599832B2 (en) 1991-02-08 1991-02-08 Manufacturing method of spatial light modulator

Country Status (1)

Country Link
JP (1) JP2599832B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128358A (en) * 1978-03-28 1979-10-04 Sumitomo Electric Ind Ltd Production of image converting element
JPS59127210A (en) * 1983-01-11 1984-07-23 Seiko Epson Corp Magnetic head
JPS59166916A (en) * 1983-03-11 1984-09-20 Hamamatsu Photonics Kk Manufacture of space optical modulation tube
JPH02245721A (en) * 1989-03-18 1990-10-01 Ngk Insulators Ltd Image converting element and x-ray detection of image using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128358A (en) * 1978-03-28 1979-10-04 Sumitomo Electric Ind Ltd Production of image converting element
JPS59127210A (en) * 1983-01-11 1984-07-23 Seiko Epson Corp Magnetic head
JPS59166916A (en) * 1983-03-11 1984-09-20 Hamamatsu Photonics Kk Manufacture of space optical modulation tube
JPH02245721A (en) * 1989-03-18 1990-10-01 Ngk Insulators Ltd Image converting element and x-ray detection of image using thereof

Also Published As

Publication number Publication date
JP2599832B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
JPS62502783A (en) Linear light valve array with laterally driven electro-optical gates and method of manufacturing the same
JP4803546B2 (en) Wavelength conversion waveguide device and manufacturing method thereof
JPH04256920A (en) Manufacture of spatial optical modulating element
USRE39642E1 (en) Spatial light modulator and method
US4678286A (en) Spatial light modulator
US20080087632A1 (en) Fabrication Method for Quasi-Phase-Matched Waveguides
JPS58152201A (en) Fabry-perot type optical modulator
JPS5987B2 (en) Electro-optical switches and modulators
JP2003107545A (en) Manufacturing method for ridge type optical waveguide element
JP2719051B2 (en) Spatial light modulator
JP2009086336A (en) Optical waveguide type device
JP2599831B2 (en) Spatial light modulator and method of manufacturing the same
JP3151478B2 (en) Crystal polishing method and polishing jig
JPH07120781A (en) Production of optical writing type spacial optical modulating element
JP2007079465A (en) Optical control element and its manufacturing method
JP2002267836A (en) Polarized light separating element
JPH0422483B2 (en)
JP4518293B2 (en) Manufacturing method of liquid crystal device
JPH09117859A (en) Polishing method of substrate to be polished
JPH06210563A (en) Wafer polishing device
JPH05154761A (en) Polishing method for crystalline thin film
JP2636037B2 (en) Optical image conversion device
JP4667933B2 (en) Optical element and manufacturing method thereof
JPS58173715A (en) Production of liquid crystal display panel
JPH0542648B2 (en)