JPH05154761A - Polishing method for crystalline thin film - Google Patents

Polishing method for crystalline thin film

Info

Publication number
JPH05154761A
JPH05154761A JP3349600A JP34960091A JPH05154761A JP H05154761 A JPH05154761 A JP H05154761A JP 3349600 A JP3349600 A JP 3349600A JP 34960091 A JP34960091 A JP 34960091A JP H05154761 A JPH05154761 A JP H05154761A
Authority
JP
Japan
Prior art keywords
thin film
crystalline thin
polished
substrate
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3349600A
Other languages
Japanese (ja)
Inventor
Satoshi Takahashi
智 高橋
Masanori Tamaki
昌徳 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP3349600A priority Critical patent/JPH05154761A/en
Publication of JPH05154761A publication Critical patent/JPH05154761A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To polish a thin film to uniform thickness even when a crystalline thin film is formed on a base having a grade in thickness by polishing the thin film with an eccentric load weight so that the boundary plane between the polished surface of a dummy body and the crystalline thin film of the base is made parallel. CONSTITUTION:A dummy body 2 thicker than a base 3 formed with a crystalline thin film 11 is used as a polishing jig, and the dummy body 2 and the base 3 formed with the crystalline thin film 11 are stuck to a polished body carrier 1. The crystalline thin film 11 is polished and corrected with an eccentric load weight 5 so that the boundary plane 12 between the polished surface 8 of the dummy body 2 and the crystalline thin film 11 of the base 3 is made parallel, then the crystalline thin film 11 is polished with a uniform load weight 9 as required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶性薄膜の研磨方法
に関し、特に結晶性薄膜の平行平面度のばらつきが小さ
く、高精度の光デバイスを得るのに好適な研磨方法であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing a crystalline thin film, and more particularly to a method for polishing a crystalline thin film which has a small variation in parallel flatness and is suitable for obtaining a highly accurate optical device.

【0002】[0002]

【従来の技術】一般に、電子部品や光学部品に用いられ
る結晶体基板、あるいは結晶性薄膜の表面研磨は、河
西、野田、井田:タンタル酸リチウム電気光学素子の精
密加工、研究実用化報告20巻4号p915(197
1)に示すように、研磨治具としてガラス製の被研磨体
キャリアー1を用いて、その被研磨体キャリアー1下面
に結晶性薄膜を形成させた基板3及び同程度の高さのダ
ミー板2を結晶性薄膜を形成させた基板3の周囲にそれ
ぞれワックス4にて固定接着し、そして被研磨体キャリ
アー1上部から荷重を加えながら定盤10に接触させ研
磨を行っている(図3参照)。
2. Description of the Related Art In general, surface polishing of a crystalline substrate or a crystalline thin film used in electronic parts and optical parts is performed by Kasai, Noda, and Ida: Precision processing of lithium tantalate electro-optical element, Research Practical Report, Vol. 20. No. 4 p915 (197
As shown in 1), a substrate 3 to be polished made of glass is used as a polishing jig, a substrate 3 having a crystalline thin film formed on the lower surface of the carrier 1 to be polished, and a dummy plate 2 having a similar height. Are fixedly adhered to the periphery of the substrate 3 on which the crystalline thin film is formed with wax 4, and are then brought into contact with the surface plate 10 while applying a load from above the carrier 1 to be polished to perform polishing (see FIG. 3). ..

【0003】[0003]

【発明が解決すべき課題】図3を使って説明すると
(a)では、2−1、2−2のダミー体の被研磨面と基
板の接着面6が平行になるように偏心荷重おもり5を用
いて研磨をする。ダミー体の被研磨面8と被研磨体キャ
リアー1の平面7が平行になった後、(b)に示すよう
に均一荷重おもり9を用いて基板上に形成させた結晶性
薄膜11を研磨する。ところが基板上に形成させた結晶
性薄膜とダミー体がほぼ同じ高さであるため、ダミー体
の平行出しの際に結晶性薄膜も研磨してしまう。従っ
て、このような研磨をすると結晶性薄膜を必要以上に削
ってしまい、基板が露出してしまう。また、厚みに勾配
のある基板上に結晶性薄膜を形成した場合、従来法によ
る研磨を行うと、基板の接着面6と被研磨面が平行にな
るため図3(c)に示すように薄膜の厚さが不均一にな
る。さらに、ダミー体の平行出しの加工時間短縮のため
砥粒の大きいものを使用するが、この従来の方法ではダ
ミー体の平行出しの際、結晶性薄膜を傷つける。そのた
め砥粒を小さくする必要があり、多くの時間を必要とす
る。また、ダミー体の平行出しに再現性がないため、研
磨の加工量に再現性がない。
To explain with reference to FIG. 3, in FIG. 3A, the eccentric load weight 5 is arranged so that the surface to be polished of the dummy bodies 2-1 and 2-2 and the bonding surface 6 of the substrate are parallel to each other. To be used for polishing. After the polished surface 8 of the dummy body and the flat surface 7 of the polished carrier 1 become parallel, the uniform thin weight 9 is used to polish the crystalline thin film 11 formed on the substrate as shown in (b). .. However, since the crystalline thin film formed on the substrate and the dummy body have almost the same height, the crystalline thin film is also polished when the dummy body is parallelized. Therefore, if such polishing is performed, the crystalline thin film is shaved more than necessary, and the substrate is exposed. Further, when a crystalline thin film is formed on a substrate having a gradient in thickness, when the conventional method is used for polishing, the bonding surface 6 of the substrate and the surface to be polished become parallel, so that the thin film as shown in FIG. Thickness becomes uneven. Furthermore, in order to shorten the processing time for parallelizing the dummy body, a large abrasive grain is used. However, in this conventional method, the crystalline thin film is damaged when the dummy body is parallelized. Therefore, it is necessary to make the abrasive grains small, which requires a lot of time. Moreover, since the parallelism of the dummy body is not reproducible, the amount of polishing processing is not reproducible.

【0004】また、先にダミー体を張り付けてダミー体
の平行出しを行った後結晶性薄膜を形成させた基板をワ
ックスにより固定した場合には、結晶性薄膜を形成させ
た基板をワックスにより固定する際再度加熱するためワ
ックスが溶融し、ダミー体の平行度が低下してしまうと
言う欠点があった。
When the dummy body is first attached and the dummy body is parallelized and then the substrate on which the crystalline thin film is formed is fixed by wax, the substrate on which the crystalline thin film is formed is fixed by wax. When this is done, there is a drawback that the wax is melted by heating again and the parallelism of the dummy is lowered.

【0005】本発明の目的は、上述した従来技術の欠点
を克服することにあり、厚みに勾配のある基板の場合で
も膜厚の均一な結晶性薄膜を形成でき、結晶性薄膜の研
磨量を最小限に抑え、加工時間を短縮でき、厚みの再現
性のよい結晶性薄膜を得ることができる研磨方法の提供
を目指すものである。
An object of the present invention is to overcome the above-mentioned drawbacks of the prior art, and it is possible to form a crystalline thin film having a uniform film thickness even in the case of a substrate having a thickness gradient, and to polish the crystalline thin film. The purpose of the present invention is to provide a polishing method that can minimize the processing time, shorten the processing time, and obtain a crystalline thin film with good thickness reproducibility.

【0006】[0006]

【課題を解決するための手段】上記の目的実現のために
鋭意研究を行った結果、本発明者らは、研磨治具として
結晶性薄膜を形成させた基板よりも厚いダミー体を使用
し、ダミー体と結晶性薄膜を形成させた基板とを被研磨
体キャリアーに接着後、基板と結晶性薄膜の境界面とダ
ミー体の被研磨面が平行になるようにダミー体を研磨し
て、いわゆる平行出しをすることにより、結晶性薄膜を
損傷することなくダミー体の平行度を出すことができる
ことを見いだした。
As a result of earnest research to achieve the above object, the present inventors have used a dummy body thicker than a substrate on which a crystalline thin film is formed as a polishing jig, After bonding the dummy body and the substrate on which the crystalline thin film is formed to the carrier to be polished, the dummy body is polished so that the boundary surface between the substrate and the crystalline thin film and the polished surface of the dummy body are parallel to each other. It was found that the parallelism of the dummy body can be obtained without damaging the crystalline thin film by making the parallelism.

【0007】即ち、本発明の研磨方法は、被研磨体キャ
リアーの平面にダミー体を接着し、偏心荷重おもりを用
いてダミー体の被研磨面と基板の結晶性薄膜との境界平
面とが平行になるように研磨することにより修正し、そ
の後必要に応じて均一荷重おもりを用いて結晶性薄膜を
研磨する方法である。
That is, in the polishing method of the present invention, a dummy body is adhered to the plane of the carrier to be polished, and the boundary plane between the polished surface of the dummy body and the crystalline thin film of the substrate is made parallel by using an eccentric load weight. It is a method of polishing the crystalline thin film using a uniform load weight as needed, and then correcting the crystalline thin film.

【0008】[0008]

【作用】本発明の研磨治具は、図1に示すように両面が
互いに平行な平面を有する被研磨体キャリアー1、結晶
性薄膜を形成させた基板の周囲を取り巻き、被研磨体キ
ャリアーの平面上に配置される結晶性薄膜を形成させた
基板よりも望ましくは50〜100μm程度厚いダミー
体2、前記ダミー体を配置される被研磨体キャリアーの
平面の反対側の平面に配置される偏心荷重おもり5によ
って構成される。結晶性薄膜を形成させた基板3の周囲
を取り巻くダミー体2はリング状であり、結晶性薄膜を
形成させた基板よりも50〜100μm程度厚いことが
望ましい。100μmよりも大きいと、ダミー体を研磨
するのに時間がかかり、50μm未満だとダミー体を研
磨している間に平行出しを完了できないからである。前
記ダミー体の厚みは、結晶性薄膜を形成させた基板の厚
みよりも50〜100μm程度厚いことが有利である。
As shown in FIG. 1, the polishing jig of the present invention includes a carrier 1 to be polished having flat surfaces on both sides thereof, a substrate around which a crystalline thin film is formed, and a flat surface of the carrier to be polished. A dummy body 2, which is preferably 50 to 100 μm thicker than the substrate on which the crystalline thin film is formed, an eccentric load arranged on a plane opposite to the plane of the carrier to be polished on which the dummy body is arranged. It is composed of the weight 5. The dummy body 2 surrounding the substrate 3 on which the crystalline thin film is formed has a ring shape and is preferably thicker than the substrate on which the crystalline thin film is formed by about 50 to 100 μm. This is because if it is larger than 100 μm, it takes time to polish the dummy body, and if it is smaller than 50 μm, parallel alignment cannot be completed while polishing the dummy body. Advantageously, the thickness of the dummy body is about 50 to 100 μm thicker than the thickness of the substrate on which the crystalline thin film is formed.

【0009】研磨方法を図1を用いて具体的に説明す
る。結晶性薄膜11を形成させた基板3とダミー体2と
を被研磨体キャリアー1にワックス4により接着する。
このとき3枚のダミー体のうち結晶性薄膜を形成させた
基板3が接着されるのは、1枚のみである。(図1の
a)。このとき、必要に応じて結晶性薄膜11が形成さ
れた基板3の接着面6を研磨等で平滑化することは望ま
しい。また、その後、ワックスを用いて基板を被研磨体
キャリアーに張り付ける。そして、基板と結晶性薄膜と
の厚さをハイトゲージにより測定し、また、結晶性薄膜
の厚さを光干渉式膜厚計により測定する。
The polishing method will be specifically described with reference to FIG. The substrate 3 on which the crystalline thin film 11 is formed and the dummy body 2 are bonded to the carrier 1 to be polished by the wax 4.
At this time, only one of the three dummy bodies is bonded to the substrate 3 on which the crystalline thin film is formed. (A in FIG. 1). At this time, it is desirable to smooth the adhesive surface 6 of the substrate 3 on which the crystalline thin film 11 is formed by polishing or the like, if necessary. After that, the substrate is attached to the carrier to be polished using wax. Then, the thickness of the substrate and the crystalline thin film is measured with a height gauge, and the thickness of the crystalline thin film is measured with an optical interference type film thickness meter.

【0010】その後偏心荷重おもり5を用いてダミー体
2の被研磨面8と基板の結晶性薄膜との境界平面12が
平行になるように研磨する(図1のb)。つまり、図1
(b)においては、ダミー体の被研磨面8が、基板と結
晶性薄膜との境界平面と平行になるようにする。例え
ば、点aの方を点bより多く研磨したい場合は、点aの
高さと点bの高さを測定しながら図2の偏心荷重おもり
のXの部分が図1(b)の点Aにあたる様にして研磨し
ていく。ダミー体の被研磨面8が基板の結晶性薄膜との
境界平面12に対して平行になった後、必要に応じて均
一荷重おもり9を用いてダミー体2、および結晶性薄膜
11を研磨する(図1のc)。このような研磨方法によ
り結晶性薄膜11を傷つけることなくダミー体2を研磨
し、平行度を修正することができる。また、被研磨面8
と基板の結晶性薄膜との境界面12を平行にできるの
で、厚みに勾配のある基板の場合でも膜厚の均一な結晶
性薄膜を形成できる。さらに、ダミー体の研磨と結晶性
薄膜の研磨とをする場合砥粒を変えることが可能である
ため、ダミー体の研磨では大きな砥粒を、結晶性薄膜の
研磨には小さい砥粒を使うことができる。そのため研磨
の時間を短くできる。さらに厚さの均一な結晶性薄膜を
再現よく作製できる。
After that, the eccentric load weight 5 is used to polish the surface 8 to be polished of the dummy body 2 and the boundary plane 12 between the crystalline thin film of the substrate and the parallel plane 12 (b in FIG. 1). That is, FIG.
In (b), the surface 8 to be polished of the dummy body is made parallel to the boundary plane between the substrate and the crystalline thin film. For example, when it is desired to polish the point a more than the point b, the X portion of the eccentric load weight in FIG. 2 corresponds to the point A in FIG. 1B while measuring the heights of the points a and b. Polish in the same way. After the surface 8 to be polished of the dummy body becomes parallel to the boundary plane 12 with the crystalline thin film of the substrate, the dummy body 2 and the crystalline thin film 11 are polished with the uniform load weight 9 if necessary. (FIG. 1c). By this polishing method, the parallelism can be corrected by polishing the dummy body 2 without damaging the crystalline thin film 11. Also, the surface to be polished 8
Since the interface 12 between the substrate and the crystalline thin film of the substrate can be made parallel, a crystalline thin film having a uniform film thickness can be formed even in the case of a substrate having a gradient in thickness. Furthermore, since it is possible to change the abrasive grains when polishing the dummy body and the crystalline thin film, use large abrasive grains for polishing the dummy body and small abrasive grains for polishing the crystalline thin film. You can Therefore, the polishing time can be shortened. Furthermore, a crystalline thin film having a uniform thickness can be produced with good reproducibility.

【0011】被研磨体キャリアーは、直径138mmで
平行平面度0.3μm以下のアルミナ製の固定治具が好
適である。
As the carrier to be polished, a fixing jig made of alumina having a diameter of 138 mm and a parallel flatness of 0.3 μm or less is suitable.

【0012】ダミー体2は硬度が結晶性薄膜11と同程
度であればよく、アルミナ、炭化ケイ素、酸化ケイ素、
ジルコニア、窒化ケイ素、ガラスなどでもよい。LiN
bO3 薄膜等を研磨する場合は、モース硬度6〜7のガ
ラスが特性、経済性の面から望ましい。
The dummy body 2 may have the same hardness as the crystalline thin film 11, such as alumina, silicon carbide, silicon oxide,
Zirconia, silicon nitride, glass, etc. may be used. LiN
When polishing a bO 3 thin film or the like, a glass having a Mohs hardness of 6 to 7 is desirable in terms of characteristics and economy.

【0013】本発明の研磨方法で用いられる砥粒−定盤
は、次のようにするのが好適である。ダミー体の研磨の
際は、粒径2μmのダイヤモンドスラリー、銅ケメット
盤を使用する。そして結晶性薄膜の研磨には粒径1/4
μmのダイヤモンドスラリー、錫−鉛ケメット盤を使用
して研磨する。研磨砥粒及びケメット盤を変更するの
は、次の理由による。ダミー体を研磨する際は、研磨速
度を大きくすることにより、加工時間を短くすることが
でき、また結晶性薄膜を研磨する際は、研磨による傷を
最小限にできる。砥粒−定盤の変更は、結晶性薄膜11
とダミー体2との被研磨体キャリアーからの高さの差が
数μm程度になったときに行う。これは、結晶性薄膜1
1に大きなラップ痕を生じさせないためである。
The abrasive-platen used in the polishing method of the present invention is preferably as follows. When polishing the dummy body, a diamond slurry having a particle diameter of 2 μm and a copper kemet disk are used. And for polishing a crystalline thin film, the grain size is 1/4
Polish using a diamond slurry of μm, tin-lead kemet board. The reason for changing the abrasive grains and the kemet disk is as follows. When polishing the dummy body, it is possible to shorten the processing time by increasing the polishing rate, and when polishing the crystalline thin film, scratches due to polishing can be minimized. Abrasive grains-change of surface plate is made of crystalline thin film 11
And when the difference in height between the dummy body 2 and the carrier to be polished is about several μm. This is a crystalline thin film 1
This is because no large lap mark is generated in No. 1.

【0014】結晶性薄膜と基板との厚さの測定は、ハイ
トゲージを使用する。また、結晶性薄膜の厚さの測定
は、光干渉式膜厚計を使用する。
A height gauge is used to measure the thickness of the crystalline thin film and the substrate. An optical interference type film thickness meter is used to measure the thickness of the crystalline thin film.

【0015】平面度の測定は精度λ/20のオプティカ
ルフラット(λ=0.54μm)を使用する。干渉縞が
平行であれば、結晶性薄膜11の平面度は0.54/2
0=0.027μm以下である。また結晶性薄膜11を
ワックス4によりキャリアー1に接着している場合と結
晶性薄膜を形成させた基板3を取り外した場合の干渉縞
が同じであれば、接着歪はなく、平面度0.027μm
以下である。本発明は、LiNbO3 、LiTaO3
ZnO2、PbTiO3 、Al23、TiO2 、ZrO
2 などの結晶性薄膜研磨に好適に使用される。
The flatness is measured by using an optical flat (λ = 0.54 μm) with an accuracy of λ / 20. If the interference fringes are parallel, the flatness of the crystalline thin film 11 is 0.54 / 2.
0 = 0.027 μm or less. If the interference fringes are the same when the crystalline thin film 11 is adhered to the carrier 1 by the wax 4 and when the substrate 3 on which the crystalline thin film is formed is removed, there is no adhesive distortion and the flatness is 0.027 μm.
It is below. The present invention relates to LiNbO 3 , LiTaO 3 ,
ZnO 2 , PbTiO 3 , Al 2 O 3 , TiO 2 , ZrO
It is preferably used for polishing crystalline thin films such as 2 .

【0016】[0016]

【実施例】以下、本発明の具体的な方法を説明するが本
発明はこの実施例に限定されるものではない。
EXAMPLES The specific method of the present invention will be described below, but the present invention is not limited to these examples.

【0017】実施例1 LiTaO3 基板上に形成した膜厚9μmのLiNbO
3 薄膜の研磨を行った。LiTaO3 基板3(直径20
mm、厚さ1mm)は、平行度1μm/138mm以
下、平面度0.027μm以下の基板を使用した。ダミ
ー体2として外径46mm,内径23mm、厚さ1.1
mmのリング状ガラス板を使用した。被研磨体キャリア
ー1(直径138mm、平行平面度0.3μm以下)に
LiNbO3 薄膜が形成されたLiTaO3基板3およ
びダミー体2をワックス4により接着した。その後、L
iNbO3 薄膜およびLiTaO3 基板の厚さをハイト
ゲージ、光干渉式膜厚計により測定し、LiTaO3
板のLiNbO3 薄膜との境界平面の傾きを求めた。そ
して、ダミー体2を研磨している間に、表1で示した偏
心荷重おもり5を用いてダミー体2の被研磨面8とLi
TaO3 基板のLiNbO3 薄膜との境界平面12が平
行になるように平行度の修正を行った。その後、均一荷
重おもり9(真鋳製、質量3.1kg)をかけて研磨し
ていった。ダミー体の研磨には、粒径2μmのダイヤモ
ンドスラリー、銅ケメット盤を使用し、そしてダミー体
2とLiNbO3 薄膜11との厚さの差が数μmとなっ
たら粒径1/4μmのダイヤモンドスラリー、錫−鉛ケ
メット盤を使用して研磨した。LiNbO3 薄膜11の
全面が研磨された後、精度λ/20のオプティカルフラ
ット(λ=0.54μm)により平行度を測定したら、
干渉縞が平行であった。そしてLiNbO3 薄膜11を
形成させたLiTaO3 基板3を被研磨体キャリアー1
から外し、再び平面度を測定しても、干渉縞は同一であ
った。このようにして、膜厚2μm、平行平面度±0.
1μm/5mm□(これは、一辺の長さが5mmの正方
形の部分の平行平面度が±0.1μmであることを示
す)の部分を有するLiNbO3 薄膜を得た。また加工
に要した時間は14時間であった。同様の方法で3回L
iNbO3 基板を研磨した結果、膜厚2±0.1μm
で、平行平面度±0.1μm/5mm□の部分を有する
薄膜を得た。
Example 1 LiNbO having a film thickness of 9 μm formed on a LiTaO 3 substrate
3 Thin film was polished. LiTaO 3 substrate 3 (diameter 20
mm, thickness 1 mm), a substrate having a parallelism of 1 μm / 138 mm or less and a flatness of 0.027 μm or less was used. The dummy body 2 has an outer diameter of 46 mm, an inner diameter of 23 mm, and a thickness of 1.1.
A ring-shaped glass plate of mm was used. A LiTaO 3 substrate 3 having a LiNbO 3 thin film formed thereon and a dummy body 2 were bonded to a carrier 1 to be polished (diameter 138 mm, parallel flatness 0.3 μm or less) by a wax 4. Then L
The thicknesses of the iNbO 3 thin film and the LiTaO 3 substrate were measured with a height gauge and an optical interference type film thickness meter, and the inclination of the boundary plane between the LiTaO 3 substrate and the LiNbO 3 thin film was obtained. Then, while the dummy body 2 is being polished, the eccentric load weight 5 shown in Table 1 is used to polish the surface to be polished 8 and Li of the dummy body 2.
The parallelism was corrected so that the boundary plane 12 between the TaO 3 substrate and the LiNbO 3 thin film was parallel. After that, a uniform load weight 9 (made by casting, mass 3.1 kg) was applied and polished. A diamond slurry having a particle size of 2 μm and a copper kemet disk are used for polishing the dummy body, and if the difference in thickness between the dummy body 2 and the LiNbO 3 thin film 11 becomes several μm, the diamond slurry having a particle size of 1/4 μm. Polished using a tin-lead kemet board. After the entire surface of the LiNbO 3 thin film 11 is polished, the parallelism is measured by an optical flat (λ = 0.54 μm) with an accuracy of λ / 20.
The interference fringes were parallel. Then, the LiTaO 3 substrate 3 on which the LiNbO 3 thin film 11 is formed is used as the carrier 1 to be polished.
The interference fringes were the same when they were removed and the flatness was measured again. In this way, the film thickness is 2 μm, the parallel flatness is ± 0.
A LiNbO 3 thin film having a portion of 1 μm / 5 mm □ (this indicates that the parallel flatness of a square portion having a side length of 5 mm is ± 0.1 μm) was obtained. The time required for processing was 14 hours. L three times in the same way
As a result of polishing the iNbO 3 substrate, the film thickness is 2 ± 0.1 μm
Then, a thin film having a portion with a parallel flatness of ± 0.1 μm / 5 mm □ was obtained.

【0018】実施例2 平行度4μm/20mm、平面度0.027μmである
LiTaO3 基板3(直径20mm、厚さ1mm)基板
上に形成されたLiNbO3薄膜(膜厚10μm)につ
いても実施例1と同様の方法で研磨を行った。ダミー体
2は、厚さ1.07mmのリング状ガラス体を使用し
た。被研磨体キャリアー1(直径138mm、平行平面
度0.3μm以下)にLiNbO3 薄膜が形成されたL
iTaO3 基板3およびダミー体2をワックス4により
接着した。その後、LiNbO3 薄膜およびLiTaO
3 基板の厚さをハイトゲージ、光干渉式膜厚計により測
定し、LiTaO3 基板のLiNbO3 薄膜との境界平
面の傾きを求めた。そして、ダミー体2を研磨している
間に、表1で示した偏心荷重おもり5を用いてダミー体
2の被研磨面8とLiTaO3 基板のLiNbO3 薄膜
との境界平面12が平行になるように平行度の修正を行
った。その後、均一荷重おもり9(真鋳製、質量3.1
kg)をかけて研磨していった。LiNbO3 薄膜11
の全面が研磨された後、精度λ/20のオプティカルフ
ラット(λ=0.54μm)により平面度を測定した
ら、干渉縞が平行であった。そしてLiNbO3 薄膜1
1が形成されたLiTaO3 基板を被研磨体キャリアー
1から外し、再び平面度を測定しても、干渉縞は同一で
あった。このようにして、膜厚2μm、平行平面度±
0.1μm/5mm□の部分を有するLiNbO3 薄膜
を得た。また加工に要した時間は16時間であった。ま
た、平行度2〜5μm/20mm、平面度0.027μ
mのLiTaO3 基板上に形成されたLiNbO3 薄膜
を研磨した結果、膜厚2±0.1μm、平行平面度±
0.1μm/5mm□の部分を有する薄膜を得た。
Example 2 A LiNbO 3 thin film (film thickness 10 μm) formed on a LiTaO 3 substrate 3 (diameter 20 mm, thickness 1 mm) having a parallelism of 4 μm / 20 mm and a flatness of 0.027 μm was also used in Example 1. Polishing was performed in the same manner as in. As the dummy body 2, a ring-shaped glass body having a thickness of 1.07 mm was used. L having a LiNbO 3 thin film formed on carrier 1 to be polished (diameter 138 mm, parallel flatness 0.3 μm or less)
The iTaO 3 substrate 3 and the dummy body 2 were adhered with a wax 4. After that, LiNbO 3 thin film and LiTaO
3 height gauge the thickness of the substrate was measured by an optical interference type film thickness meter to determine the inclination of the boundary plane between the LiNbO 3 thin film of LiTaO 3 substrate. Then, while the dummy body 2 is being polished, the surface 8 to be polished of the dummy body 2 and the boundary plane 12 between the LiNbO 3 thin film of the LiTaO 3 substrate are parallel to each other by using the eccentric load weight 5 shown in Table 1. The parallelism was corrected as follows. After that, a uniform load weight 9 (made by true casting, mass 3.1)
(kg) and polished. LiNbO 3 thin film 11
After polishing the entire surface of, the flatness was measured by an optical flat (λ = 0.54 μm) with an accuracy of λ / 20, and the interference fringes were parallel. And LiNbO 3 thin film 1
When the LiTaO 3 substrate on which No. 1 was formed was removed from the carrier 1 to be polished and the flatness was measured again, the interference fringes were the same. In this way, the film thickness is 2 μm and the parallel flatness ±
A LiNbO 3 thin film having a portion of 0.1 μm / 5 mm □ was obtained. The time required for processing was 16 hours. Also, the parallelism is 2 to 5 μm / 20 mm, and the flatness is 0.027 μ.
As a result of polishing the LiNbO 3 thin film formed on the LiTaO 3 substrate with a thickness of 2 ± 0.1 μm, the parallel flatness ±
A thin film having a portion of 0.1 μm / 5 mm □ was obtained.

【0019】比較例 平行度4μm/20mm、平面度0.027μmである
LiTaO3 基板3(直径20mm、厚さ0.991m
m)基板上に形成されたLiNbO3 薄膜(膜厚9μ
m)について研磨を行った。ダミー体2として外径46
mm,内径23mm、厚さ1mmのドーナツ型ガラス板
を使用した。被研磨体キャリアー1(直径138mm、
平行平面度0.3μm以下)にLiNbO3 薄膜が形成
されたLiTaO3 基板3およびダミー体2をワックス
4により接着した。そして、偏心荷重おもり5を用い
て、研磨しながらLiNbO3 薄膜が均一の膜厚になる
ように修正を行った。研磨には、粒径1/4μmのダイ
ヤモンドスラリー、錫−鉛ケメット盤を使用した。Li
NbO3 薄膜11の全面が研磨された後、精度λ/20
のオプティカルフラット(λ=0.54μm)により平
面度を測定したら、干渉縞が平行であった。そしてLi
NbO3 薄膜11が形成されたLiTaO3基板を被研
磨体キャリアー1から外し、再び平面度を測定しても、
干渉縞は同一であった。このようにして作成したLiN
bO3 薄膜は、膜厚1.5μm、平行平面度±0.6μ
m/5mm□であった。また加工に要した時間は24時
間であった。また、平行度2〜5μm/20mm、平面
度0.027μmのLiTaO3 基板上に形成されたL
iNbO3 薄膜を同じ方法で研磨した結果、平行平面度
±0.6μm/5mm□であった。また薄膜を研磨して
いる間に膜厚が均一になるように修正できず、薄膜を削
りすぎて基板が露出していた。
Comparative Example LiTaO 3 substrate 3 (diameter 20 mm, thickness 0.991 m, parallelism 4 μm / 20 mm, flatness 0.027 μm)
m) LiNbO 3 thin film formed on the substrate (film thickness 9μ
m) was polished. Outer diameter 46 as dummy body 2
A donut-shaped glass plate having a diameter of 23 mm, an inner diameter of 23 mm, and a thickness of 1 mm was used. Carrier to be polished 1 (diameter 138 mm,
A LiTaO 3 substrate 3 on which a LiNbO 3 thin film was formed and a dummy body 2 were adhered to each other by a wax 4 in a parallel flatness of 0.3 μm or less). Then, using the eccentric load weight 5, the LiNbO 3 thin film was corrected so as to have a uniform film thickness while polishing. For polishing, a diamond slurry having a particle diameter of 1/4 μm and a tin-lead kemet disk were used. Li
After polishing the entire surface of the NbO 3 thin film 11, the accuracy is λ / 20.
When the flatness was measured with an optical flat (λ = 0.54 μm), the interference fringes were parallel. And Li
Even if the LiTaO 3 substrate on which the NbO 3 thin film 11 is formed is removed from the carrier 1 to be polished and the flatness is measured again,
The interference fringes were the same. LiN created in this way
The bO 3 thin film has a thickness of 1.5 μm and a parallel flatness of ± 0.6 μ.
It was m / 5 mm □. The time required for processing was 24 hours. Further, L formed on a LiTaO 3 substrate having a parallelism of 2 to 5 μm / 20 mm and a flatness of 0.027 μm.
As a result of polishing the iNbO 3 thin film by the same method, the parallel flatness was ± 0.6 μm / 5 mm □. Further, while polishing the thin film, the film thickness could not be corrected to be uniform, and the thin film was scraped too much to expose the substrate.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、厚
みに勾配のある基板上に結晶性薄膜を形成した場合でも
薄膜を均一の膜厚に研磨することができ、また加工時間
を短くすることができる。さらに薄膜を再現良く同じ膜
厚に研磨できる為、高精度の光学デバイスを得るのに有
効である。
As described above, according to the present invention, even when a crystalline thin film is formed on a substrate having a thickness gradient, the thin film can be polished to a uniform film thickness and the processing time can be shortened. can do. Furthermore, since the thin film can be polished to the same film thickness with good reproducibility, it is effective for obtaining a highly accurate optical device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の研磨方法の状態を示す工程図である。FIG. 1 is a process drawing showing a state of a polishing method of the present invention.

【図2】本発明にかかる偏心荷重おもり及び均一荷重お
もりを示す図である。
FIG. 2 is a diagram showing an eccentric load weight and a uniform load weight according to the present invention.

【図3】従来の研磨方法を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional polishing method.

【符号の説明】[Explanation of symbols]

1 被研磨体キャリアー 2 ダミー体 3 基板 4 ワックス 5 偏心荷重おもり 6 基板の接着面 7 被研磨体キャリアーの平面 8 ダミー体の被研磨面 9 均一荷重おもり 10 定盤 11 結晶性薄膜 12 基板の結晶性薄膜との境界平面 1 Carrier to be Polished 2 Dummy Body 3 Substrate 4 Wax 5 Eccentric Load Weight 6 Adhesive Surface of Substrate 7 Plane of Carrier to be Polished 8 Polished Surface of Dummy Body 9 Uniform Load Weight 10 Surface Plate 11 Crystalline Thin Film 12 Crystal of Substrate Boundary plane with thin film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)結晶性薄膜を形成させた基板及び
ダミー体を被研磨体キャリアーに接着するにあたり、定
盤に結晶性薄膜の被研磨面が接触しないように調整され
たダミー体を結晶性薄膜の周囲に配置し、接着剤により
接着する工程。 (b)偏心荷重おもりを用いてダミー体の被研磨面と基
板の結晶性薄膜との境界平面が平行になるように研磨す
る工程。 (c)結晶性薄膜を所望の厚さに研磨する工程。 以上(a)〜(c)の工程により構成される結晶性薄膜
の研磨方法。
1. When bonding a substrate on which a crystalline thin film is formed and a dummy body to a carrier to be polished, a dummy body adjusted so that the surface of the crystalline thin film to be polished does not come into contact with a surface plate is provided. A step of arranging around a crystalline thin film and bonding with an adhesive. (B) A step of polishing with an eccentric load weight so that the boundary plane between the surface to be polished of the dummy body and the crystalline thin film of the substrate becomes parallel. (C) A step of polishing the crystalline thin film to a desired thickness. A method for polishing a crystalline thin film constituted by the above steps (a) to (c).
【請求項2】 前記工程(a)において、ダミー体の被
研磨面を、結晶性薄膜の被研磨面よりも50〜100μ
m高くすることにより、定盤に結晶性薄膜の被研磨面が
接触しないようにする請求項1記載の結晶性薄膜の研磨
方法。
2. In the step (a), the polished surface of the dummy body is 50 to 100 μm thicker than the polished surface of the crystalline thin film.
The method for polishing a crystalline thin film according to claim 1, wherein the surface to be polished of the crystalline thin film does not come into contact with the surface plate by increasing the height by m.
JP3349600A 1991-12-06 1991-12-06 Polishing method for crystalline thin film Pending JPH05154761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3349600A JPH05154761A (en) 1991-12-06 1991-12-06 Polishing method for crystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3349600A JPH05154761A (en) 1991-12-06 1991-12-06 Polishing method for crystalline thin film

Publications (1)

Publication Number Publication Date
JPH05154761A true JPH05154761A (en) 1993-06-22

Family

ID=18404825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3349600A Pending JPH05154761A (en) 1991-12-06 1991-12-06 Polishing method for crystalline thin film

Country Status (1)

Country Link
JP (1) JPH05154761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522982A (en) * 2013-12-11 2015-08-12 Element Six Technologies Ltd Post-synthesis processing of diamond and related super-hard materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522982A (en) * 2013-12-11 2015-08-12 Element Six Technologies Ltd Post-synthesis processing of diamond and related super-hard materials
GB2522982B (en) * 2013-12-11 2016-11-16 Element Six Tech Ltd Post-synthesis processing of diamond and related super-hard materials

Similar Documents

Publication Publication Date Title
JP5384313B2 (en) Composite substrate manufacturing method and composite substrate
US4994139A (en) Method of manufacturing a light-conducting device
TW201722622A (en) Composite substrate manufacturing method
JP3151478B2 (en) Crystal polishing method and polishing jig
JPH05154761A (en) Polishing method for crystalline thin film
JP2002040629A (en) Method for bonding pellicle plate to pellicle frame
JPS597561A (en) Jig for simultaneously machining plural works
JP2588060B2 (en) Polishing chuck for semiconductor wafer
JP2003186180A (en) Method for producing pellicle frame, and pellicle
JP2020033214A (en) Method for manufacturing oxide single crystal substrate
JPH0947950A (en) Prism polishing jig
JP2000033563A (en) Control method for polishing margin and manufacture of wafer by use of the same
JPH05228828A (en) Method and jig for polishing crystal body
JP2599832B2 (en) Manufacturing method of spatial light modulator
JPH01153265A (en) Jig
JP2001334444A (en) Curved surface machining method for thin plate
JPH01153264A (en) Polishing method
JPS5972139A (en) Processing method for sheet material
JPH09117859A (en) Polishing method of substrate to be polished
JPS61271841A (en) Polishing method of semiconductor substrate
JPS58132458A (en) Method and equipment for polishing flat surface of hard and brittle plate
JPH09183047A (en) Sample polishing method
JPH05291216A (en) Polishing method of semiconductor substrate
JP2003275953A (en) Base plate for polishing substrate
JPH0569312A (en) Method and jig for grinding optical device