JPH04255223A - Formation method of insulating film - Google Patents

Formation method of insulating film

Info

Publication number
JPH04255223A
JPH04255223A JP1639891A JP1639891A JPH04255223A JP H04255223 A JPH04255223 A JP H04255223A JP 1639891 A JP1639891 A JP 1639891A JP 1639891 A JP1639891 A JP 1639891A JP H04255223 A JPH04255223 A JP H04255223A
Authority
JP
Japan
Prior art keywords
substrate
gas
reactor
insulating film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1639891A
Other languages
Japanese (ja)
Inventor
Hisashi Fukuda
永 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1639891A priority Critical patent/JPH04255223A/en
Publication of JPH04255223A publication Critical patent/JPH04255223A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a fine oxide insulating film with few defects. CONSTITUTION:A silicon substrate 12 preoxidation-cleaned up is arranged in a reaction furnace 14. Next, H2 gas as a reducing gas led in the reaction furnace 14 is RF plasma discharged to remove a natural oxide film and impurities on the substrate 12. Next, O2 gas as an oxidizing gas is led in the reaction furnace 14 while holding the substrate in the reaction furnace 14 as it is so that the O2 gas may be RF discharged to form a thermal oxide film on the substrate 12. At this time, the substrate 12 is heated by an infrared ray lamp 18. On the other hand, since the O2 gas is activated by the RF plasma discharging step while heating the substrate 12 by infrared ray irradiation so as to efficiently accelerate the reaction between the substrate constituent Si and the oxide gas component atom O, the uncoupled bond of substrate constituent Si can be reduced thereby enabling said purpose to be attained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は絶縁膜の形成方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating film.

【0002】0002

【従来の技術】最先端技術により形成されるシリコン集
積回路、特にMOS(Metal  Oxide  S
emiconductor)では膜厚が極めて薄い酸化
膜がゲート酸化膜に用いられる。とりわけ、1.0μm
以下のゲート長を有するサブミクロンMOSデバイスで
は膜厚が例えば100A°(オングストローム)以下と
なる酸化膜が用いられ、このように膜厚を薄くすること
で利得の向上が図られている。酸化膜の従来の形成方法
の一例としては、例えば文献:「MOSLSI製造技術
  徳山  巍、橋本哲一編著  日経マグロウヒル社
  1985年  p.65」に開示されるものがあっ
た。
[Prior Art] Silicon integrated circuits formed using cutting-edge technology, especially MOS (Metal Oxide S)
In semiconductors, an extremely thin oxide film is used as the gate oxide film. In particular, 1.0 μm
In a submicron MOS device having a gate length of the following, an oxide film having a film thickness of, for example, 100 Angstroms or less is used, and by reducing the film thickness in this way, the gain is improved. An example of a conventional method for forming an oxide film is the one disclosed in the document: "MOSLSI Manufacturing Technology, Edited by Iwao Tokuyama and Tetsuichi Hashimoto, Nikkei McGraw-Hill, 1985, p. 65."

【0003】この文献に開示されている方法ではまず、
電気炉によって800〜1200℃に加熱した石英管内
に、清浄化した基板を設置する。その後、酸化膜形成の
ための酸化性ガスを石英管内に導入する。酸化性ガスと
しては例えば乾燥した酸素ガス、或いは酸素及び水素の
混合ガス、或いは塩酸を霧状にして酸素ガスと混合した
ガス等が用いられる。所望の酸化膜の膜厚に見合った時
間及び温度で、基板を石英管内に放置しておくことによ
って、基板表面に均一な膜厚の酸化膜が形成される。
[0003] In the method disclosed in this document, first,
The cleaned substrate is placed in a quartz tube heated to 800 to 1200° C. in an electric furnace. Thereafter, an oxidizing gas for forming an oxide film is introduced into the quartz tube. As the oxidizing gas, for example, dry oxygen gas, a mixed gas of oxygen and hydrogen, a gas obtained by atomizing hydrochloric acid and mixing it with oxygen gas, etc. are used. By leaving the substrate in the quartz tube for a time and temperature appropriate to the desired thickness of the oxide film, an oxide film with a uniform thickness is formed on the surface of the substrate.

【0004】0004

【発明が解決しようとする課題】しかしながら上述の文
献に開示されている方法では、膜厚が例えば100A°
以下の薄い酸化膜を形成する場合に膜厚制御が困難であ
った。そこで上述のような薄い酸化膜を形成する場合は
、石英管の加熱温度を800℃以下にする方法(以下、
低温酸化法と称す)或いは窒素ガスで酸素ガスを希釈し
て酸化速度の低下を図る方法(以下、希釈酸化法と称す
)を行なわざるを得ない。
[Problems to be Solved by the Invention] However, in the method disclosed in the above-mentioned literature, the film thickness is 100A°.
When forming the following thin oxide film, it was difficult to control the film thickness. Therefore, when forming a thin oxide film as described above, a method of heating the quartz tube to 800°C or less (hereinafter referred to as
A method of diluting oxygen gas with nitrogen gas to reduce the oxidation rate (hereinafter referred to as a diluted oxidation method) must be used.

【0005】しかしシリコン基板にシリコン酸化膜を形
成する場合、低温酸化法では基板及び酸化膜の界面が荒
れるという欠点があった。また希釈酸化法では窒素が基
板及び酸化膜の界面に偏析するので望まない新たな界面
準位が発生するという欠点があった。さらに低温酸化法
及び希釈酸化法のいずれでも、緻密な酸化膜を得ること
が難しく、また基板及び酸化膜界面や酸化膜中に例えば
シリコン原子の不対結合や歪んだSi−O−Si結合が
多く存在するので界面準位が高くなるという欠点があっ
た。従って低温酸化法や希釈酸化法でMOS型電界効果
トランジスタのゲート絶縁膜を形成するとこれら欠点に
起因する種々の問題を生じる。
However, when forming a silicon oxide film on a silicon substrate, the low temperature oxidation method has the disadvantage that the interface between the substrate and the oxide film becomes rough. Furthermore, the dilute oxidation method has the disadvantage that nitrogen segregates at the interface between the substrate and the oxide film, resulting in generation of new, undesired interface levels. Furthermore, with both low-temperature oxidation and diluted oxidation methods, it is difficult to obtain a dense oxide film, and unpaired bonds of silicon atoms and distorted Si-O-Si bonds, for example, occur at the interface between the substrate and the oxide film and in the oxide film. Since there are a lot of them, there is a drawback that the interface level becomes high. Therefore, if a gate insulating film of a MOS type field effect transistor is formed by a low temperature oxidation method or a diluted oxidation method, various problems arise due to these defects.

【0006】例えば、ゲート長1μm以下の微細なMO
S型電界効果トランジスタにあっては、チャネル領域で
発生したホットエレクトロンがゲート酸化膜中に侵入す
ると酸化膜中のシリコン原子の不対結合や歪んだSi−
O−Si結合がこのホットエレクトロンをトラップしこ
のトラップにより新たな界面準位が発生する。その結果
、MOS型電界効果トランジスタにおけるしきい値電圧
の変動や伝達コンダクタンスの低下を引起こすという問
題点がある。またMOS型電界効果トランジスタの耐圧
試験を行なうと、シリコン原子の不対結合や歪んだSi
−O−Si結合の結合が切れて新たな界面準位がゲート
酸化膜中に発生し、その結果電界効果トランジスタに絶
縁破壊が生じるという問題点があった。
For example, a fine MO with a gate length of 1 μm or less
In an S-type field effect transistor, when hot electrons generated in the channel region enter the gate oxide film, they cause unpaired bonds between silicon atoms in the oxide film and distorted Si-
The O--Si bond traps these hot electrons, and this trap generates a new interface level. As a result, there are problems in that the threshold voltage of the MOS field effect transistor fluctuates and the transfer conductance decreases. In addition, when performing a breakdown voltage test on a MOS field effect transistor, it is found that dangling bonds between silicon atoms and strained Si
There is a problem in that the -O--Si bond is broken and a new interface level is generated in the gate oxide film, resulting in dielectric breakdown in the field effect transistor.

【0007】この発明の目的は上述した従来の問題点を
解決し、従来よりも膜質が優れた絶縁膜を形成すること
ができる絶縁膜形成方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an insulating film forming method that solves the above-mentioned conventional problems and can form an insulating film with better film quality than the conventional method.

【0008】[0008]

【課題を解決するための手段】この目的の達成を図るた
め、この発明の絶縁膜形成方法は、基板を設置した反応
炉内に基板清浄化ガスを導入する工程と、基板清浄化ガ
スをRFプラズマ放電させて基板を清浄化する工程と、
清浄化した基板を反応炉内に保持したまま反応炉内に絶
縁膜形成用ガスを導入する工程と、絶縁膜形成用ガスを
RF放電させながら基板に絶縁膜を形成する工程とを含
むことを特徴とする。
[Means for Solving the Problem] In order to achieve this object, the insulating film forming method of the present invention includes a step of introducing a substrate cleaning gas into a reactor in which a substrate is installed, and a step of introducing a substrate cleaning gas into a reactor in which a substrate is installed. a step of cleaning the substrate by plasma discharge;
The method includes a step of introducing an insulating film forming gas into the reactor while holding the cleaned substrate in the reactor, and a step of forming an insulating film on the substrate while RF discharging the insulating film forming gas. Features.

【0009】[0009]

【作用】このような形成方法によれば、基板を設置した
反応炉内に基板清浄化ガスを導入し、このガスをRFプ
ラズマ放電させて基板を清浄化する。そして清浄化した
基板を反応炉内に保持したまま絶縁膜形成用ガスを反応
炉内に導入し、このガスをRFプラズマ放電させながら
基板に絶縁膜を形成する。
[Operation] According to such a forming method, a substrate cleaning gas is introduced into a reactor in which a substrate is installed, and the substrate is cleaned by RF plasma discharge of this gas. Then, an insulating film forming gas is introduced into the reactor while the cleaned substrate is held in the reactor, and an insulating film is formed on the substrate while causing RF plasma discharge of this gas.

【0010】従って基板の清浄化及び絶縁膜の形成を同
一反応炉内で連続的に行なうので非常に清浄な状態の基
板に絶縁膜を形成することができる。
Therefore, since cleaning of the substrate and formation of the insulating film are performed continuously in the same reactor, the insulating film can be formed on the substrate in an extremely clean state.

【0011】また絶縁膜形成用ガスをRFプラズマ放電
させて活性化するので、絶縁膜形成用ガスの成分原子と
基板構成原子との間の反応が促進され効率良く行なわれ
、その結果緻密で欠陥の少ない絶縁膜を形成することが
できる。
[0011] Furthermore, since the insulating film forming gas is activated by RF plasma discharge, the reaction between the constituent atoms of the insulating film forming gas and the atoms constituting the substrate is promoted and carried out efficiently, resulting in dense and defect-free formation. It is possible to form an insulating film with less

【0012】0012

【実施例】以下、図面を参照し、この発明の実施例につ
き説明する。尚、図面はこの発明が理解できる程度に概
略的に示してあるにすぎず、従ってこの発明を図示例に
限定するものではない。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the drawings are merely shown schematically to the extent that the invention can be understood, and therefore the invention is not limited to the illustrated examples.

【0013】図1を参照し、まずこの発明の実施に用い
て好適な絶縁膜形成装置の構成につき一例を挙げて説明
する。図1は絶縁膜形成装置の全体構成を概略的に示す
図である。
Referring to FIG. 1, an example of the structure of an insulating film forming apparatus suitable for carrying out the present invention will be described. FIG. 1 is a diagram schematically showing the overall configuration of an insulating film forming apparatus.

【0014】図1に示す絶縁膜形成装置10は基板12
が設置される反応炉14と、反応炉14内に供給された
基板清浄化ガス及び酸化性ガスをRFプラズマ放電させ
るための第一電極部材161及び第二電極部材162か
ら成るプラズマ放電用電極部16と、反応炉14内に設
置された基板12を加熱処理するための加熱部18とを
備えて成る。
The insulating film forming apparatus 10 shown in FIG.
a reactor 14 in which a reactor 14 is installed, and an electrode section for plasma discharge consisting of a first electrode member 161 and a second electrode member 162 for RF plasma discharge of the substrate cleaning gas and oxidizing gas supplied into the reactor 14. 16, and a heating section 18 for heat-treating the substrate 12 placed in the reactor 14.

【0015】反応炉(加熱炉)14を凹部aを備える本
体141と凹部bを備える蓋部材142から構成し、蓋
部材142を気密保持部材20例えばゴムパッキンを介
し本体141上に着脱自在に設ける。反応炉14内を真
空に引いたとき本体141及び蓋部材142の間に気密
保持部材20が押圧挟持されるので、反応炉14内の気
密状態を保持することができる。本体14a及び蓋部材
14bの形成材料としては例えばステンレスを用いる。
The reactor (heating furnace) 14 is composed of a main body 141 having a recess a and a lid member 142 having a recess b, and the lid member 142 is removably attached to the main body 141 via an airtight member 20, for example, a rubber packing. . When the inside of the reactor 14 is evacuated, the airtight maintaining member 20 is pressed and held between the main body 141 and the lid member 142, so that the inside of the reactor 14 can be kept airtight. For example, stainless steel is used as the material for forming the main body 14a and the lid member 14b.

【0016】また加熱部18を赤外光を発するランプか
ら構成し、第一電極部材161を、赤外光を透過する透
過部材161aとこの透過部材161aに設けられ赤外
光を透過する透明導電膜161bとから構成する。
The heating section 18 is composed of a lamp that emits infrared light. It consists of a film 161b.

【0017】形成材料及び形成方法を限定するものでは
ないが、例えば、透過部材161aとして石英板を用い
この透過部材161aにIn2O3をスパッタ法で積層
し、層厚10μm程度のIn2O3層から成る透明導電
膜161bを形成する。透明導電膜161bの形成材料
としては、SnO2、Cd2SnO4、ZnO、SnO
2−Sb、In2O3−Sn及びそのほかのRF放電に
適した任意好適な材料を用いることができる。また透明
導電膜161bの形成方法には、電子ビーム蒸着法、イ
オンビームスパッタ法、CVD法及びそのほかの任意好
適な方法を用いることができる。
Although the forming material and forming method are not limited, for example, a quartz plate is used as the transparent member 161a, In2O3 is laminated on the transparent member 161a by sputtering, and a transparent conductive layer consisting of an In2O3 layer with a layer thickness of about 10 μm is formed. A film 161b is formed. The material for forming the transparent conductive film 161b includes SnO2, Cd2SnO4, ZnO, and SnO.
2-Sb, In2O3-Sn, and any other suitable material suitable for RF discharge can be used. Further, as a method for forming the transparent conductive film 161b, an electron beam evaporation method, an ion beam sputtering method, a CVD method, or any other suitable method can be used.

【0018】そして本体141の凹部aの底部には、基
板12の表面温度を測定するための測定装置26例えば
オプティカルパイロメーターと称する装置と、第二電極
部材162としてのサセプタとを設ける。第二電極部材
162と本体141との間には、これらの間の電気的絶
縁を得るための絶縁体22を設ける。そして第二電極部
材162の一方の側を、本体141の内側となる凹部a
内に延出させ基板12の設置部として構成し、さらに第
二電極部材162の他方の側を本体141の外側に延出
させ、この延出部をRF電源24と電気的に接続する。
A measuring device 26 for measuring the surface temperature of the substrate 12, for example, a device called an optical pyrometer, and a susceptor as a second electrode member 162 are provided at the bottom of the recess a of the main body 141. An insulator 22 is provided between the second electrode member 162 and the main body 141 to provide electrical insulation therebetween. Then, one side of the second electrode member 162 is inserted into the recess a which is inside the main body 141.
The other side of the second electrode member 162 is extended to the outside of the main body 141 , and this extended portion is electrically connected to the RF power source 24 .

【0019】また透過部材161aを透明導電膜161
bが第二電極部材162と対向するようにして、本体1
41の上側の縁部分に着脱自在に係止する。この係止状
態のときに透明導電膜161bとRF電源24とが電気
的に接続するように、配線を施す。
Furthermore, the transparent member 161a is made of a transparent conductive film 161.
b faces the second electrode member 162, and the main body 1
41 in a detachable manner. Wiring is provided so that the transparent conductive film 161b and the RF power source 24 are electrically connected in this locked state.

【0020】蓋部材142の凹部bには、複数個の加熱
部18例えばタングステン−ハロゲンランプを第二電極
部材162と対向させて設ける。加熱部18と第二電極
部材162との間に赤外光を通過する第一電極部材16
1を設けているので、加熱部18からの赤外光を、第二
電極部材162に設置された基板12に到達させること
ができる。
A plurality of heating units 18, for example, tungsten-halogen lamps, are provided in the recess b of the lid member 142 so as to face the second electrode member 162. A first electrode member 16 through which infrared light passes between the heating section 18 and the second electrode member 162
1, the infrared light from the heating section 18 can reach the substrate 12 installed on the second electrode member 162.

【0021】ランプとして、基板12を効率よく加熱で
きる波長域の光を発するランプを用いることによって、
短時間のうちに設定温度(例えば1100℃)まで基板
温度を上げることができ、これと共に基板温度が局所的
に高くなったり低くなったりするのを避け自然酸化膜及
び不純物が除去される基板12の全体をほぼ均等に加熱
することができる。
By using a lamp that emits light in a wavelength range that can efficiently heat the substrate 12,
The substrate 12 can raise the substrate temperature to a set temperature (for example, 1100° C.) in a short time, and at the same time prevents the substrate temperature from becoming locally high or low, and removes the natural oxide film and impurities. The entire area can be heated almost evenly.

【0022】また図1において28及び32は絶縁膜形
成装置10のために設置された真空排気手段及びガス供
給部を示す。
Further, in FIG. 1, reference numerals 28 and 32 indicate a vacuum evacuation means and a gas supply section installed for the insulating film forming apparatus 10.

【0023】これら真空排気手段28及びガス供給部3
2の構成を以下に述べるものに限定するものではないが
、真空排気手段28を例えばターボ分子ポンプ281及
びロータリーポンプ282から構成する。そしてターボ
分子ポンプ281を圧力調整バルブ30を介して反応炉
14と接続し、さらにロータリーポンプ282をターボ
分子ポンプ281に接続する。
These evacuation means 28 and gas supply section 3
Although the configuration of 2 is not limited to what will be described below, the evacuation means 28 is configured from, for example, a turbo molecular pump 281 and a rotary pump 282. The turbo molecular pump 281 is then connected to the reactor 14 via the pressure regulating valve 30, and the rotary pump 282 is further connected to the turbo molecular pump 281.

【0024】またガス供給部32を、例えば、基板清浄
化ガスとして還元性ガスを供給する還元性ガス源321
と、基板12に絶縁膜例えば熱酸化膜を形成するために
用いる酸化性ガスを供給する酸化ガス源322と、反応
炉14内に設置した基板12に自然酸化膜が形成される
のを防止するために用いる不活性ガスを供給する不活性
ガス源321とから構成する。これらガス源321、3
22、323をそれぞれガス導入管34によって反応炉
14内と接続し、反応炉14と還元性ガス源321との
間にバルブ36a及び36dを設け、さらに反応炉14
と酸化ガス源322との間にバルブ36b及び36dを
設け、反応炉14と不活性ガス源323との間にバルブ
36cを設ける。バルブ36a、36b、36cはそれ
ぞれのガス導入管を開閉するためのバルブ、またバルブ
36dは反応炉34内を真空排気するためのバルブであ
る。尚、不活性ガス源323を設けなくともよい。
The gas supply unit 32 is also connected to, for example, a reducing gas source 321 that supplies a reducing gas as a substrate cleaning gas.
, an oxidizing gas source 322 that supplies an oxidizing gas used to form an insulating film, such as a thermal oxide film, on the substrate 12, and a source 322 for preventing the formation of a natural oxide film on the substrate 12 installed in the reactor 14. and an inert gas source 321 that supplies inert gas used for this purpose. These gas sources 321, 3
22 and 323 are connected to the inside of the reactor 14 through gas introduction pipes 34, valves 36a and 36d are provided between the reactor 14 and the reducing gas source 321, and
Valves 36b and 36d are provided between the reactor 14 and the oxidizing gas source 322, and a valve 36c is provided between the reactor 14 and the inert gas source 323. The valves 36a, 36b, and 36c are valves for opening and closing the respective gas introduction pipes, and the valve 36d is a valve for evacuating the inside of the reactor 34. Note that the inert gas source 323 may not be provided.

【0025】次に図1を参照し、上述した絶縁膜形成装
置10を用いて絶縁膜例えば熱酸化膜を形成する例につ
き説明する。
Next, referring to FIG. 1, an example of forming an insulating film, such as a thermal oxide film, using the above-mentioned insulating film forming apparatus 10 will be described.

【0026】まず基板12としてシリコン基板を用意し
、従来行なわれている如く酸化前洗浄を行なう。尚、酸
化前洗浄は必ずしも行なわなくともよい。
First, a silicon substrate is prepared as the substrate 12, and pre-oxidation cleaning is performed as conventionally done. Note that the pre-oxidation cleaning does not necessarily have to be performed.

【0027】次に蓋部材142及び第一電極部材161
を本体141から取外した状態で、基板12を第二電極
部材162上に設置し、然る後蓋部材142及び第一電
極部材161を本体141に順次に取り付ける。
Next, the lid member 142 and the first electrode member 161
is removed from the main body 141, the substrate 12 is placed on the second electrode member 162, and the rear cover member 142 and the first electrode member 161 are sequentially attached to the main body 141.

【0028】基板12の酸化が反応炉14内で進行する
のを(従って自然酸化膜が反応炉14内で形成されるの
を)防止するため、基板12の設置前にバルブ36cを
開放しておき、不活性ガス例えば窒素ガスを予め反応炉
14内へ導入するようにする。このとき還元性ガス及び
酸化ガスを反応炉14内に導入しないように、バルブ3
6a、36bを閉じておく。尚、不活性ガスの導入は行
なわなくともよい。
In order to prevent the oxidation of the substrate 12 from proceeding in the reactor 14 (therefore, the formation of a natural oxide film in the reactor 14), the valve 36c is opened before the substrate 12 is installed. Then, an inert gas such as nitrogen gas is introduced into the reactor 14 in advance. At this time, in order to prevent reducing gas and oxidizing gas from being introduced into the reactor 14, the valve 3
6a and 36b are closed. Note that it is not necessary to introduce an inert gas.

【0029】蓋部材142及び第一電極部材161の取
り付けを終えたら、不活性ガスの導入を停止し、排気手
段28を作動させて反応炉14内を真空排気する。この
真空排気はバルブ36c及び36dを閉じてからターボ
分子ポンプ281及びロータリーポンプ282を作動さ
せて圧力調整バルブ30を徐々に開けながら行なう。反
応炉14内の洗浄度を向上するため、好ましくは1×1
0−6Torr以下の高真空を反応炉14内に形成する
のがよい。
After the lid member 142 and the first electrode member 161 have been attached, the introduction of the inert gas is stopped, and the exhaust means 28 is activated to evacuate the inside of the reactor 14. This evacuation is performed by closing the valves 36c and 36d, then operating the turbo molecular pump 281 and rotary pump 282, and gradually opening the pressure regulating valve 30. In order to improve the cleanliness inside the reactor 14, preferably 1×1
It is preferable to form a high vacuum of 0-6 Torr or less in the reactor 14.

【0030】この真空排気の後、バルブ36a及び36
dを開けて還元性ガス例えば水素H2ガスを反応炉14
内に導入する。この際、基板12の自然酸化膜の除去と
、基板12の不純物の除去とを反応炉14内の減圧状態
で行なうため、還元性ガスが導入された反応炉14内を
減圧状態とする。このため、還元性ガスを導入しながら
圧力調整バルブ30を操作してバルブの開き具合を調整
すると共に還元性ガスの流量を調整する。そして反応炉
14内が例えば1×10−2Torr程度となるように
、これら調整を行なう。ガス流量の調整は、通常行なわ
れる如く、フローメーター等のガス流量調整手段(図示
せず)を用いて行なわれる。
After this evacuation, the valves 36a and 36
d and introduce a reducing gas such as hydrogen H2 gas into the reactor 14.
to be introduced within. At this time, since the natural oxide film on the substrate 12 and the impurities on the substrate 12 are removed in a reduced pressure state in the reactor 14, the inside of the reactor 14 into which the reducing gas has been introduced is brought into a reduced pressure state. Therefore, while introducing the reducing gas, the pressure regulating valve 30 is operated to adjust the degree of opening of the valve and the flow rate of the reducing gas. These adjustments are made so that the pressure inside the reactor 14 is, for example, about 1×10 −2 Torr. The gas flow rate is normally adjusted using a gas flow rate adjusting means (not shown) such as a flow meter.

【0031】この減圧状態のもとでRF電源24を投入
し例えばRFパワー約150W及び放電時間約10分間
と設定して還元性ガスをプラズマ放電させる。主として
還元性ガスの還元作用と、プラズマ放電により化学的に
活性化された還元性ガスによるエッチング作用とによっ
て基板12の自然酸化膜が除去され、また主として還元
性ガスのエッチング作用によって基板12の基板表面に
付着する炭素そのほかの不純物が除去される。すなわち
、反応炉14内に導入した還元性ガスをRF放電させる
ことによって自然酸化膜及び不純物の除去が行なわれる
Under this reduced pressure state, the RF power source 24 is turned on, and the RF power is set to about 150 W and the discharge time is about 10 minutes, so that the reducing gas is plasma-discharged. The natural oxide film on the substrate 12 is removed mainly by the reducing action of the reducing gas and the etching action by the reducing gas chemically activated by plasma discharge, and the substrate 12 is removed mainly by the etching action of the reducing gas. Carbon and other impurities adhering to the surface are removed. That is, the natural oxide film and impurities are removed by subjecting the reducing gas introduced into the reactor 14 to RF discharge.

【0032】好ましくは、このプラズマ放電時に加熱部
18を用いて基板12を加熱するのが良く、この加熱に
よって単位時間当りに除去される自然酸化膜及び不純物
の量を増やすことができる。
Preferably, the heating unit 18 is used to heat the substrate 12 during this plasma discharge, and this heating can increase the amount of native oxide film and impurities removed per unit time.

【0033】基板の自然酸化膜及び不純物の除去時に生
じる反応生成物は、反応炉14内が減圧状態とされてい
るので、反応炉14外に排除される。
Reaction products generated during removal of the native oxide film and impurities from the substrate are discharged to the outside of the reactor 14 because the pressure inside the reactor 14 is reduced.

【0034】自然酸化膜及び不純物を除去するため、還
元性ガスを任意好適な条件のもとでRFプラズマ放電さ
せた後、RF電源24をオフにする。その後バルブ36
a及び36dを閉じ、還元性ガスの導入を停止する。そ
して圧力調整バルブ30を徐々に開けてゆき反応炉14
内の真空排気を行なう。好ましくは、反応炉14内の清
浄度を向上するため、1×10−6Torr以下の高真
空を反応炉14内に形成するのが良い。
[0034] In order to remove the native oxide film and impurities, a reducing gas is subjected to RF plasma discharge under arbitrary suitable conditions, and then the RF power source 24 is turned off. Then valve 36
A and 36d are closed to stop the introduction of reducing gas. Then, the pressure regulating valve 30 is gradually opened and the reactor 14 is
Evacuate the inside. Preferably, in order to improve the cleanliness inside the reactor 14, a high vacuum of 1×10 −6 Torr or less is preferably formed in the reactor 14 .

【0035】この真空排気をおこなってからバルブ36
b及び36dを開けて酸化ガス例えば酸素O2ガスを反
応炉14内に導入する。この際、基板12への熱酸化膜
の形成を、反応炉14内の減圧状態で行なうため、酸化
ガスが導入された反応炉14内を減圧状態とする。この
ため、酸化ガスを導入しながら圧力調整バルブ30を調
整すると共に酸化ガスの流量を調整する。そして反応炉
14内が例えば1×10−2Torr程度となるように
、これら調整を行なう。
After performing this evacuation, the valve 36
b and 36d are opened to introduce an oxidizing gas such as oxygen O2 gas into the reactor 14. At this time, in order to form a thermal oxide film on the substrate 12 in a reduced pressure state in the reactor 14, the reactor 14 into which the oxidizing gas has been introduced is brought into a reduced pressure state. For this reason, the pressure regulating valve 30 is adjusted while introducing the oxidizing gas, and the flow rate of the oxidizing gas is also adjusted. These adjustments are made so that the pressure inside the reactor 14 is, for example, about 1×10 −2 Torr.

【0036】この減圧状態の下でRF電源24を投入し
例えばRFパワー約40Wで酸化ガスをプラズマ放電さ
せる。放電開始時ないしは放電開始直後、加熱部18を
点灯して赤外光を基板12に照射し、基板12を任意好
適な所定の温度に加熱する。この加熱は例えば基板表面
温度の昇温速度を100℃/秒とし、測定装置26によ
って基板表面温度をモニターしながら基板表面温度(設
定温度)1000℃となるまで行なう。そして基板12
の基板表面温度をほぼ1000℃に保持したまま約20
秒間加熱する。このように加熱した場合には膜厚が10
0〜300A°(オングストローム)の熱酸化膜を形成
することができる。
Under this reduced pressure state, the RF power source 24 is turned on, and the oxidizing gas is plasma-discharged with an RF power of about 40 W, for example. At or immediately after the start of the discharge, the heating section 18 is turned on to irradiate the substrate 12 with infrared light, thereby heating the substrate 12 to any suitable predetermined temperature. This heating is performed, for example, at a temperature increase rate of 100° C./sec, and while monitoring the substrate surface temperature with the measuring device 26, until the substrate surface temperature (set temperature) reaches 1000° C. and the board 12
about 20℃ while maintaining the substrate surface temperature at approximately 1000℃.
Heat for seconds. When heated in this way, the film thickness is 10
A thermal oxide film with a thickness of 0 to 300 A° (angstroms) can be formed.

【0037】酸化膜形成時に生じる反応生成物は反応炉
14内を減圧状態としているので、反応炉14外に排除
される。RF放電は基板加熱停止と同時にないしは加熱
停止後に、停止する。また酸化ガスのガス流量、基板表
面の保持温度及び基板の加熱時間そのほかの加熱条件を
任意好適に設定することによって、任意好適な膜厚の酸
化膜を形成することができる。
The reaction products generated during the formation of the oxide film are removed from the reactor 14 because the pressure inside the reactor 14 is reduced. The RF discharge is stopped at the same time as or after the heating of the substrate is stopped. Further, by arbitrarily setting the gas flow rate of the oxidizing gas, the holding temperature of the substrate surface, the heating time of the substrate, and other heating conditions, it is possible to form an oxide film of any suitable thickness.

【0038】また加熱の停止後及びRF放電の停止後、
酸化ガスの導入を停止する。そして酸化膜が必要以上に
成長するのを避けるため、反応炉14の酸化ガスを不活
性ガス例えば窒化ガス或いは窒素ガスと置換する。
[0038] Also, after stopping heating and stopping RF discharge,
Stop introducing oxidizing gas. In order to prevent the oxide film from growing more than necessary, the oxidizing gas in the reactor 14 is replaced with an inert gas such as nitriding gas or nitrogen gas.

【0039】このため、加熱停止及びRF放電の停止後
、バルブ36b及び36dをとじて酸化ガスの導入を停
止し、圧力調整バルブ30を開けて反応炉14内を真空
排気する。この真空排気は反応炉14内に1×10−6
Torr以下の高真空を形成するように行なうのが好ま
しい。この真空排気の後、圧力調整バルブ30を閉じて
排気手段28の作動を停止し、次いでバルブ36cを開
いて不活性ガスを反応炉14内に導入し、基板12を反
応炉14内で不活性ガス中に保持する。
For this reason, after stopping heating and RF discharge, the valves 36b and 36d are closed to stop the introduction of oxidizing gas, and the pressure regulating valve 30 is opened to evacuate the inside of the reactor 14. This vacuum evacuation is carried out within the reactor 14 by 1×10-6
It is preferable to form a high vacuum of Torr or less. After this evacuation, the pressure regulating valve 30 is closed to stop the operation of the evacuation means 28, and then the valve 36c is opened to introduce an inert gas into the reactor 14, and the substrate 12 is placed in an inert state in the reactor 14. Hold in gas.

【0040】基板12の表面温度が室温(例えば25℃
)になるまで下がったら基板12を大気中に取り出し、
後工程を行なえばよい。尚、不活性ガス中に基板12を
保持しつつ基板温度が下がるのを待つのが好ましいが、
このようにして基板温度が下がるのを待たなくとも良い
[0040] The surface temperature of the substrate 12 is room temperature (for example, 25°C).
), take out the substrate 12 into the atmosphere,
Post-processing may be performed. Note that it is preferable to hold the substrate 12 in an inert gas and wait for the substrate temperature to drop.
In this way, there is no need to wait for the substrate temperature to drop.

【0041】上述したように、この実施例では、基板1
2を設置した反応炉14内に、還元性ガスを導入し、そ
して基板12の自然酸化膜及び不純物の除去を還元性ガ
スをRFプラズマ放電させることによって行なう。この
ように反応炉14内において基板12の清浄化を行なう
ことによって、同一の反応炉14内で基板12の清浄化
と基板12の熱酸化膜形成とを連続的に行なうことがで
きる。これがため清浄に保持された基板12に酸化膜を
形成することができる。
As mentioned above, in this embodiment, the substrate 1
A reducing gas is introduced into the reactor 14 in which the substrate 12 is installed, and the natural oxide film and impurities on the substrate 12 are removed by subjecting the reducing gas to RF plasma discharge. By cleaning the substrate 12 in the reactor 14 in this way, cleaning the substrate 12 and forming a thermal oxide film on the substrate 12 can be performed continuously in the same reactor 14. Therefore, an oxide film can be formed on the substrate 12 that is kept clean.

【0042】また上述したように、この実施例では、反
応炉14内の清浄度を向上するため反応炉14内を高真
空に真空排気し或いは減圧状態としたが、反応炉14内
の反応生成物等の不純物を排除することにも限界があり
従って僅かながらも反応炉14内に不純物が残留してい
る。しかしながらこの実施例では、急速加熱による酸化
によって酸化膜を形成するので反応炉14内に残留する
不純物が酸化膜の形成(成長)時に酸化膜を汚染する確
率を非常に低くすることができる。
Furthermore, as mentioned above, in this embodiment, the inside of the reactor 14 was evacuated to a high vacuum or reduced in pressure in order to improve the cleanliness inside the reactor 14. There is a limit to the removal of impurities such as substances, and therefore some impurities remain in the reactor 14, albeit in a small amount. However, in this embodiment, since the oxide film is formed by oxidation by rapid heating, the probability that impurities remaining in the reactor 14 will contaminate the oxide film during the formation (growth) of the oxide film can be extremely reduced.

【0043】従って清浄な状態に保持された基板12に
清浄な酸化膜の形成が行なえ、これがため欠陥の少ない
高信頼性を有する酸化膜を形成することができ、例えば
サブミクロンMOSデバイスのゲート酸化膜に用いて好
適な酸化膜を形成することができる。
Therefore, a clean oxide film can be formed on the substrate 12 that is kept in a clean state, and therefore a highly reliable oxide film with few defects can be formed, for example, for gate oxidation of submicron MOS devices. A suitable oxide film can be formed using the film.

【0044】またこの実施例では、熱酸化膜の形成時に
酸化ガスをRFプラズマ放電により活性化し、これと並
行して基板12を赤外線照射により加熱する。従って基
板構成原子Siと酸化ガス成分原子Oとの間の反応が促
進され効率良く行なわれる。その結果、基板構成原子S
iの未結合子を減らすことができでるので極めて緻密(
高密度)でかつ欠陥の少ない絶縁膜SiO2を基板12
に形成することができる。また絶縁膜SiO2の膜成長
速度を速くすることができるので、所望の膜厚の絶縁膜
SiO2をより短い時間で形成することができる。
Further, in this embodiment, when forming a thermal oxide film, the oxidizing gas is activated by RF plasma discharge, and in parallel with this, the substrate 12 is heated by infrared irradiation. Therefore, the reaction between the substrate constituent atoms Si and the oxidizing gas component atoms O is promoted and carried out efficiently. As a result, the substrate constituent atoms S
It is possible to reduce the number of uncombined elements of i, so it is extremely dense (
The substrate 12 is an insulating film SiO2 with high density) and few defects.
can be formed into Furthermore, since the growth rate of the insulating film SiO2 can be increased, the insulating film SiO2 with a desired thickness can be formed in a shorter time.

【0045】上述した実施例では、この発明の理解を深
めるために特定の構成、材料及び数値的条件を挙げて説
明したが、これら特定の条件は一例にすぎずこの発明は
これら特定の条件に限定されるものではない。従って各
構成成分の構成、形状、配設位置、寸法、形成材料、温
度及びそのほかの条件を任意好適に変更することができ
る。
[0045] In the above-mentioned embodiments, specific configurations, materials, and numerical conditions were cited and explained in order to deepen the understanding of the present invention, but these specific conditions are only examples, and the present invention is based on these specific conditions. It is not limited. Therefore, the structure, shape, arrangement position, dimensions, forming material, temperature, and other conditions of each component can be changed as desired.

【0046】[0046]

【発明の効果】上述した説明からも明らかなように、こ
の発明の絶縁膜形成方法によれば、基板を設置した反応
炉内に基板清浄化ガスを導入し、このガスをRFプラズ
マ放電させて基板を清浄化する。そして清浄化した基板
を反応炉内に保持したまま絶縁膜形成用ガスを反応炉内
に導入し、このガスをRFプラズマ放電させながら基板
に絶縁膜を形成する。
[Effects of the Invention] As is clear from the above explanation, according to the insulating film forming method of the present invention, a substrate cleaning gas is introduced into a reactor in which a substrate is installed, and this gas is subjected to RF plasma discharge. Clean the board. Then, an insulating film forming gas is introduced into the reactor while the cleaned substrate is held in the reactor, and an insulating film is formed on the substrate while causing RF plasma discharge of this gas.

【0047】従って基板の清浄化及び絶縁膜の形成を同
一反応炉内で連続的に行なうので非常に清浄な状態の基
板に絶縁膜を形成することができる。
Therefore, since cleaning of the substrate and formation of the insulating film are performed continuously in the same reactor, the insulating film can be formed on the substrate in an extremely clean state.

【0048】また絶縁膜形成用ガスをRFプラズマ放電
により活性化するので、絶縁膜形成用ガスの成分原子と
基板構成原子との間の反応が促進され効率良く行なわれ
、その結果、緻密で欠陥の少ない絶縁膜を形成すること
ができる。
Furthermore, since the insulating film forming gas is activated by RF plasma discharge, the reaction between the constituent atoms of the insulating film forming gas and the atoms constituting the substrate is promoted and carried out efficiently, resulting in dense and defect-free formation. It is possible to form an insulating film with less

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施に用いて好適な絶縁膜形成装置
の一構成例を示す断面図である。
FIG. 1 is a cross-sectional view showing a configuration example of an insulating film forming apparatus suitable for use in implementing the present invention.

【符号の説明】[Explanation of symbols]

10:絶縁膜形成装置 12:基板 14:反応炉 16:プラズマ放電用電極部 18:加熱部 321:還元性ガス 322:酸化ガス 10: Insulating film forming device 12: Substrate 14: Reactor 16: Plasma discharge electrode part 18: Heating part 321: Reducing gas 322: Oxidizing gas

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  基板を設置した反応炉内に基板清浄化
ガスを導入する工程と、前記基板清浄化ガスをRFプラ
ズマ放電させて基板を清浄化する工程と、清浄化した基
板を反応炉内に保持したまま該反応炉内に絶縁膜形成用
ガスを導入する工程と、前記絶縁膜形成用ガスをRF放
電させながら基板に絶縁膜を形成する工程とを含むこと
を特徴とする絶縁膜形成方法。
1. A step of introducing a substrate cleaning gas into a reactor in which a substrate is installed, a step of cleaning the substrate by causing an RF plasma discharge in the substrate cleaning gas, and a step of introducing a substrate cleaning gas into a reactor in which the substrate is installed. An insulating film forming method comprising the steps of: introducing an insulating film forming gas into the reactor while the substrate is maintained at a temperature of Method.
【請求項2】  前記基板清浄化ガスを還元性ガスとし
たことを特徴とする請求項1に記載の絶縁膜形成方法。
2. The insulating film forming method according to claim 1, wherein the substrate cleaning gas is a reducing gas.
【請求項3】  前記絶縁膜形成用ガスを酸化性ガスと
し、絶縁膜として熱酸化膜を形成することを特徴とする
請求項1に記載の絶縁膜形成方法。
3. The insulating film forming method according to claim 1, wherein the insulating film forming gas is an oxidizing gas and a thermal oxide film is formed as the insulating film.
【請求項4】  前記基板を赤外線ランプで加熱して絶
縁膜を形成することを特徴とする請求項1に記載の絶縁
膜形成方法。
4. The insulating film forming method according to claim 1, wherein the insulating film is formed by heating the substrate with an infrared lamp.
JP1639891A 1991-02-07 1991-02-07 Formation method of insulating film Withdrawn JPH04255223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1639891A JPH04255223A (en) 1991-02-07 1991-02-07 Formation method of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1639891A JPH04255223A (en) 1991-02-07 1991-02-07 Formation method of insulating film

Publications (1)

Publication Number Publication Date
JPH04255223A true JPH04255223A (en) 1992-09-10

Family

ID=11915144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1639891A Withdrawn JPH04255223A (en) 1991-02-07 1991-02-07 Formation method of insulating film

Country Status (1)

Country Link
JP (1) JPH04255223A (en)

Similar Documents

Publication Publication Date Title
KR101503412B1 (en) Substrate cleaning method for removing oxide layer
US7129185B2 (en) Substrate processing method and a computer readable storage medium storing a program for controlling same
JP4280686B2 (en) Processing method
US20080289650A1 (en) Low-temperature cleaning of native oxide
US7915179B2 (en) Insulating film forming method and substrate processing method
JP5092868B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH02303131A (en) Method of forming insulating film
JP3233281B2 (en) Method of forming gate oxide film
JP4002169B2 (en) Electrostatic chuck
JP3838397B2 (en) Semiconductor manufacturing method
TWI482220B (en) Method and device for forming silicon oxide film
US5478400A (en) Apparatus for fabricating semiconductor devices
JP5080810B2 (en) Plasma processing method and plasma processing apparatus
JPH04255223A (en) Formation method of insulating film
JP4965849B2 (en) Insulating film forming method and computer recording medium
JPH05343391A (en) Manufacture of semiconductor device
JPH05213695A (en) Method for depositing thin diamond film
JPH0669195A (en) Method of forming insulating film
JP3258441B2 (en) Microwave plasma processing apparatus and microwave plasma processing method
JPH03259524A (en) Forming method of insulating film
JPH05259153A (en) Method and apparatus for manufacture of silicon oxide film
JPH04199828A (en) Manufacture of oxide thin film of high dielectric constant
JP2008028252A (en) Processing method and processing device of semiconductor layer, and manufacturing method and manufacturing equipment of thin film transistor
JP2006019366A (en) Method for forming insulating film in semiconductor device
JPH03134153A (en) Method and device for forming oxide film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514