JP2006019366A - Method for forming insulating film in semiconductor device - Google Patents

Method for forming insulating film in semiconductor device Download PDF

Info

Publication number
JP2006019366A
JP2006019366A JP2004193407A JP2004193407A JP2006019366A JP 2006019366 A JP2006019366 A JP 2006019366A JP 2004193407 A JP2004193407 A JP 2004193407A JP 2004193407 A JP2004193407 A JP 2004193407A JP 2006019366 A JP2006019366 A JP 2006019366A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
silicon oxide
nitriding
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004193407A
Other languages
Japanese (ja)
Inventor
Yusuke Fukuchi
祐介 福地
Hideo Kitagawa
英夫 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004193407A priority Critical patent/JP2006019366A/en
Publication of JP2006019366A publication Critical patent/JP2006019366A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a reliable gate insulating film by introducing high-concentration nitrogen only near the surface of a silicon oxide film without segregating nitrogen near the interface of a silicon substrate in the nitriding treatment of the silicon oxide film using a plasma nitriding method. <P>SOLUTION: A method for forming an insulating film comprises a process for irradiating a substrate surface having a silicon oxide thin film on a semiconductor substrate with vacuum ultraviolet rays in a vacuum container retained in high vacuum; and a process for performing either nitriding or oxynitriding treatment in the vacuum container retained in a high vacuum state without exposing the substrate to the atmosphere after the irradiation of vacuum ultraviolet rays. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体基板上に形成された高い信頼性をもつ絶縁膜を有する半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device having a highly reliable insulating film formed on a semiconductor substrate.

LSIの高集積化が進むに伴いMOS(Metal Oxide Semiconductor)トランジスタのゲート絶縁膜やメモリのキャパシタ絶縁膜等の薄膜化が進んでいる。   With the progress of high integration of LSIs, thinning of gate insulating films of MOS (Metal Oxide Semiconductor) transistors, capacitor insulating films of memories, and the like is progressing.

しかしながら例えばMOSトランジスタにおいて従来ゲート絶縁膜として用いられてきたシリコン酸化膜は、その膜厚が2nmを切ると絶縁耐圧の低下や直接トンネル電流によるリーク電流の増加が無視できなくなり物理的な膜厚を減らすことが困難になってきている。また薄膜化に伴う別の弊害としてP+ポリシリコンゲート電極に打ち込まれたボロンが後工程に行われる熱処理により薄い絶縁膜中をつき抜けシリコン基板中へと拡散し閾値電圧を変動させるといった半導体特性の信頼性低下を引き起こしてしまう問題も浮上している。   However, for example, a silicon oxide film that has been conventionally used as a gate insulating film in a MOS transistor has a physical film thickness that cannot be ignored when the film thickness drops below 2 nm, and the increase in leakage current due to direct tunneling current decreases. It has become difficult to reduce. Another adverse effect of thinning the film is that the boron implanted into the P + polysilicon gate electrode penetrates through the thin insulating film and diffuses into the silicon substrate by the heat treatment performed in the subsequent process, thereby changing the threshold voltage. There is also a problem that causes a decrease in reliability.

このような問題を克服する手段として、誘電率がシリコン酸化膜よりも高いため物理膜厚をシリコン酸化膜に比べ厚く確保しても電気的容量値を得られシリコン酸化膜換算膜厚(Equivalent Oxide Thickness:EOT)を薄膜化でき、さらに基板へのボロンの拡散を抑制するといった優れた特性をもつシリコン酸窒化膜が注目されており、さまざまな成膜手法が提案されている。   As a means for overcoming such a problem, since the dielectric constant is higher than that of the silicon oxide film, an electric capacitance value can be obtained even if the physical film thickness is ensured to be thicker than that of the silicon oxide film. A silicon oxynitride film having excellent characteristics such as reducing the thickness of Thickness (EOT) and suppressing diffusion of boron to the substrate has attracted attention, and various film formation methods have been proposed.

シリコン酸窒化膜を成膜する手段としては例えばシリコン酸化膜を窒素含有雰囲気中で高温加熱することで膜中に窒素を導入する熱窒化法がある。   As a means for forming a silicon oxynitride film, for example, there is a thermal nitriding method in which nitrogen is introduced into the film by heating the silicon oxide film at a high temperature in a nitrogen-containing atmosphere.

以下に熱窒化法を用いて作成した酸窒化膜について図5を用いて詳しく説明する。   Hereinafter, an oxynitride film formed by using the thermal nitriding method will be described in detail with reference to FIG.

ここで101はシリコン基板、102はシリコン酸化膜、105は高濃度窒化酸化膜層、501は窒化反応ガス、502は酸化反応ガス、503は低濃度窒化酸化膜層である。   Here, 101 is a silicon substrate, 102 is a silicon oxide film, 105 is a high concentration nitrided oxide film layer, 501 is a nitriding reaction gas, 502 is an oxidation reaction gas, and 503 is a low concentration nitriding oxide film layer.

まず乾燥熱酸化法やパイロジェニック法といった成膜法により表面にシリコン酸化膜102を成膜したシリコン基板101を800〜1200℃の高温に加熱された反応炉内に導入する。次いでN2、NO、N2O、NH3などの窒素を含有する窒化反応ガス501を所定の圧力下で流す。以上のような窒素雰囲気中での高温加熱により窒素原子がシリコン酸化膜102の膜中に取り込まれて窒化反応が進む。その際に得られる窒素原子の膜中分布は巨視的に見た場合、シリコン酸化膜102表面及びシリコン酸化膜とシリコン基板101との界面に高い濃度の窒素を含有する酸窒化膜105と、及びそれらの領域に挟まれるようにして低い濃度の窒素を含有する酸窒化膜503を持つような3層構造となる。またこのようにして成膜した基板をさらにO2やO3などの酸化反応ガス502雰囲気下で高温加熱することにより再酸化処理を行うことで、シリコン基板101とのシリコン酸化膜102との界面に高濃度の窒素を含有する酸窒化膜層105とシリコン酸化膜102表面での窒素濃度が低い酸窒化膜層503の2層構造を持つ酸窒化膜を形成することも可能となる。 First, a silicon substrate 101 having a silicon oxide film 102 formed on the surface thereof by a film forming method such as a dry thermal oxidation method or a pyrogenic method is introduced into a reaction furnace heated to a high temperature of 800 to 1200 ° C. Next, a nitriding reaction gas 501 containing nitrogen such as N 2 , NO, N 2 O, and NH 3 is flowed under a predetermined pressure. Nitrogen atoms are taken into the silicon oxide film 102 by the high temperature heating in the nitrogen atmosphere as described above, and the nitriding reaction proceeds. When the distribution of nitrogen atoms in the film obtained at this time is viewed macroscopically, the surface of the silicon oxide film 102 and the oxynitride film 105 containing nitrogen at a high concentration at the interface between the silicon oxide film and the silicon substrate 101, and A three-layer structure having an oxynitride film 503 containing a low concentration of nitrogen is formed so as to be sandwiched between these regions. Further, the substrate thus formed is further subjected to re-oxidation treatment by heating at a high temperature in an atmosphere of an oxidation reaction gas 502 such as O 2 or O 3 , whereby an interface between the silicon substrate 101 and the silicon oxide film 102 is obtained. It is also possible to form an oxynitride film having a two-layer structure of an oxynitride film layer 105 containing a high concentration of nitrogen and an oxynitride film layer 503 having a low nitrogen concentration on the surface of the silicon oxide film 102.

上記のような手法によりシリコン酸化膜中に数〜数十原子%の窒素原子を導入することが可能であり、絶縁膜の誘電率の向上と共に、ボロンなどの不純物拡散の抑制といった優れた特性を有する絶縁膜を得ることができる。   It is possible to introduce several to several tens of atomic percent of nitrogen atoms into the silicon oxide film by the method as described above, and it has excellent characteristics such as improvement of the dielectric constant of the insulating film and suppression of impurity diffusion such as boron. An insulating film having the same can be obtained.

しかしながら前記の手法によれば窒素原子はシリコン基板101とシリコン酸化膜102の界面付近に存在する遷移層に生じている格子間ストレスを緩和しようと作用するため、シリコン基板101界面付近に高濃度の窒素の偏析が生じてしまう。シリコン基板101界面付近に偏析した窒素原子は基板から絶縁体への不純物拡散の抑制する他、ホットエレクトロン耐性が純粋なシリコン酸化膜に比べて向上などのメリットがある一方で、MOSトランジスタの移動度の低下や、界面準位密度の増加を引き起こすといったデメリットを有することが指摘されている。   However, according to the above method, nitrogen atoms act to alleviate the interstitial stress generated in the transition layer existing in the vicinity of the interface between the silicon substrate 101 and the silicon oxide film 102. Nitrogen segregation occurs. Nitrogen atoms segregated in the vicinity of the silicon substrate 101 interface have advantages such as suppressing impurity diffusion from the substrate to the insulator and improving hot electron resistance compared to a pure silicon oxide film. It has been pointed out that it has a demerit that it causes a decrease in the thickness and an increase in the interface state density.

また上記のように熱エネルギーを反応に利用した窒化法ではシリコン酸化膜のみならず基板をも高温に加熱してしまう為、チャンネル領域を形成する為に基板内にドーピングされた不純物も熱拡散しその分布を変化させてしまう。この為トランジスタの浅い接合の形成を妨げるといった問題もある。   In addition, as described above, the nitriding method using thermal energy for reaction heats not only the silicon oxide film but also the substrate to a high temperature, so that impurities doped in the substrate to form a channel region also thermally diffuse. The distribution is changed. For this reason, there is a problem that formation of a shallow junction of the transistor is hindered.

このような問題を解決する手段として近年、窒素含有ガスを高周波励起によりプラズマ状態にして生成した窒素ラジカルや窒素イオンを用いたプラズマ窒化法(又はラジカル窒化法)が提案されている。   In recent years, plasma nitriding methods (or radical nitriding methods) using nitrogen radicals or nitrogen ions generated in a plasma state by high-frequency excitation of a nitrogen-containing gas have been proposed as means for solving such problems.

以下にプラズマ窒化法によるシリコン酸化膜の窒化方法について図7を用いて説明する。   Hereinafter, a method for nitriding a silicon oxide film by plasma nitriding will be described with reference to FIG.

ここで701は真空容器、702は基体支持台、703はプラズマ発生室、704は基体処理室、705は反応ガス導入手段、706は排気手段、707は高周波電力供給手段、708は温度調節手段である。   Here, reference numeral 701 is a vacuum vessel, 702 is a substrate support base, 703 is a plasma generation chamber, 704 is a substrate processing chamber, 705 is a reactive gas introduction means, 706 is an exhaust means, 707 is a high frequency power supply means, and 708 is a temperature control means. is there.

まずプラズマ処理装置の真空容器701内を排気手段706により十分真空引きした後、反応ガス導入手段705を介して所定の流量の窒化処理用ガスをプラズマ発生室703に導入し排気手段中に設けられたコンダクタンスバルブ(不図示)により所望の圧力に保持する。続いて高周波電力供給手段707を介して放電を行いプラズマ発生室703内にプラズマを生成する。高周波励起により反応ガスがプラズマ状態になると、プラズマ中には反応性の高い中性活性種(ラジカル)やイオンなどが生成される。前記各種粒子はプラズマ発生室703から支持台702上に設置された基体101のある被処理体処理室704へと拡散による移動を行い、基体101表面に到達し窒化反応が行われる。この際、支持台702は温度調節手段708により、通常室温から500℃程度といった比較的低温に保持され窒化が行われるため、熱窒化法のように膜中に導入された窒素が急激な熱拡散を引き起こすことが無く、窒化反応をシリコン酸化膜表面近傍のみに行うことが可能となる。さらに低温で処理を行うことによりシリコン基板中の不純物の再分布を引き起こす虞もない。   First, after the inside of the vacuum vessel 701 of the plasma processing apparatus is sufficiently evacuated by the exhaust means 706, a nitriding gas at a predetermined flow rate is introduced into the plasma generation chamber 703 through the reaction gas introduction means 705 and provided in the exhaust means. The desired pressure is maintained by a conductance valve (not shown). Subsequently, discharge is performed via the high frequency power supply means 707 to generate plasma in the plasma generation chamber 703. When the reaction gas is brought into a plasma state by high frequency excitation, highly reactive neutral active species (radicals), ions, and the like are generated in the plasma. The various particles move by diffusion from the plasma generation chamber 703 to the object processing chamber 704 having the substrate 101 installed on the support table 702, reach the surface of the substrate 101, and undergo a nitriding reaction. At this time, since the support table 702 is kept at a relatively low temperature of about room temperature to about 500 ° C. by the temperature adjusting means 708 and nitriding is performed, the nitrogen introduced into the film is rapidly diffused as in the thermal nitriding method. Therefore, the nitriding reaction can be performed only in the vicinity of the surface of the silicon oxide film. Furthermore, there is no possibility of causing redistribution of impurities in the silicon substrate by performing the treatment at a low temperature.

以上のようなプラズマ窒化法により図6の模式図に示すようにシリコン基板界面に窒素原子がほとんど存在しないような構造をもつ酸窒化膜の形成することができる。
特開平6−140392号公報 Jpn.J.App.Phys.Vol.33 pp.2175−2178
By the plasma nitriding method as described above, an oxynitride film having a structure in which almost no nitrogen atoms exist at the silicon substrate interface can be formed as shown in the schematic diagram of FIG.
JP-A-6-140392 Jpn. J. et al. App. Phys. Vol. 33 pp. 2175-2178

しかしながらラジカル窒化法においてもシリコン酸化膜表面を高濃度に窒化しようとした場合、酸化膜表面近傍の窒素濃度が上がり窒素原子が飽和する前に、図4に示すように膜中への窒素の拡散が生じ、窒化処理時間と共にシリコン基板とシリコン酸化膜との界面側の窒素原子の増加を引き起こしてしまい、前記のようなトランジスタ特性の悪化を引き起こしてしまう虞があった。   However, even in the radical nitriding method, when nitriding the surface of the silicon oxide film at a high concentration, before the nitrogen concentration in the vicinity of the oxide film surface rises and the nitrogen atoms are saturated, the diffusion of nitrogen into the film as shown in FIG. This causes an increase in the number of nitrogen atoms on the interface side between the silicon substrate and the silicon oxide film with the nitriding time, which may cause the deterioration of the transistor characteristics as described above.

本発明は、プラズマ窒化法を用いたシリコン酸化膜の窒化処理においてシリコン基板界面近傍に窒素を偏析させることなく、シリコン酸化膜表面近傍のみに高濃度の窒素を導入し、信頼性の高いゲート絶縁膜を形成することを目的とする。   The present invention introduces a high concentration of nitrogen only in the vicinity of the silicon oxide film surface without causing segregation of nitrogen in the vicinity of the silicon substrate interface in the nitridation processing of the silicon oxide film using the plasma nitriding method, thereby providing a reliable gate insulation. The object is to form a film.

上記目的を達成する為に、本発明の絶縁膜の形成方法は半導体基板上にシリコン酸化薄膜を有する基体表面を高真空に保持された真空容器内で真空紫外光を照射する工程と、真空紫外光照射後に基体を大気に暴露することなく、高真空状態に保持された真空容器内で窒化或いは酸窒化いずれかの処理を行う工程とを有することを特徴とする。   In order to achieve the above object, an insulating film forming method according to the present invention includes a step of irradiating a vacuum ultraviolet light in a vacuum container in which a substrate surface having a silicon oxide thin film on a semiconductor substrate is held in a high vacuum, And a step of performing either nitriding or oxynitriding in a vacuum container kept in a high vacuum state without exposing the substrate to the atmosphere after light irradiation.

前記真空紫外光のエネルギーは少なくともシリコン酸化膜のバンドギャップエネルギー以上のエネルギーをもつ波長の光、より好ましくはシリコン酸化膜に対する吸収係数が1×107cm-1以上である波長の光であることを特徴とする。 The energy of the vacuum ultraviolet light is light having a wavelength having energy at least equal to or higher than the band gap energy of the silicon oxide film, more preferably light having a wavelength having an absorption coefficient of 1 × 10 7 cm −1 or more with respect to the silicon oxide film. And

前記窒化及び酸窒化処理手段はプラズマ処理であることを特徴とする。   The nitriding and oxynitriding treatment means is a plasma treatment.

本発明によれば、半導体装置のゲートシリコン酸化膜中にシリコン基板界面への窒素の偏析を避けつつ表面近傍のみを短時間に高濃度に窒化することができ、これにより高い信頼性を持つ半導体装置を提供することが可能となる。   According to the present invention, only the vicinity of the surface can be nitrided in a high concentration in a short time while avoiding the segregation of nitrogen to the silicon substrate interface in the gate silicon oxide film of the semiconductor device, whereby a highly reliable semiconductor An apparatus can be provided.

以下に、上記解決手段に基づく作用について図1、図2を用いて説明する。図1は本発明によるシリコン酸化膜の窒化の処理手順と膜中窒素濃度分布を示したものであり、図2は本発明の真空紫外光をシリコン酸化膜上に照射した際の、シリコン原子−酸素原子間の結合変化を示したものである。   The operation based on the above solution will be described below with reference to FIGS. FIG. 1 shows a nitriding treatment procedure of a silicon oxide film and a nitrogen concentration distribution in the film according to the present invention. FIG. 2 shows silicon atoms when a vacuum ultraviolet light according to the present invention is irradiated on the silicon oxide film. It shows the bond change between oxygen atoms.

ここで103は真空紫外光、104はプラズマ粒子、201はシリコン原子−酸素原子間の強い結合手、202は析出シリコン、203はシリコン原子−酸素原子間の弱い結合手、204はダングリングボンドである。   Here, 103 is vacuum ultraviolet light, 104 is plasma particles, 201 is a strong bond between silicon atoms and oxygen atoms, 202 is precipitated silicon, 203 is a weak bond between silicon atoms and oxygen atoms, and 204 is a dangling bond. is there.

シリコン基板101上に形成されたシリコン酸化膜102にシリコン酸化膜のバンドギャップエネルギー以上のエネルギーをもつ真空紫外光103を照射する。   The silicon oxide film 102 formed on the silicon substrate 101 is irradiated with vacuum ultraviolet light 103 having energy equal to or higher than the band gap energy of the silicon oxide film.

なおシリコン酸化膜のバンドギャップエネルギーに相当するエネルギーの光の波長とは、バンドギャップエネルギーを9eVとした場合、約138nmに相当する。このような波長の領域の光は真空紫外光(Vacuum Ultra Violet:VUV)と呼ばれており、エキシマランプなどにより照射を行うことができる。またVUV光は大気中では吸収されてしまう為シリコン基板101へのVUV光の照射は高真空中で行う必要がある。   The wavelength of light having energy corresponding to the band gap energy of the silicon oxide film corresponds to about 138 nm when the band gap energy is 9 eV. Light in such a wavelength region is called vacuum ultraviolet (VUV), and can be irradiated with an excimer lamp or the like. Further, since the VUV light is absorbed in the atmosphere, it is necessary to irradiate the silicon substrate 101 with the VUV light in a high vacuum.

前記のようなエネルギーを持つ真空紫外光の照射をシリコン酸化膜102に対して行うと、シリコン原子と酸素原子との強力な結合を形成する電子が禁制ギャップを飛び越え自由電子として振舞うようになり、シリコン酸化膜中のシリコン原子と酸素原子との強い結合手201が切断される。その結果シリコン酸化膜中にはシリコンの析出202、格子歪みによるシリコン原子−酸素原子間の弱い結合203、或いはダングリングボンド204といった種々の欠陥をもったダメージ層が形成される。   When the silicon oxide film 102 is irradiated with the vacuum ultraviolet light having the energy as described above, electrons forming a strong bond between a silicon atom and an oxygen atom jump over the forbidden gap and behave as free electrons. The strong bond 201 between the silicon atom and the oxygen atom in the silicon oxide film is cut. As a result, a damaged layer having various defects such as silicon deposition 202, weak bonds 203 between silicon atoms and oxygen atoms due to lattice distortion, or dangling bonds 204 is formed in the silicon oxide film.

またこのようなダメージ層の深さは照射する真空紫外光の波長に依存し、例えば60nm〜120nmの波長帯のVUV光の場合シリコン酸化膜に対する吸収係数が1×107cm-1以上と極めて高いためシリコン酸化膜最表面から1nm未満の最表面近傍にダメージ層が形成されるとの報告がある。(Jpn.J.App.Phys.Vol.33pp.2175−2178)
前記シリコン酸化膜中のダメージ層は反応性が高く、そのような状態のままシリコン基板101を大気に晒すと大気中の酸素や水分がシリコン酸化膜102と即座に反応し、自然酸化膜に近い低品質な酸化膜が再形成されてしまう。このためシリコン基板101を高真空環境下に保持した状態のままシリコン酸化膜102表面に窒素プラズマ粒子104を連続して暴露することにより、VUV光未照射の酸化膜に対するプラズマ窒化よりも高い反応確率でシリコン酸化膜102に窒化反応を起こすことができ、短時間で多量の窒素原子をシリコン酸化膜表面に導入することが可能となる。このため従来高濃度の窒素原子を膜中に導入する為、長時間ラジカル窒化処理を行った場合にみられるような、窒素原子の拡散に起因した基板界面付近の窒素濃度の増大を抑えることができ、高い信頼性の半導体素子の形成が可能となる。
The depth of such a damage layer depends on the wavelength of the vacuum ultraviolet light to be irradiated. For example, in the case of VUV light having a wavelength band of 60 nm to 120 nm, the absorption coefficient for the silicon oxide film is as extremely high as 1 × 10 7 cm −1 or more. There is a report that a damage layer is formed near the outermost surface of less than 1 nm from the outermost surface of the silicon oxide film. (Jpn. J. App. Phys. Vol. 33 pp. 2175-2178)
The damaged layer in the silicon oxide film is highly reactive. When the silicon substrate 101 is exposed to the atmosphere in such a state, oxygen and moisture in the atmosphere immediately react with the silicon oxide film 102 and are close to a natural oxide film. A low-quality oxide film is re-formed. Therefore, by continuously exposing the nitrogen plasma particles 104 to the surface of the silicon oxide film 102 while keeping the silicon substrate 101 in a high vacuum environment, the reaction probability is higher than the plasma nitridation for the oxide film not irradiated with VUV light. Thus, a nitriding reaction can be caused in the silicon oxide film 102, and a large amount of nitrogen atoms can be introduced into the silicon oxide film surface in a short time. Therefore, in order to introduce a high concentration of nitrogen atoms into the film, it is possible to suppress an increase in the nitrogen concentration near the substrate interface due to the diffusion of nitrogen atoms, which is observed when radical nitriding is performed for a long time. In addition, a highly reliable semiconductor element can be formed.

ところで、VUV光を利用した酸化膜の窒化方法としては例えば特開平6−140392号公報に記載がある。この窒化処理ではVUV光を光励起プラズマ生成用として用いるほか、基板への照射を同時に行い活性窒素ラジカルによるシリコン酸化膜の窒化を行っている。しかしながら、上記の手法ではプラズマの生成と基板へのVUV照射が同一である為それぞれのプロセス条件を独立に制御することは不可能である。更にプラズマ窒化処理中にVUV照射を行った場合、膜中に導入された窒素原子はVUVからエネルギーを受け取り熱窒化同様に膜中へと拡散し、シリコン基板界面への窒素濃度の増加を加速させてしまう問題がある。   Incidentally, a method for nitriding an oxide film using VUV light is described in, for example, Japanese Patent Laid-Open No. 6-140392. In this nitriding treatment, VUV light is used to generate photoexcited plasma, and the substrate is simultaneously irradiated to nitride the silicon oxide film with active nitrogen radicals. However, in the above method, since the generation of plasma and the VUV irradiation to the substrate are the same, it is impossible to control each process condition independently. Furthermore, when VUV irradiation is performed during plasma nitriding, nitrogen atoms introduced into the film receive energy from VUV and diffuse into the film in the same way as thermal nitridation, accelerating the increase in nitrogen concentration at the silicon substrate interface. There is a problem.

これに対し本発明では、VUV光の照射を窒化処理とは別に行っている。これはシリコン酸化膜中に照射されたVUVにより生じたダメージ層は照射後も膜中に残るため、ダメージ層の形成と窒化処理を同時に行う必要がないからである。このため前記のようなVUV光による窒素の拡散現象を引き起こすことなく窒化処理を行える点で異なっている。   On the other hand, in the present invention, irradiation with VUV light is performed separately from nitriding treatment. This is because the damaged layer generated by VUV irradiated in the silicon oxide film remains in the film even after irradiation, and it is not necessary to simultaneously perform the formation of the damaged layer and the nitriding treatment. For this reason, the difference is that the nitriding treatment can be performed without causing the above-described diffusion phenomenon of nitrogen by the VUV light.

(実施の形態)
以下本発明の一実施形態について図3を用いて説明する。ここで301は真空紫外光照射室、302はプラズマ窒化室、303は基板ロード室、304は基板搬送室、305は基板搬送手段である。
(Embodiment)
Hereinafter, an embodiment of the present invention will be described with reference to FIG. Here, 301 is a vacuum ultraviolet light irradiation chamber, 302 is a plasma nitridation chamber, 303 is a substrate loading chamber, 304 is a substrate transfer chamber, and 305 is a substrate transfer means.

真空紫外光照射室301、プラズマ窒化室302、基板搬送室304はそれぞれ排気手段(不図示)により排気され高真空に保たれている。まず基板101はロード室303内で排気手段(不図示)により高真空に引かれて、搬送手段305により基板搬送室304内へ導入後、真空紫外光照射室301へ搬送される。真空紫外光処理室301内で真空紫外光照射手段(不図示)により基板101表面に所定の条件の真空紫外光を照射後、搬送手段305により搬出され、次いでプラズマ窒化室302へ搬送される。プラズマ窒化室において基板101を所定の条件によるプラズマ窒化処理を行った後に、搬送手段305により基板搬送室304を介して基板ロード室303内へ搬出された後に基板ロード室303を不活性ガスでベントし大気開放される。   The vacuum ultraviolet light irradiation chamber 301, the plasma nitriding chamber 302, and the substrate transfer chamber 304 are each evacuated by an evacuation means (not shown) and kept at a high vacuum. First, the substrate 101 is pulled into a high vacuum in the load chamber 303 by an exhaust unit (not shown), introduced into the substrate transfer chamber 304 by the transfer unit 305, and then transferred to the vacuum ultraviolet light irradiation chamber 301. In the vacuum ultraviolet light processing chamber 301, vacuum ultraviolet light irradiation means (not shown) irradiates the surface of the substrate 101 with vacuum ultraviolet light under a predetermined condition, and then is carried out by the transport means 305 and then transported to the plasma nitriding chamber 302. After the substrate 101 is subjected to plasma nitriding treatment under a predetermined condition in the plasma nitriding chamber, the substrate 101 is unloaded into the substrate load chamber 303 by the transfer means 305 through the substrate transfer chamber 304 and then vented with an inert gas. Then it is released to the atmosphere.

基板101は真空紫外光照射を受けることによりシリコン酸化膜表面近傍にシリコンの析出やダングリングボンドなどの欠陥を生じる。このため窒化処理を行う前に基板101表面を大気に晒してしまうと大気中の水分や酸素等と再結合し自然酸化膜と同様の低品質の膜を形成してしまうが、本実施形態のように基板101に対し真空紫外光照射室301で真空紫外光照射を行った後に超高真空に保持された搬送室を介してプラズマ窒化室302で窒化処理を行うことで前記のような低品質の酸化膜の形成を防ぐ効果がある。   When the substrate 101 is irradiated with vacuum ultraviolet light, defects such as silicon deposition and dangling bonds occur near the surface of the silicon oxide film. For this reason, if the surface of the substrate 101 is exposed to the atmosphere before nitriding, it will recombine with moisture, oxygen, etc. in the atmosphere and form a low-quality film similar to the natural oxide film. As described above, the substrate 101 is subjected to vacuum ultraviolet light irradiation in the vacuum ultraviolet light irradiation chamber 301 and then subjected to nitridation processing in the plasma nitriding chamber 302 through a transfer chamber held in an ultrahigh vacuum. This prevents the formation of an oxide film.

本発明の実施形態で示した例では真空紫外光照射とプラズマ窒化を行う処理室を分けた処理方法について示しているが、真空紫外光照射後に処理室を高真空に保ったまま連続してプラズマ窒化できれば、無論それらの処理を同一室内で行うことも可能である。   In the example shown in the embodiment of the present invention, a processing method in which a processing chamber for performing vacuum ultraviolet light irradiation and plasma nitriding is separated is shown. However, after the vacuum ultraviolet light irradiation, plasma is continuously maintained while the processing chamber is kept at a high vacuum. Of course, if nitriding can be performed, these treatments can be performed in the same chamber.

本発明に用いるシリコン基板上のシリコン酸化膜は、乾燥熱酸化法、パイロジェニック法、ケミカル酸化法、CVD法、プラズマ酸化法等のいかなる酸化膜形成方法で成膜した物について適用可能である。   The silicon oxide film on the silicon substrate used in the present invention can be applied to a film formed by any oxide film forming method such as a dry thermal oxidation method, a pyrogenic method, a chemical oxidation method, a CVD method, or a plasma oxidation method.

本発明に用いる窒化又は酸窒化の反応ガスはN2、NO、N2O、NH3、N24、NF3等の窒素含有のガスやそれらの混合ガス、又はそれらを更にHe、Ne、Ar、Kr、Xeなどで希釈した混合ガスいずれについても適用可能である。 The reaction gas for nitriding or oxynitriding used in the present invention is a nitrogen-containing gas such as N 2 , NO, N 2 O, NH 3 , N 2 H 4 , NF 3 , a mixed gas thereof, or a mixture thereof, or He, Ne. Any gas mixture diluted with Ar, Kr, Xe, etc. can be applied.

本発明に用いるプラズマ窒化のプラズマ発生源としては誘導結合型、容量結合型、表面波型、マグネトロン型、エレクトロンサイクロトロン共鳴型等のいずれのプラズマ源についても適用可能である。   The plasma nitridation plasma generation source used in the present invention is applicable to any plasma source of inductive coupling type, capacitive coupling type, surface wave type, magnetron type, electron cyclotron resonance type and the like.

図3に示したようなプラズマ窒化装置を使用し、半導体素子ゲート酸化膜のプラズマ窒化処理を行った。
基板101はその表面上に急速熱処理法で2.5nm厚の熱酸化膜が形成された8インチP型単結晶シリコン(面方位100、抵抗率10Ωcm)を使用した。まずシリコン基板101をロード室303内に設置し排気ポンプ(不図示)によりロード室内を1×10-2まで減圧した。次に搬送アーム305により基板101を基板搬送室304を介して、排気ポンプにより1×10-3に保たれた真空紫外光照射室301へ搬送した。真空紫外光処理室301内で120nmの波長をもつXeエキシマ光を基板101表面に照射後、搬送アーム305により搬出し、次いで1×10-3Paに保たれたプラズマ窒化室302へ搬送した。またこのときシリコン基板101をヒータ(不図示)により300℃に加熱、保持した。
Using the plasma nitriding apparatus as shown in FIG. 3, the plasma nitriding treatment of the semiconductor element gate oxide film was performed.
As the substrate 101, 8-inch P-type single crystal silicon (plane orientation 100, resistivity 10 Ωcm) having a 2.5 nm thick thermal oxide film formed on its surface by a rapid thermal processing method was used. First, the silicon substrate 101 was placed in the load chamber 303, and the load chamber was depressurized to 1 × 10 −2 by an exhaust pump (not shown). Next, the substrate 101 was transferred by the transfer arm 305 through the substrate transfer chamber 304 to the vacuum ultraviolet light irradiation chamber 301 maintained at 1 × 10 −3 by an exhaust pump. After irradiating the surface of the substrate 101 with Xe excimer light having a wavelength of 120 nm in the vacuum ultraviolet light processing chamber 301, it was carried out by the transfer arm 305 and then transferred to the plasma nitriding chamber 302 maintained at 1 × 10 −3 Pa. At this time, the silicon substrate 101 was heated and held at 300 ° C. by a heater (not shown).

プラズマ窒化室内にN2ガスを200sccmの流量で導入し、排気系に設けられたコンダクタンスバルブ(不図示)の開度を調整し、プラズマ窒化室302内の圧力を133Paに保持した。その後2.45GHz、1kWのマイクロ波によりプラズマを発生させシリコン酸化膜102の窒化を60秒間行った。   N 2 gas was introduced into the plasma nitriding chamber at a flow rate of 200 sccm, the opening of a conductance valve (not shown) provided in the exhaust system was adjusted, and the pressure in the plasma nitriding chamber 302 was maintained at 133 Pa. Thereafter, plasma was generated by 2.45 GHz and 1 kW microwaves, and the silicon oxide film 102 was nitrided for 60 seconds.

以上のような処理により作成されたシリコン酸窒化膜を用いてMOS構造をもつキャパシタを作成し、絶縁膜の評価を行った。   A capacitor having a MOS structure was created using the silicon oxynitride film produced by the above process, and the insulating film was evaluated.

その結果、C−V特性によるシリコン酸化膜換算膜厚(EOT)の測定結果は2.2nmと酸化膜中への窒素の導入により薄膜化効果が得られているのが確認された。   As a result, the measurement result of the equivalent silicon oxide film thickness (EOT) by CV characteristics was 2.2 nm, and it was confirmed that the thinning effect was obtained by introducing nitrogen into the oxide film.

また膜中の窒素濃度分布をRBS(Rutherford Back Scattering Spectroscopy)を用い測定を行ったところ窒素原子はシリコン酸化膜表面近傍に濃度ピークを持ち、シリコン基板界面には窒素原子が現れていないことを確認した。   In addition, when the nitrogen concentration distribution in the film was measured using RBS (Rutherford Back Scattering Spectroscopy), it was confirmed that nitrogen atoms had a concentration peak near the surface of the silicon oxide film and no nitrogen atoms appeared at the silicon substrate interface. did.

本発明の窒化法を説明する模式図である。It is a schematic diagram explaining the nitriding method of this invention. 本発明の真空紫外光をシリコン酸化膜に照射したときの効果を説明する模式図である。It is a schematic diagram explaining the effect when the vacuum ultraviolet light of this invention is irradiated to a silicon oxide film. 本発明の実施形態を説明する模式図である。It is a schematic diagram explaining embodiment of this invention. 従来のプラズマ窒化法による窒素濃度の深さ分布の時間依存を説明する模式図である。It is a schematic diagram explaining the time dependence of the depth distribution of the nitrogen concentration by the conventional plasma nitriding method. 従来の熱窒化法を説明する模式図である。It is a schematic diagram explaining the conventional thermal nitriding method. 従来のプラズマ窒化法を説明する模式図である。It is a schematic diagram explaining the conventional plasma nitriding method. プラズマ窒化装置を説明する模式図である。It is a schematic diagram explaining a plasma nitriding apparatus. 本発明の実施例により作成した酸窒化膜のRBSによる窒素濃度分布の測定結果である。It is a measurement result of nitrogen concentration distribution by RBS of the oxynitride film created by the example of the present invention.

符号の説明Explanation of symbols

101 シリコン基板
102 シリコン酸化膜
103 真空紫外光
104 プラズマ粒子
105 高濃度窒化酸化膜層
201 シリコン原子−酸素原子間の強い結合手
202 析出シリコン
203 シリコン原子−酸素原子間の弱い結合手
204 ダングリングボンド
301 真空紫外光照射室
302 プラズマ窒化室
303 基板ロード室
304 基板搬送室
305 基板搬送手段
501 窒化反応ガス
502 酸化反応ガス
503 低濃度窒化酸化膜層
701 真空容器
702 基体支持台
703 プラズマ発生室
704 基体処理室
705 反応ガス導入手段
706 排気手段
707 高周波電力供給手段
708 温度調節手段
DESCRIPTION OF SYMBOLS 101 Silicon substrate 102 Silicon oxide film 103 Vacuum ultraviolet light 104 Plasma particle 105 High concentration nitrided oxide film layer 201 Strong bond between silicon atom and oxygen atom 202 Precipitated silicon 203 Weak bond between silicon atom and oxygen atom 204 Dangling bond 301 Vacuum Ultraviolet Light Irradiation Chamber 302 Plasma Nitriding Chamber 303 Substrate Loading Chamber 304 Substrate Transfer Chamber 305 Substrate Transfer Means 501 Nitriding Reaction Gas 502 Oxidation Reaction Gas 503 Low Concentration Nitride Oxide Film Layer 701 Vacuum Container 702 Substrate Support Stand 703 Plasma Generation Chamber 704 Base Processing chamber 705 Reaction gas introduction means 706 Exhaust means 707 High frequency power supply means 708 Temperature adjustment means

Claims (4)

半導体基板上にシリコン酸化薄膜を有する基体表面を高真空に保持された真空容器内で真空紫外光を照射する工程と、真空紫外光照射後に基体を大気に暴露することなく、高真空状態に保持された真空容器内で窒化或いは酸窒化いずれかの処理を行う工程とを有することを特徴とする半導体装置の絶縁膜形成方法。   A process of irradiating the substrate surface having a silicon oxide thin film on a semiconductor substrate with vacuum ultraviolet light in a vacuum vessel maintained in a high vacuum, and maintaining the substrate in a high vacuum state without exposing the substrate to the atmosphere after the vacuum ultraviolet light irradiation. And a step of performing either nitridation or oxynitridation treatment in the vacuum vessel. 前記真空紫外光は少なくともシリコン酸化膜のバンドギャップエネルギー以上のエネルギーをもち、シリコン酸化膜に対する吸収係数が1×107cm-1以上である波長の光であることを特徴とする請求項1に記載の半導体装置の絶縁膜形成方法。 2. The light according to claim 1, wherein the vacuum ultraviolet light is light having a wavelength that has at least energy equal to or higher than a band gap energy of the silicon oxide film and an absorption coefficient of 1 × 10 7 cm −1 or more for the silicon oxide film. A method for forming an insulating film of a semiconductor device. 前記窒化及び酸窒化処理手段はプラズマ処理であることを特徴とする請求項1乃至2に記載の半導体装置の絶縁膜形成方法。   3. The method of forming an insulating film in a semiconductor device according to claim 1, wherein the nitriding and oxynitriding treatment means is a plasma treatment. 前記半導体装置の絶縁膜は、MOSトランジスタの基板とゲート電極との間の層間膜またはキャパシタの容量素子として使用されることを特徴とする請求項1乃至3に記載の半導体装置の絶縁膜形成方法。   4. The method of forming an insulating film of a semiconductor device according to claim 1, wherein the insulating film of the semiconductor device is used as an interlayer film between a substrate of a MOS transistor and a gate electrode or a capacitor element of a capacitor. .
JP2004193407A 2004-06-30 2004-06-30 Method for forming insulating film in semiconductor device Withdrawn JP2006019366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193407A JP2006019366A (en) 2004-06-30 2004-06-30 Method for forming insulating film in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193407A JP2006019366A (en) 2004-06-30 2004-06-30 Method for forming insulating film in semiconductor device

Publications (1)

Publication Number Publication Date
JP2006019366A true JP2006019366A (en) 2006-01-19

Family

ID=35793373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193407A Withdrawn JP2006019366A (en) 2004-06-30 2004-06-30 Method for forming insulating film in semiconductor device

Country Status (1)

Country Link
JP (1) JP2006019366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016824A (en) * 2007-06-29 2009-01-22 Samsung Electronics Co Ltd Method of manufacturing semiconductor device
WO2014151125A1 (en) * 2013-03-15 2014-09-25 Applied Materials, Inc. Selective deposition by light exposure
JP2018512727A (en) * 2015-02-23 2018-05-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Periodic continuous processing to form high quality thin films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016824A (en) * 2007-06-29 2009-01-22 Samsung Electronics Co Ltd Method of manufacturing semiconductor device
WO2014151125A1 (en) * 2013-03-15 2014-09-25 Applied Materials, Inc. Selective deposition by light exposure
JP2018512727A (en) * 2015-02-23 2018-05-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Periodic continuous processing to form high quality thin films

Similar Documents

Publication Publication Date Title
US8021987B2 (en) Method of modifying insulating film
US9431237B2 (en) Post treatment methods for oxide layers on semiconductor devices
US6897149B2 (en) Method of producing electronic device material
JP3937892B2 (en) Thin film forming method and semiconductor device manufacturing method
KR100945770B1 (en) Silicon oxide film forming method, semiconductor device manufacturing method and computer storage medium
US7923360B2 (en) Method of forming dielectric films
JP2003297822A (en) Method of forming insulation film
WO2007139141A1 (en) Method for forming insulating film and method for manufacturing semiconductor device
JP2005150637A (en) Treatment method and apparatus
US6303520B1 (en) Silicon oxynitride film
WO2006106667A1 (en) Method for forming insulating film and method for manufacturing semiconductor device
JP2004349546A (en) Oxide film forming method, oxide film forming apparatus, and electronic device material
JP4965849B2 (en) Insulating film forming method and computer recording medium
JP3399413B2 (en) Oxynitride film and method for forming the same
JPH10209147A (en) Manufacture of semiconductor device
JP2006019366A (en) Method for forming insulating film in semiconductor device
JP4564310B2 (en) Manufacturing method of semiconductor device
JP2004175927A (en) Surface modification method
WO2010147937A2 (en) Enhancing nand flash floating gate performance
KR100699290B1 (en) Production method and production device for semiconductor device
KR20080035761A (en) Method for forming gate insulating layer in mos transistor
JP4964736B2 (en) Plasma processing equipment
JP2004214305A (en) Semiconductor device and manufacturing method thereof
JP2006216774A (en) Method of forming insulating film
JP2003273103A (en) Method and apparatus for manufacturing semiconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904