JP3258441B2 - Microwave plasma processing apparatus and microwave plasma processing method - Google Patents

Microwave plasma processing apparatus and microwave plasma processing method

Info

Publication number
JP3258441B2
JP3258441B2 JP11824793A JP11824793A JP3258441B2 JP 3258441 B2 JP3258441 B2 JP 3258441B2 JP 11824793 A JP11824793 A JP 11824793A JP 11824793 A JP11824793 A JP 11824793A JP 3258441 B2 JP3258441 B2 JP 3258441B2
Authority
JP
Japan
Prior art keywords
plasma processing
microwave
microwave plasma
processing apparatus
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11824793A
Other languages
Japanese (ja)
Other versions
JPH06333842A (en
Inventor
伸昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11824793A priority Critical patent/JP3258441B2/en
Publication of JPH06333842A publication Critical patent/JPH06333842A/en
Application granted granted Critical
Publication of JP3258441B2 publication Critical patent/JP3258441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子、電子回路
などの製造に用いられるプラズマ処理装置、特に、良好
な段差被覆性を有するなどの高性能を有する薄膜形成な
どの処理を、高速に行なうプラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus used in the manufacture of semiconductor devices, electronic circuits, etc., and more particularly, to a high-speed processing such as the formation of a high-performance thin film having good step coverage. The present invention relates to a plasma processing apparatus for performing the above.

【0002】[0002]

【従来の技術】半導体素子や電子回路、特に、超LSI
の製造プロセスにおいて、プラズマ処理装置は重要な位
置を占めている。最終保護膜用SiNや層間絶縁膜用S
iO2などの薄膜形成にはプラズマCVD装置が、配線
用Alの薄膜形成にはスパッタリング装置が、各種薄膜
のエッチングにはRIE装置などが、フォトレジストの
灰化にはプラズマアッシング装置が用いられており、他
に、酸化窒化、クリーニング、ドーピング、エピタキシ
ャルプロセスなどへの応用も研究されている。
2. Description of the Related Art Semiconductor devices and electronic circuits, particularly, VLSI
In the manufacturing process, a plasma processing apparatus occupies an important position. SiN for final protective film or S for interlayer insulating film
A plasma CVD apparatus is used to form thin films such as iO 2 , a sputtering apparatus is used to form Al thin films for wiring, an RIE apparatus is used to etch various thin films, and a plasma ashing apparatus is used to ash photoresist. In addition, applications to oxynitriding, cleaning, doping, and epitaxial processes are also being studied.

【0003】近年、層間絶縁用SiO2膜には、SiH4
を用いるよりも段差被覆性に優れたSiO2膜を形成で
きる、テトラエトキシシラン(TEOS)などの有機シ
ランを原料ガスとして用いるプラズマCVD法が用いら
れてきており、400℃以下の低温で良質なSiO2
が形成されている。
In recent years, SiH 4 has been used as an interlayer insulating SiO 2 film.
A plasma CVD method using an organic silane such as tetraethoxysilane (TEOS) as a raw material gas, which can form an SiO 2 film having better step coverage than that of using GaN, has been used. An SiO 2 film is formed.

【0004】実用化されているプラズマ処理装置の多く
は、13.56MHzの高周波や2.45GHzのマイ
クロ波を励起源として用い、発生したプラズマに基体を
接触させてプラズマ処理しているが、基体とプラズマ接
触面に形成されるシース電界によってプラズマ中の多数
のイオンが加速され、数10〜100eV程度のエネル
ギーをもって基体に入射するために、基体表面や膜に損
傷や圧縮応力が発生し易い。また、TEOSなどの有機
系の原料ガスを用いる場合には、C−H結合解離などの
不適切な反応が生じ、膜中に炭素が混入しやすく、また
気相分解により表面泳動しにくい状態で基体に付着する
ので、段差被覆性が低下する。
[0004] Most of the plasma processing apparatuses put into practical use use a high frequency of 13.56 MHz or a microwave of 2.45 GHz as an excitation source and perform plasma processing by contacting a substrate with generated plasma. A large number of ions in the plasma are accelerated by a sheath electric field formed on the plasma contact surface and are incident on the substrate with energy of about several tens to 100 eV, so that damage and compressive stress are likely to be generated on the surface and the film of the substrate. When an organic source gas such as TEOS is used, an inappropriate reaction such as CH bond dissociation occurs, carbon is easily mixed into the film, and surface migration is difficult due to gas phase decomposition. Since it adheres to the substrate, the step coverage is reduced.

【0005】これらの問題を解決するために、プラズマ
発生室とプラズマ処理室とを分離した隔離プラズマ処理
装置が検討されている。また、さらなる高品質化を狙っ
て、隔離プラズマ処理装置に基体表面光照射手段を設け
た光アシストプラズマCVD装置を用いた薄膜形成方法
が検討されている(例えば、J. Jpn. Appl. Phys. Vol.
29, No.12, 1990, pp.L2341)。
[0005] In order to solve these problems, an isolated plasma processing apparatus in which a plasma generation chamber and a plasma processing chamber are separated has been studied. Further, in order to further improve the quality, a thin film forming method using an optically assisted plasma CVD apparatus provided with a substrate surface light irradiation means in an isolated plasma processing apparatus is being studied (for example, J. Jpn. Appl. Phys. Vol. .
29, No. 12, 1990, pp. L2341).

【0006】この方法は、H、O、N、F、Cl、B
r、He、Ne、Ar、Kr、XeおよびRn以外の元
素を含まない第一のガス(層間SiO2膜の場合、O2
を高周波により発生したプラズマによって励起し、その
励起によって生じた活性種(酸素ラジカルなど)とプラ
ズマから隔離された空間に供給されたH、O、N、F、
Cl、Br、He、Ne、Ar、Kr、XeおよびRn
以外の元素から成る第二のガス(層間SiO2膜の場
合、有機シラン)とを反応させて反応中間体を生成し、
プラズマから隔離された空間に設置された被覆基体上に
その反応中間体を付着させ、付着した反応中間体に吸収
される可視紫外光を基体表面に照射して不純成分や揮発
性成分を脱離させる薄膜形成方法であり、有機シランの
気相分解が抑制され、表面泳動し易い状態で基体に付着
するため、段差被覆性に優れ、かつ光表面反応による揮
発性成分の脱離が促進されるため良質な薄膜が形成でき
る。
This method comprises the steps of H, O, N, F, Cl, B
First gas containing no element other than r, He, Ne, Ar, Kr, Xe and Rn (O 2 in the case of an interlayer SiO 2 film)
Is excited by the plasma generated by the high frequency, and H, O, N, F, supplied to the space isolated from the active species (oxygen radicals and the like) generated by the excitation and the plasma.
Cl, Br, He, Ne, Ar, Kr, Xe and Rn
Reacting with a second gas (organic silane in the case of an interlayer SiO 2 film) composed of elements other than the above to form a reaction intermediate,
The reaction intermediate is deposited on a coated substrate placed in a space isolated from the plasma, and the substrate surface is irradiated with visible ultraviolet light absorbed by the attached reaction intermediate to desorb impurity and volatile components. This is a method of forming a thin film that suppresses gas phase decomposition of organic silane and adheres to the substrate in a state where surface migration is easy, so that step coverage is excellent, and desorption of volatile components due to photosurface reaction is promoted. Therefore, a high-quality thin film can be formed.

【0007】これらプラズマCVD装置や光アシストプ
ラズマCVD装置のプラズマ源として管内波長の1/2
もしくは1/4波長間隔に形成したスロット付きマイク
ロ波導波管(マルチスロットアンテナ)を用いることが
検討されていて、他のプラズマ源を用いるよりもプラズ
マ密度と隔離度が向上し、高性能薄膜の形成および高速
処理が可能となり、特に良好な段差被覆性が実現され
る。
[0007] As a plasma source of these plasma CVD apparatuses and optically assisted plasma CVD apparatuses, a half of the guide wavelength is used.
Alternatively, use of slotted microwave waveguides (multi-slot antennas) formed at quarter wavelength intervals has been studied, and the plasma density and isolation are improved as compared with the use of other plasma sources. Formation and high-speed processing are possible, and particularly good step coverage is realized.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来例の装置では、導波管が直線状以外の場合(例えば円
筒状)や製作寸法がずれた場合、管内波長が微妙に変化
しマッチングがとれない場合があった。
However, in the above-mentioned conventional apparatus, when the waveguide is not linear (for example, cylindrical) or when the manufacturing dimensions are shifted, the guide wavelength changes slightly and matching can be obtained. There were no cases.

【0009】従って本発明は、上記従来技術の問題点を
解決し、管内波長が微妙に変化してもマッチングが容易
にとれ、高密度かつ高隔離プラズマが形成できるプラズ
マ源を有するマイクロ波プラズマ処理装置およびその装
置を用いた処理方法を提供することを目的とする。
Accordingly, the present invention solves the above-mentioned problems of the prior art, and can easily perform matching even if the guide wavelength is slightly changed, and provide a microwave plasma processing having a plasma source capable of forming a high-density and highly isolated plasma. It is an object of the present invention to provide an apparatus and a processing method using the apparatus.

【0010】[0010]

【課題を解決するための手段】本発明は、少なくとも、
(1)プラズマ処理室、(2)該処理室内を真空に排気
する手段、(3)該処理室内に処理用ガスを供給する手
段、(4)該処理室の外周に配置され内側に複数のスリ
ット孔が形成されているマイクロ波導波管を有するプラ
ズマ発生手段および(5)被処理基体を保持する手段を
有するプラズマ処理装置において、マイクロ波導波管の
管内波長を変化させる手段を有することを特徴とするマ
イクロ波プラズマ処理装置およびその装置を用いた処理
方法を提供する。
Means for Solving the Problems The present invention provides at least:
(1) a plasma processing chamber; (2) means for evacuating the processing chamber to a vacuum; (3) means for supplying a processing gas into the processing chamber; In a plasma generation device having a microwave waveguide having a slit hole formed therein, and (5) a plasma processing apparatus having a means for holding a substrate to be processed, the plasma processing device has a means for changing a guide wavelength of the microwave waveguide. And a processing method using the same.

【0011】本発明は、導波管断面の寸法を変化させる
などの管内波長調整手段を設けることにより、管内波長
が微妙に変化してもマッチングを容易にして、高密度か
つ高隔離プラズマの発生および高品質かつ高速の処理を
可能とするものである。
According to the present invention, by providing a guide wavelength adjusting means such as changing the dimension of the waveguide cross section, matching can be facilitated even when the guide wavelength is slightly changed, and high-density and highly isolated plasma can be generated. And high quality and high speed processing.

【0012】本発明のプラズマ処理装置を図1を用いて
説明する。図1はマルチスロットアンテナの図であり、
図1Aは横断面図、図1Bは図1AのX・X線側面図で
ある。図中、1はマルチスロットアンテナ、2はマルチ
スロットアンテナ1の内側に形成されたスリット孔、3
はマルチスロットアンテナ1へのマイクロ波導入口、4
はマルチスロットアンテナ1内部へのマイクロ波の導入
を促進する伝搬促進材、5はマルチスロットアンテナ1
の管内波長を調整するための可動天板、6は可動天板5
を上下に移動するための移動機構である。
A plasma processing apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a diagram of a multi-slot antenna,
1A is a cross-sectional view, and FIG. 1B is a side view taken along line XX of FIG. 1A. In the figure, 1 is a multi-slot antenna, 2 is a slit hole formed inside the multi-slot antenna 1, 3
Are microwave inlets to the multi-slot antenna 1;
Is a propagation promoting material for promoting the introduction of microwaves into the inside of the multi-slot antenna 1;
A movable top plate for adjusting the in-tube wavelength of the movable top plate;
Is a moving mechanism for moving up and down.

【0013】マイクロ波を導入口3よりマルチスロット
アンテナ1へ導入し、スリット孔2からリークさせるこ
とにより、内部にプラズマを発生させる。方向性結合器
(不図示)などのマイクロ波強度モニタによりマルチス
ロットアンテナ1からの反射強度をモニタし、反射強度
が最小になるように天板移動機構6により可動天板5を
移動する。
A microwave is introduced into the multi-slot antenna 1 from the inlet 3 and leaks from the slit hole 2 to generate plasma inside. The reflection intensity from the multi-slot antenna 1 is monitored by a microwave intensity monitor such as a directional coupler (not shown), and the movable table 5 is moved by the table moving mechanism 6 so that the reflection intensity is minimized.

【0014】本発明に用いるマイクロ波の周波数は、
0.8ないし5GHzの範囲の適当な値を選択する(例
えば、商用周波数0.915または2.45GHz)。
The microwave frequency used in the present invention is:
Choose an appropriate value in the range of 0.8 to 5 GHz (eg, commercial frequency 0.915 or 2.45 GHz).

【0015】本発明の装置には、上記マルチスロットア
ンテナ以外でも、管内波長によりマッチングが変化する
プラズマ源なら適用可能である。
The apparatus of the present invention can be applied to a plasma source other than the above-mentioned multi-slot antenna, as long as the plasma source changes in matching depending on the guide wavelength.

【0016】本発明の装置の管内波長調整手段として
は、天板移動などの導波管の寸法変化手段などの管内波
長を変化できる手段であれば適用可能である。
As the guide wavelength adjusting means of the apparatus of the present invention, any means capable of changing the guide wavelength, such as a means for changing the dimension of a waveguide such as a top plate moving, is applicable.

【0017】[0017]

【実施例】(実施例1)本発明をプラズマCVD装置に
応用した実施例を図2を用いて説明する。図中、1はマ
ルチスロットアンテナ、5はマルチスロットアンテナ1
の管内波長を調整するための可動天板、6は可動天板5
を上下に移動するための移動機構、7は成膜室、8はS
i基板などの被覆基体、9は被覆基体8の支持体、10
は被覆基体8を加熱するヒータ、11は排気口、12は
第一のガス、13は第二のガス、14は石英管、15は
多孔拡散板である。
(Embodiment 1) An embodiment in which the present invention is applied to a plasma CVD apparatus will be described with reference to FIG. In the figure, 1 is a multislot antenna, 5 is a multislot antenna 1
A movable top plate for adjusting the in-tube wavelength of the movable top plate;
, A moving mechanism for moving up and down, 7 is a film forming chamber, and 8 is S
a coated substrate 9 such as an i-substrate;
Is a heater for heating the coated substrate 8, 11 is an exhaust port, 12 is a first gas, 13 is a second gas, 14 is a quartz tube, and 15 is a porous diffusion plate.

【0018】まず、支持体9上に基体8を設置し、ヒー
タ10に電流を流し、基体8を室温から数百℃の所望の
温度に加熱する。次に、プラズマ発生領域を通して導入
する第一のガス12および基体8近傍に直接導入する第
二のガス13を流し、排気口11側に設けられたコンダ
クタンスバルブ(不図示)により、1mTorr〜1.
0Torrの所望の圧力に保持する。さらに、マイクロ
波導入口3からマルチスロットアンテナ1へマイクロ波
を導入することにより、スリット孔2からリークしたマ
イクロ波によりマルチスロットアンテナ1近傍に局在し
たプラズマを発生させ、所望の膜厚が得られるまで成膜
を行なう。この間、方向性結合器(不図示)などのマイ
クロ波強度モニタによりマルチスロットアンテナ1から
の反射強度をモニタし、反射強度が最小となるように天
板移動機構6により可動天板5を移動する。
First, the base 8 is placed on the support 9 and an electric current is supplied to the heater 10 to heat the base 8 from room temperature to a desired temperature of several hundred degrees centigrade. Next, the first gas 12 introduced through the plasma generation region and the second gas 13 introduced directly into the vicinity of the base body 8 are caused to flow, and a conductance valve (not shown) provided on the side of the exhaust port 11 is used.
Hold at the desired pressure of 0 Torr. Further, by introducing a microwave from the microwave inlet 3 to the multi-slot antenna 1, a plasma localized near the multi-slot antenna 1 is generated by the microwave leaking from the slit hole 2, and a desired film thickness can be obtained. The film is formed up to. During this time, the reflection intensity from the multi-slot antenna 1 is monitored by a microwave intensity monitor such as a directional coupler (not shown), and the movable top plate 5 is moved by the top moving mechanism 6 so that the reflection intensity is minimized. .

【0019】具体的には、第一のガス12としてN2
00sccm、第二のガス13としてSiH420sc
cmを供給し、圧力0.05Torr、基板温度300
℃、マイクロ波電力500Wの条件で成膜を行なった。
Specifically, N 2 2 is used as the first gas 12.
00 sccm, 20 sc of SiH 4 as the second gas 13
cm, pressure 0.05 Torr, substrate temperature 300
Film formation was performed under the conditions of 500 ° C. and microwave power of 500 W.

【0020】その結果、水素含有率10atm%、スト
レス2×109dyn/cm2圧縮の良質なSiN膜がダ
メージ少なく、70nm/minの高速で成膜された。
As a result, a high-quality SiN film having a hydrogen content of 10 atm% and a stress of 2 × 10 9 dyn / cm 2 was formed at a high speed of 70 nm / min with little damage.

【0021】ガスを替えることにより、SiN、SiO
2、Ta25、Al23、AlNなどの絶縁体、a−S
i、poly−Si、GaAsなどの半導体、Al、W
などの金属が成膜可能である。
By changing the gas, SiN, SiO
2 , insulator such as Ta 2 O 5 , Al 2 O 3 , AlN, a-S
i, semiconductor such as poly-Si, GaAs, Al, W
Metal such as can be formed.

【0022】(実施例2)本発明を表面改質装置に応用
した実施例を示す。
(Embodiment 2) An embodiment in which the present invention is applied to a surface modification apparatus will be described.

【0023】図2の装置を用い、第一のガス12として
2(酸化処理用ガス)を200sccm供給し、第二
のガス13は供給せず、圧力を0.2Torr、基板温
度500℃、マイクロ波電力500Wとし、他の条件は
実施例1と同様とし、実施例1同様の操作にて酸化を行
なった。
Using the apparatus shown in FIG. 2, O 2 (oxidizing gas) was supplied at 200 sccm as the first gas 12, the second gas 13 was not supplied, the pressure was 0.2 Torr, the substrate temperature was 500 ° C., and The microwave power was set to 500 W, the other conditions were the same as in Example 1, and the oxidation was performed by the same operation as in Example 1.

【0024】その結果、耐圧11MV/cmの良質なS
iO2膜が界面電荷密度4×1010/cm2とダメージ少
なく、1.5nm/minの高速で形成された。
As a result, a high-quality S having a withstand voltage of 11 MV / cm was obtained.
The iO 2 film was formed at a high speed of 1.5 nm / min with little damage at an interface charge density of 4 × 10 10 / cm 2 .

【0025】ガスを替えることにより、Si、Al、T
i、Zn、Taなどの酸化窒化、B、As、Pなどのド
ーピングが可能である。
By changing the gas, Si, Al, T
Oxynitridation of i, Zn, Ta, etc., and doping of B, As, P, etc. are possible.

【0026】(実施例3)本発明をクリーニング装置に
応用した場合の例について説明する。
(Embodiment 3) An example in which the present invention is applied to a cleaning device will be described.

【0027】図2の装置を用い、第一のガス13として
CF4+H2をそれぞれ50sccmおよび10sccm
供給し、第二のガスは供給せず、圧力0.02Tor
r、基板温度300℃、マイクロ波電力300Wとし、
他の条件は実施例1と同様とし、実施例1同様の操作を
行なった。その結果、1分間でSi基板上の自然酸化膜
が完全に除去できた。ガスを替えることにより、有機物
や重金属などのクリーニングも可能である。
Using the apparatus shown in FIG. 2, CF 4 + H 2 was used as the first gas 13 at 50 sccm and 10 sccm, respectively.
Supply, no second gas, pressure 0.02 Torr
r, substrate temperature 300 ° C., microwave power 300 W,
Other conditions were the same as in Example 1, and the same operation as in Example 1 was performed. As a result, the natural oxide film on the Si substrate could be completely removed in one minute. By changing the gas, it is also possible to clean organic substances and heavy metals.

【0028】(実施例4)本発明を光アシストプラズマ
CVD装置に応用した例について説明する。
(Embodiment 4) An example in which the present invention is applied to an optically assisted plasma CVD apparatus will be described.

【0029】本実施例においては、図3に示した装置を
用いる。図中、7は反応室、8はSi基板などの被処理
基体(被覆基体)、9は被覆基体8の支持体、10は被
覆基体8を加熱するヒータ、11は排気口、12は第一
のガス、13は第二のガス、14は石英管、15は多孔
拡散板、16は光源、17はリフレクタ、18はインテ
グレータ、19は光導入窓である。
In this embodiment, the apparatus shown in FIG. 3 is used. In the figure, 7 is a reaction chamber, 8 is a substrate to be processed (coated substrate) such as a Si substrate, 9 is a support for the coated substrate 8, 10 is a heater for heating the coated substrate 8, 11 is an exhaust port, and 12 is a first port. , 13 is a second gas, 14 is a quartz tube, 15 is a porous diffusion plate, 16 is a light source, 17 is a reflector, 18 is an integrator, and 19 is a light introduction window.

【0030】まず、支持体9上に基体8を設置し、光源
16からの光を基体8に照射するとともに、ヒータ10
に電流を流し、基体8を室温から数百℃の所望の温度に
加熱する。次に、プラズマ発生領域を通して導入する第
一のガス12および基体8近傍に直接導入する第二のガ
ス13を流し、排気口11側に設けられたコンダクタン
スバルブ(不図示)により、1mTorr〜1.0To
rrの所望の圧力に保持する。さらに、マイクロ波導入
口3からマルチスロットアンテナ1へマイクロ波を導入
することにより、スリット孔2からリークしたマイクロ
波によりマルチスロットアンテナ1近傍に局在したプラ
ズマを発生させ、所望の膜厚が得られるまで成膜を行な
う。この間、方向性結合器(不図示)などのマイクロ波
強度モニタによりマルチスロットアンテナ1からの反射
強度をモニタし、反射強度が最小となるように天板移動
機構6により可動天板5を移動する。
First, the base 8 is placed on the support 9, and the light from the light source 16 is applied to the base 8,
To heat the substrate 8 from room temperature to a desired temperature of several hundred degrees Celsius. Next, the first gas 12 introduced through the plasma generation region and the second gas 13 introduced directly into the vicinity of the base body 8 are caused to flow, and a conductance valve (not shown) provided on the side of the exhaust port 11 is used. 0To
Hold at the desired pressure of rr. Further, by introducing a microwave from the microwave inlet 3 to the multi-slot antenna 1, a plasma localized near the multi-slot antenna 1 is generated by the microwave leaking from the slit hole 2, and a desired film thickness can be obtained. The film is formed up to. During this time, the reflection intensity from the multi-slot antenna 1 is monitored by a microwave intensity monitor such as a directional coupler (not shown), and the movable top plate 5 is moved by the top moving mechanism 6 so that the reflection intensity is minimized. .

【0031】具体的には、第一のガス12としてO2
2slm、第二のガス13としてTEOSを500sc
cmを供給し、圧力0.1Torr、光照度0.6W/
cm 2、基板温度300℃、マイクロ波電力1kWの条
件で成膜を行なった。
Specifically, the first gas 12 is OTwoTo
2 slm, 500 sc of TEOS as the second gas 13
cm, pressure 0.1 Torr, light illuminance 0.6 W /
cm TwoSubstrate temperature 300 ° C, microwave power 1kW
The film was formed in this condition.

【0032】その結果、水素含有率1atm%以下、ス
トレス2×108dyn/cm2引張りと、良質で平坦な
SiO2膜が、180nm/minの高速で成膜され
た。
As a result, a high-quality and flat SiO 2 film was formed at a high speed of 180 nm / min with a hydrogen content of 1 atm% or less, a stress of 2 × 10 8 dyn / cm 2, and a tensile force of 2 × 10 8 dyn / cm 2 .

【0033】ガスを替えることにより、SiN、SiO
2、Ta25、Al23、AlNなどの絶縁体、a−S
i、poly−Si、GaAsなどの半導体、Al、W
などの金属が成膜可能である。
By changing the gas, SiN, SiO
2 , insulator such as Ta 2 O 5 , Al 2 O 3 , AlN, a-S
i, semiconductor such as poly-Si, GaAs, Al, W
Metal such as can be formed.

【0034】[0034]

【発明の効果】以上説明したように、導波管断面の寸法
を変化させるなどの管内波長調整手段を設けることによ
り、管内波長が微妙に変化してもマッチングが容易にと
れ、高密度かつ高隔離プラズマを発生させることがで
き、段差被覆性などの性能に優れた高性能の薄膜形成な
どの処理を高速で実施することができる。
As described above, by providing the guide wavelength adjusting means for changing the cross-sectional dimension of the waveguide, matching can be easily achieved even if the guide wavelength is slightly changed, and high density and high density can be obtained. Isolation plasma can be generated, and processing such as high-performance thin film formation excellent in performance such as step coverage can be performed at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施態様であるマルチスロットアン
テナの1例を示す図であり、Aは、その模式的横断面図
であり、Bは、AのX・X線側面図である。
FIG. 1 is a diagram showing an example of a multi-slot antenna according to an embodiment of the present invention, wherein A is a schematic cross-sectional view of the multi-slot antenna, and B is a XX side view of A.

【図2】本発明の1実施態様であるマイクロ波隔離プラ
ズマ処理装置の模式的断面図である。
FIG. 2 is a schematic sectional view of a microwave-isolated plasma processing apparatus according to one embodiment of the present invention.

【図3】本発明の1実施態様である光アシストプラズマ
処理装置の模式的断面図である。
FIG. 3 is a schematic sectional view of an optically assisted plasma processing apparatus according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 マルチスロットアンテナ 2 スリット孔 3 マイクロ波導入口 4 マイクロ波伝搬促進材 5 可動天板 6 可動天板の移動機構 7 処理室(反応室) 8 被処理基体 9 被処理基体の支持体 10 ヒータ 11 排気口 12 第一のガス 13 第二のガス 14 石英管 15 多孔拡散板 16 光源 17 リフレクタ 18 インテグレータ 19 光導入窓 DESCRIPTION OF SYMBOLS 1 Multi-slot antenna 2 Slit hole 3 Microwave introduction port 4 Microwave propagation promoting material 5 Movable top plate 6 Movable mechanism of movable top plate 7 Processing chamber (reaction chamber) 8 Substrate to be processed 9 Substrate of substrate to be processed 10 Heater 11 Exhaust Mouth 12 First gas 13 Second gas 14 Quartz tube 15 Perforated diffuser 16 Light source 17 Reflector 18 Integrator 19 Light introduction window

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01L 21/31 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/205 H01L 21/31

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも、(1)プラズマ処理室、
(2)該処理室内を真空に排気する手段、(3)該処理
室内に処理用ガスを供給する手段、(4)該処理室の外
周に配置され内側に複数のスリット孔が形成されている
マイクロ波導波管を有するプラズマ発生手段、および
(5)被処理基体を保持する手段を有するプラズマ処理
装置において、マイクロ波導波管の管内波長を変化させ
る手段を有することを特徴とするマイクロ波プラズマ処
理装置。
At least (1) a plasma processing chamber,
(2) means for evacuating the processing chamber to a vacuum, (3) means for supplying a processing gas into the processing chamber, (4) a plurality of slit holes are formed in the outer periphery of the processing chamber and formed inside. In a plasma processing apparatus having a plasma generating means having a microwave waveguide, and (5) a plasma processing apparatus having means for holding a substrate to be processed, microwave plasma processing comprising means for changing a guide wavelength of the microwave waveguide. apparatus.
【請求項2】 導波管の管内波長を変化させる手段が、
導波管の断面の寸法を変化させる手段である請求項1記
載のマイクロ波プラズマ処理装置。
2. The means for changing the guide wavelength of a waveguide comprises:
2. The microwave plasma processing apparatus according to claim 1, wherein the means changes a cross-sectional dimension of the waveguide.
【請求項3】 導波管の管内波長を変化させる手段が、
導波管の内壁面を移動可能である請求項2記載のマイク
ロ波プラズマ処理装置。
3. The means for changing the guide wavelength of a waveguide comprises:
3. The microwave plasma processing apparatus according to claim 2, wherein the inner wall surface of the waveguide is movable.
【請求項4】 導波管の管内波長を変化させる手段が、
電源の発振波長を変化させる手段である請求項1記載の
マイクロ波プラズマ処理装置。
4. The means for changing the guide wavelength of a waveguide comprises:
2. The microwave plasma processing apparatus according to claim 1, wherein the microwave plasma processing apparatus is means for changing an oscillation wavelength of the power supply.
【請求項5】 基体保持手段が、プラズマ高密度部に接
触していないように設置されている請求項1ないし4の
いずれか1項に記載のマイクロ波プラズマ処理装置。
5. The microwave plasma processing apparatus according to claim 1, wherein the substrate holding means is installed so as not to contact the high-density plasma portion.
【請求項6】 請求項1ないし5のいずれか1項に記載
のマイクロ波プラズマ処理装置を用いるマイクロ波プラ
ズマ処理方法。
6. A microwave plasma processing method using the microwave plasma processing apparatus according to claim 1.
【請求項7】 基体保持手段に近紫外光を含む光を照射
する請求項6記載のマイクロ波プラズマ処理方法。
7. The microwave plasma processing method according to claim 6, wherein the substrate holding means is irradiated with light including near-ultraviolet light.
【請求項8】 H、O、N、F、Cl、Br、He、N
e、Ar、Kr、XeおよびRnの中から選ばれる元素
のみを含む第一のガスをプラズマ発生空間に供給し、
H、O、N、F、Cl、Br、He、Ne、Ar、K
r、XeおよびRn以外の元素も含む第二のガスをプラ
ズマから隔離された空間に供給する請求項6または7に
記載のマイクロ波プラズマ処理方法。
8. H, O, N, F, Cl, Br, He, N
e, supplying a first gas containing only an element selected from Ar, Kr, Xe and Rn to the plasma generation space,
H, O, N, F, Cl, Br, He, Ne, Ar, K
The microwave plasma processing method according to claim 6 or 7, wherein a second gas containing an element other than r, Xe, and Rn is supplied to a space isolated from the plasma.
【請求項9】 第一のガスをO2とし、第二のガスをテ
トラエトキシシランとする請求項8記載のマイクロ波プ
ラズマ処理方法。
9. The microwave plasma processing method according to claim 8, wherein the first gas is O 2 and the second gas is tetraethoxysilane.
JP11824793A 1993-05-20 1993-05-20 Microwave plasma processing apparatus and microwave plasma processing method Expired - Fee Related JP3258441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11824793A JP3258441B2 (en) 1993-05-20 1993-05-20 Microwave plasma processing apparatus and microwave plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11824793A JP3258441B2 (en) 1993-05-20 1993-05-20 Microwave plasma processing apparatus and microwave plasma processing method

Publications (2)

Publication Number Publication Date
JPH06333842A JPH06333842A (en) 1994-12-02
JP3258441B2 true JP3258441B2 (en) 2002-02-18

Family

ID=14731885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11824793A Expired - Fee Related JP3258441B2 (en) 1993-05-20 1993-05-20 Microwave plasma processing apparatus and microwave plasma processing method

Country Status (1)

Country Link
JP (1) JP3258441B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW409487B (en) * 1998-04-10 2000-10-21 Sumitomo Metal Ind Microwave plasma treatment apparatus and microwave plasma treatment method
JP5111806B2 (en) * 2006-08-02 2013-01-09 東京エレクトロン株式会社 Plasma processing apparatus and method
US8119545B2 (en) 2008-03-31 2012-02-21 Tokyo Electron Limited Forming a silicon nitride film by plasma CVD
WO2009123325A1 (en) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Process for producing silicon nitride film, process for producing silicon nitride film laminate, computer-readable storage medium, and plasma cvd device

Also Published As

Publication number Publication date
JPH06333842A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
US6870123B2 (en) Microwave applicator, plasma processing apparatus having same, and plasma processing method
KR100554116B1 (en) Surface wave plasma treatment apparatus using multi-slot antenna
US7759598B2 (en) Substrate treating method and production method for semiconductor device
KR100278187B1 (en) Plasma treatment method and substrate treatment method
US6470824B2 (en) Semiconductor manufacturing apparatus
US7622162B1 (en) UV treatment of STI films for increasing tensile stress
JP4280686B2 (en) Processing method
KR100887330B1 (en) Method for modifying insulation film and method for manufacturing semiconductor device
JP2003109941A (en) Plasma treatment device and surface treatment method
US20080173402A1 (en) Microwave plasma processing apparatus
JP2008059991A (en) Plasma processing apparatus and plasma processing method
KR20040108697A (en) Method for producing material of electronic device
JP3258441B2 (en) Microwave plasma processing apparatus and microwave plasma processing method
JP3907444B2 (en) Plasma processing apparatus and structure manufacturing method
KR101977120B1 (en) Method for preferential oxidation of silicon in substrates containing silicon and germanium
JP2009021442A (en) Method of forming film for porous membrane and computer-readable recording medium
JP4298049B2 (en) Microwave plasma processing equipment using dielectric window
JP2005252031A (en) Plasma nitriding method
KR100425658B1 (en) Microwave applicator, plasma processing apparatus having same, and plasma processing method
JP2008159763A (en) Plasma processing apparatus
JPH11193466A (en) Plasma treating device and plasma treating method
JP2933422B2 (en) Plasma processing equipment
JP2006012962A (en) Microwave plasma processing apparatus using vacuum ultraviolet light shielding plate with oblique through hole and its processing method
JP3088447B2 (en) Plasma processing apparatus and plasma processing method
JPH05125546A (en) Plasma treating device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees