JPH04252911A - Three-dimensional measuring apparatus - Google Patents

Three-dimensional measuring apparatus

Info

Publication number
JPH04252911A
JPH04252911A JP2677491A JP2677491A JPH04252911A JP H04252911 A JPH04252911 A JP H04252911A JP 2677491 A JP2677491 A JP 2677491A JP 2677491 A JP2677491 A JP 2677491A JP H04252911 A JPH04252911 A JP H04252911A
Authority
JP
Japan
Prior art keywords
probe
model
dimensional
measured
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2677491A
Other languages
Japanese (ja)
Inventor
Kensuke Ide
健介 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2677491A priority Critical patent/JPH04252911A/en
Publication of JPH04252911A publication Critical patent/JPH04252911A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To correctly correct a probe diameter and accurately measure a model shape. CONSTITUTION:When a probe 10 comes into contact with a model 7, a touch signal is output from a touch sensor 5. Robot positions for moving the probe 10 are measured by position measuring devices 1a, 1b,...1N. The probe center coordinate is calculated by calculators 2, 3 from the robot positions when the touch signals were output. A virtual plane calculator 4 calculates a virtual plane which is approximate to a plane including a point which is being measured. A probe diameter correcting device 6 shifts the calculated center coordinate of the probe along a perpendicular direction to the virtual plane by a radius of the probe toward the virtual plane, making the shifted coordinate a model surface coordinate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、三次元測定機に関し、
精度よくモデル形状の測定ができるようにしたものであ
る。
[Industrial Application Field] The present invention relates to a three-dimensional measuring machine,
This allows the model shape to be measured with high accuracy.

【0002】0002

【従来の技術】まず図3を参照して従来の三次元測定機
の外形を説明する。三次元ロボット8の部材8XはX方
向に移動し、部材8YはY方向に移動し、ラム8ZはZ
軸方向に移動する。ラム8Zにはタッチセンサ5及び球
状のプローブ10が装着されている。タッチセンサ5は
、プローブ10が測定モデル7に接触するとタッチ信号
を出力する。また三次元ロボット8には各軸位置測定器
1a,1b,1cが備えられており、ロボット8の位置
を検出する。モデル形状を測定するには、プローブ10
を測定モデル7に接触させ、各軸位置測定器1a,1b
,1cの測定データを用いて測定する。
2. Description of the Related Art First, the outline of a conventional three-dimensional measuring machine will be explained with reference to FIG. The member 8X of the three-dimensional robot 8 moves in the X direction, the member 8Y moves in the Y direction, and the ram 8Z moves in the Z direction.
Move in the axial direction. A touch sensor 5 and a spherical probe 10 are attached to the ram 8Z. The touch sensor 5 outputs a touch signal when the probe 10 contacts the measurement model 7. The three-dimensional robot 8 is also equipped with axis position measuring devices 1a, 1b, and 1c to detect the position of the robot 8. To measure the model shape, probe 10
is brought into contact with the measurement model 7, and each axis position measuring device 1a, 1b
, 1c.

【0003】次にモデル形状を求めるための演算部を、
図4を参照して説明する。ただし図4では、三次元ロボ
ットがN軸である場合について説明する。各軸位置検出
器1a,1b,…,1Nは、光学スケール等で形成され
ており、各軸の位置を測定する。機械位置演算器2は、
各軸位置測定器1a,1b,…,1Nのデータを基に、
タッチセンサ5の座標位置を求める。プローブ10が測
定モデル7に接触すると、タッチセンサ5からタッチ信
号が出力される。タッチ位置演算器3は、タッチ信号が
出力された時点において機械位置演算器2から出力され
る座標位置から、プローブ10の中心座標を求める。プ
ローブ径補正器6は、演算して求めたプローブ10の中
心座標を、プローブ10の半径分の長さだけモデル側に
シフトする補正をし、補正して得た座標をモデル表面座
標として求める。
Next, the calculation section for determining the model shape is
This will be explained with reference to FIG. However, in FIG. 4, a case will be described in which the three-dimensional robot has an N axis. Each axis position detector 1a, 1b, . . . , 1N is formed of an optical scale or the like, and measures the position of each axis. The machine position calculator 2 is
Based on the data of each axis position measuring device 1a, 1b, ..., 1N,
The coordinate position of the touch sensor 5 is determined. When the probe 10 contacts the measurement model 7, the touch sensor 5 outputs a touch signal. The touch position calculator 3 calculates the center coordinates of the probe 10 from the coordinate position output from the machine position calculator 2 at the time the touch signal is output. The probe diameter corrector 6 corrects the calculated center coordinates of the probe 10 by shifting them toward the model by the radius of the probe 10, and calculates the corrected coordinates as model surface coordinates.

【0004】0004

【発明が解決しようとする課題】ところで従来の三次元
測定器では次のような問題があった。即ち、図5(a)
に示すように、タッチセンサ5先端のプローブ10をモ
デル面9に接触させるわけであるが、実際に求めたい座
標はモデル面9上の点Aであるにもかかわらず、タッチ
位置演算器3により求められた座標はプローブ中心Bの
座標である。このため点Bよりモデル面に対し面直な方
向にプローブ径rだけ補正を行うことにより、モデル面
上の点Aを求めなければならない。しかし三次元測定機
は一般に未知形状を扱うのであるから、先に述べたモデ
ル面に対し面直な方向は決っておらず、図5(b)に示
すように、プローブ10が面に接触する直前のプローブ
方向を面直方向として補正を行う。従って図5(b)の
ように面直にアプローチしない場合、実際のモデル上の
点Aでなくずれた点Aを求めてしまう。
[Problems to be Solved by the Invention] However, conventional three-dimensional measuring instruments have the following problems. That is, FIG. 5(a)
As shown in the figure, the probe 10 at the tip of the touch sensor 5 is brought into contact with the model surface 9, but even though the coordinates that are actually desired are point A on the model surface 9, the touch position calculator 3 The obtained coordinates are the coordinates of the probe center B. Therefore, point A on the model surface must be found by correcting the probe diameter r in a direction perpendicular to the model surface from point B. However, since coordinate measuring machines generally handle unknown shapes, the direction perpendicular to the model surface is not determined, and as shown in FIG. 5(b), the probe 10 comes into contact with the surface. Correction is performed with the immediately preceding probe direction as the perpendicular direction. Therefore, if the approach is not made perpendicular to the plane as shown in FIG. 5(b), a shifted point A will be obtained instead of the actual point A on the model.

【0005】本発明は、上記従来技術に鑑み、プローブ
径補正を正確にして精度よいモデル形状測定のできる三
次元測定機を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide a three-dimensional measuring machine that can accurately correct the probe diameter and measure the shape of a model with high precision.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の構成は三次元ロボットの先端に備えた球状のプロー
ブをモデルに接触させることによりモデル形状を測定す
る三次元測定機であって、プローブがモデルに接触した
ことを検出する接触検出手段と、三次元ロボットの各軸
の位置を測定する位置測定手段と、プローブがモデルに
接触したことが検出された時点における三次元ロボット
の各軸位置から、そのときのプローブの中心座標を演算
する位置演算手段と、現在測定中の点の近傍にある既に
測定した複数の測定点より、現在の測定点を含む面に近
似した仮想的な仮想面を演算する仮想面演算手段と、演
算して求めたプローブの中心座標を、仮想面に直交する
面直方向に沿って、プローブの半径長分だけ仮想面側に
移動させ、移動した座標をプローブ表面の座標とするプ
ローブ径補正手段と、を有することを特徴とする。
[Means for Solving the Problems] The configuration of the present invention that achieves the above object is a three-dimensional measuring machine that measures the shape of a model by bringing a spherical probe provided at the tip of a three-dimensional robot into contact with the model, contact detection means for detecting that the probe has contacted the model; position measurement means for measuring the position of each axis of the three-dimensional robot; and each axis of the three-dimensional robot at the time when it is detected that the probe has contacted the model. A position calculation means that calculates the center coordinates of the probe at that time from the position, and a virtual virtual device that approximates the surface including the current measurement point from multiple measurement points that have already been measured near the point currently being measured. The virtual surface calculation means for calculating the surface and the calculated center coordinates of the probe are moved toward the virtual surface by the radial length of the probe along the perpendicular direction perpendicular to the virtual surface, and the moved coordinates are It is characterized by having a probe diameter correction means that uses the coordinates of the probe surface.

【0007】[0007]

【作用】仮想面演算器は既に測定したプローブ径中心位
置のうち、現在測定している点及びその近傍の点数点(
最低2点)とで決定される。仮想面(一般に平面で良い
が、曲面も含む)を求め、測定点における仮想面の面直
方向を求める。これによりタッチセンサのアプローチ方
向によらず、より精度よく面直方向が求まり、測定精度
を向上できる。
[Operation] The virtual surface calculator uses the currently measured point and several points in its vicinity among the already measured probe diameter center positions (
(minimum 2 points). A virtual surface (generally a flat surface is acceptable, but also includes a curved surface) is determined, and the perpendicular direction of the virtual surface at the measurement point is determined. As a result, the perpendicular direction can be determined more accurately regardless of the approach direction of the touch sensor, and measurement accuracy can be improved.

【0008】[0008]

【実施例】以下に本発明の実施例を説明する。なお、従
来技術と同一機能を果す部分には同一符号を付す。図1
は本発明の実施例を示す。同図に示す各軸位置測定器1
a,1b,…,1Nは、光学スケール等の位置センサよ
り成り、タッチセンサ5の位置を検出する。機械位置演
算器2は、各軸位置測定器1a,1b,…,1Nからの
位置情報をもとにタッチセンサ5の機械上での位置を求
める。タッチ位置演算器3は機械位置演算器2からの座
標と、タッチセンサ5からのタッチ信号により、タッチ
センサ5がモデルに接触したときのプローブ10の中心
座標を求める。
[Examples] Examples of the present invention will be described below. Note that the same reference numerals are given to parts that perform the same functions as those in the prior art. Figure 1
shows an example of the present invention. Each axis position measuring device 1 shown in the figure
a, 1b, . . . , 1N are position sensors such as optical scales, and detect the position of the touch sensor 5. The machine position calculator 2 determines the position of the touch sensor 5 on the machine based on the position information from each axis position measuring device 1a, 1b, . . . , 1N. The touch position calculator 3 uses the coordinates from the mechanical position calculator 2 and the touch signal from the touch sensor 5 to determine the center coordinates of the probe 10 when the touch sensor 5 contacts the model.

【0009】仮想面演算器4は、図2に示すように、既
に測定した近傍の測定点C,Dより、現在測定中の点E
の近傍に仮想的な面Pを演算し、測定点での面直方向T
を求める。この面直方向Tに沿って、プローブ径補正器
6はプローブ径補正を行いモデル面上の測定点を求める
。仮想面P、点Eを含む実際の面に近似した面となるよ
うに演算を行う。
As shown in FIG. 2, the virtual surface calculator 4 selects the point E currently being measured from the nearby measurement points C and D that have already been measured.
A virtual plane P is calculated in the vicinity of , and the perpendicular direction T at the measurement point is calculated.
seek. Along this surface perpendicular direction T, the probe diameter corrector 6 performs probe diameter correction to find measurement points on the model surface. Calculation is performed so that the surface approximates the actual surface including the virtual surface P and the point E.

【0010】ここで、仮想的な面であるが、3点の測定
点があれば平面を求めることができるし、それ以上の点
数があれば各点を含む曲面を3次元的な補間により決定
することができる。本発明ではこれらの面については特
定しない。
[0010] Although this is a virtual surface, if there are three measurement points, a plane can be obtained, and if there are more points than that, a curved surface containing each point can be determined by three-dimensional interpolation. can do. The present invention does not specify these aspects.

【0011】また近傍に測定点がないと本発明は適用で
きないが、一般にモデル面上の点は平面で補間できる程
度には測定点がおかれ、実用上特に問題はない。
Although the present invention cannot be applied if there are no measurement points nearby, the measurement points are generally placed to such an extent that points on the model surface can be interpolated on a plane, so there is no particular problem in practice.

【0012】また機械位置演算器2,タッチ位置演算器
3,仮想面演算器4,プローブ径補正器6は、一般にマ
イクロコンピュータを用いた装置上のソフトウェアとし
て実現されることが多い。
The machine position calculator 2, touch position calculator 3, virtual surface calculator 4, and probe diameter corrector 6 are generally implemented as software on a device using a microcomputer.

【0013】[0013]

【発明の効果】本発明によれば、未知形状の測定におい
て、タッチセンサのプローブのアプローチ方向によらず
、測定点近傍の面直方向が精度よく求まり、従ってプロ
ーブ径補正を精度よく行え、測定精度を向上できる。
According to the present invention, when measuring an unknown shape, the perpendicular direction near the measurement point can be determined with high precision regardless of the approach direction of the probe of the touch sensor, and therefore the probe diameter can be corrected with high precision. Accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】面直方向を求める方法を示す説明図である。FIG. 2 is an explanatory diagram showing a method for determining a perpendicular direction.

【図3】三次元測定機を示す斜視図である。FIG. 3 is a perspective view showing a coordinate measuring machine.

【図4】従来技術を示すブロック図である。FIG. 4 is a block diagram showing a prior art.

【図5】従来技術の問題を示す説明図である。FIG. 5 is an explanatory diagram showing a problem in the prior art.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1N  軸位置測定器2  機械位
置演算器 3  タッチ位置演算器 4  仮想面演算器 5  タッチセンサ 6  プローブ径補正器 7  測定モデル 8  ロボット 9  モデル面 10  プローブ
1a, 1b, 1c, 1N Axis position measuring device 2 Machine position calculator 3 Touch position calculator 4 Virtual surface calculator 5 Touch sensor 6 Probe diameter corrector 7 Measurement model 8 Robot 9 Model surface 10 Probe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  三次元ロボットの先端に備えた球状の
プローブをモデルに接触させることによりモデル形状を
測定する三次元測定機であって、プローブがモデルに接
触したことを検出する接触検出手段と、三次元ロボット
の各軸の位置を測定する位置測定手段と、プローブがモ
デルに接触したことが検出された時点における三次元ロ
ボットの各軸位置から、そのときのプローブの中心座標
を演算する位置演算手段と、現在測定中の点の近傍にあ
る既に測定した複数の測定点より、現在の測定点を含む
面に近似した仮想的な仮想面を演算する仮想面演算手段
と、演算して求めたプローブの中心座標を、仮想面に直
交する面直方向に沿って、プローブの半径長分だけ仮想
面側に移動させ、移動した座標をプローブ表面の座標と
するプローブ径補正手段と、を有することを特徴とする
三次元測定機。
1. A three-dimensional measuring machine that measures the shape of a model by bringing a spherical probe provided at the tip of a three-dimensional robot into contact with the model, comprising a contact detection means for detecting that the probe has contacted the model. , a position measuring means for measuring the position of each axis of the three-dimensional robot, and a position for calculating the center coordinates of the probe at that time from the position of each axis of the three-dimensional robot at the time when contact of the probe with the model is detected. a calculation means; a virtual surface calculation means for calculating a virtual virtual surface that approximates the surface including the current measurement point from a plurality of measurement points that have already been measured in the vicinity of the point currently being measured; and a probe diameter correction means for moving the center coordinates of the probe to the virtual surface side by the radius length of the probe along the perpendicular direction perpendicular to the virtual surface, and making the moved coordinates the coordinates of the probe surface. A three-dimensional measuring machine characterized by:
JP2677491A 1991-01-29 1991-01-29 Three-dimensional measuring apparatus Withdrawn JPH04252911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2677491A JPH04252911A (en) 1991-01-29 1991-01-29 Three-dimensional measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2677491A JPH04252911A (en) 1991-01-29 1991-01-29 Three-dimensional measuring apparatus

Publications (1)

Publication Number Publication Date
JPH04252911A true JPH04252911A (en) 1992-09-08

Family

ID=12202650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2677491A Withdrawn JPH04252911A (en) 1991-01-29 1991-01-29 Three-dimensional measuring apparatus

Country Status (1)

Country Link
JP (1) JPH04252911A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093191A (en) * 2002-08-29 2004-03-25 Matsushita Electric Ind Co Ltd Shape measuring device and shape measuring method
JP2008268118A (en) * 2007-04-24 2008-11-06 Makino Milling Mach Co Ltd Method and device for measuring shape
JP2011230238A (en) * 2010-04-28 2011-11-17 Yaskawa Electric Corp Robot control device, and robot control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093191A (en) * 2002-08-29 2004-03-25 Matsushita Electric Ind Co Ltd Shape measuring device and shape measuring method
JP2008268118A (en) * 2007-04-24 2008-11-06 Makino Milling Mach Co Ltd Method and device for measuring shape
JP2011230238A (en) * 2010-04-28 2011-11-17 Yaskawa Electric Corp Robot control device, and robot control method

Similar Documents

Publication Publication Date Title
EP0254515B1 (en) Co-ordinate measuring
US7131207B2 (en) Workpiece inspection method
US7079969B2 (en) Dynamic artefact comparison
JP2527996B2 (en) Workpiece inspection method and device
US7376261B2 (en) Surface scan measuring device and method of forming compensation table for scanning probe
WO1989003509A1 (en) Method for automatic compensation of probe offset in a coordinate measuring machine
US6453730B2 (en) Surface texture measuring instrument, surface texture measuring method and stylus radius measuring instrument
US6810597B2 (en) Use of surface measuring probes
JPH04252911A (en) Three-dimensional measuring apparatus
JP2000081329A (en) Shape measurement method and device
JP3025413B2 (en) Method and apparatus for measuring contour shape
JPH0663760B2 (en) Three-dimensional measuring method and measuring device
JP2579726B2 (en) Contact probe
JPH0244002B2 (en)
JPS6236514A (en) Measuring system
JPH07294237A (en) Method for measuring profile of hole using three-dimensional measuring apparatus
JPS63131018A (en) Apparatus for measuring inner and outer diameters
JPH0571907A (en) Cnc control apparatus
JPS5877613A (en) Method and device for measuring coordinates
JPS5877612A (en) Measuring device for coordinates
JPH03261815A (en) Measuring method of coordinate measuring machine
JP2000088504A (en) Measuring apparatus and measuring method of thin- walled component
JPH05264213A (en) Method and device for measuring surface configuration
JPH045512A (en) Measuring method for coordinate measuring instrument

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514