JPH0425261B2 - - Google Patents

Info

Publication number
JPH0425261B2
JPH0425261B2 JP13321083A JP13321083A JPH0425261B2 JP H0425261 B2 JPH0425261 B2 JP H0425261B2 JP 13321083 A JP13321083 A JP 13321083A JP 13321083 A JP13321083 A JP 13321083A JP H0425261 B2 JPH0425261 B2 JP H0425261B2
Authority
JP
Japan
Prior art keywords
acetamide
bromo
chloro
acid amide
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13321083A
Other languages
Japanese (ja)
Other versions
JPS6025954A (en
Inventor
Toshio Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP13321083A priority Critical patent/JPS6025954A/en
Publication of JPS6025954A publication Critical patent/JPS6025954A/en
Publication of JPH0425261B2 publication Critical patent/JPH0425261B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は下記一般式()で示されるα−ハロ
ゲノ酢酸類と一般式()で示されるカルボン酸
塩を触媒存在下に反応させることにより、下記一
般式()で示されるアシロキシ酢酸を収率よく
製造する方法に関する。 〔但し、上記式中、Xは塩素又は臭素、R1
R2は水素又はアルキル基、R3はOR′、NR″R
(R′はアルキル基、R″、Rは水素又はアルキル
基又はアリール基)を示す。〕 〔但し、上記式中、Rは水素又はアルキル基、
Mはアルカリ金属又はアルカリ土類金属を示す。〕 〔但し、上記式中、R1〜R3、Rは式()、
()と同じ基を示す。〕 アシロキシ酢酸類は、農薬特に除草剤の中間体
として有用である。しかして該化合物の製造法と
しては、従来、上記α−ハロゲノ酢酸類とカルボ
ン酸塩を反応させる方法が知られている。しかし
ながら、かかる方法においては、原料のα−ハロ
ゲノ酢酸類のポリマー化を防止するために4〜5
倍モルもの多量のカルボン酸塩が不可欠であるこ
と、及びかかる防止策を行つても目的物の収率が
70〜80%程度に過ぎないという問題がある。工業
的にアシロキシ酢酸類を製造する場合において、
前記の如き収率では必ずしも満足とは言えない
し、又当然未反応のカルボン酸塩を回収する操作
が必要となり、問題点が多い。 しかして本発明者は、かかる問題の解決方法と
して触媒に四級アンモニウム塩又はホスホニウム
塩を用いることにより目的物が効率よく得られる
ことを発見し、特願昭58−66133(特開昭59−
190952号公報参照)として先に出願を行つた。 ところが本発明者が更に研究を行つた結果、該
反応を行う際に特定の溶媒、即ちジメチルスルホ
キシドを使用する場合、前記触媒を特に使用しな
くとも極めて効率よく反応が進行するという意外
な事実を発見し、本発明を完成するに到つた。 本発明にいうα−ハロゲノ酢酸類とは次の一般
式で表わされるものである。 但し、該式中、Xは塩素又は臭素、R1、R2
水素又はアルキル基、R3はOR′又はNR″R
(R′はアルキル基、R″、Rは水素又はアルキル
基又はアリール基)を示す。R1〜R3及びR′〜R
におけるアルキル基の炭素数は一般に1〜7の
間であるが、本発明はこれらに限定されるもので
はない。又、アリール基は塩素、臭素などで置換
された置換アリール基であつてもよい。かかる構
造を有する化合物としては具体的には、α−クロ
ル(又はブロム)酢酸メチル、α−クロル(又は
ブロム)酢酸エチル、α−クロル(又はブロム)
酢酸プロピル等のα−ハロゲノ酢酸のアルキルエ
ステル、又、α位が更にメチル基、エチル基等で
置換されたもの更にN−モノメチル−α−クロル
(又はブロム)酢酸アミド、N−モノエチル−α
−クロル(又はブロム)酢酸アミド、N,N−ジ
メチル−α−クロル(又はブロム)酢酸アミド、
N,N−ジエチル−α−クロル(又はブロム)酢
酸アミド、N,N−メチルエチル−α−クロル
(又はブロム)酢酸アミド、N−モノフエニル−
α−クロル(又はブロム)酢酸アミド、N,N−
メチルフエニル−α−クロル(又はブロム)酢酸
アミド、N,N−エチルフエニル−α−クロル
(又はブロム)酢酸アミド、N,N−ジフエニル
−α−クロル(又はブロム)酢酸アミド、N−モ
ノメチル−(α−クロル(又はブロム)−α−メチ
ル)酢酸アミド、N−モノメチル−(α−クロル
(又はブロム)−α−ジメチル)酢酸アミド、N−
モノエチル−(α−クロル(又はブロム)−α−メ
チル)酢酸アミド、N−モノエチル−(α−クロ
ル(又はブロム)−α−ジメチル)酢酸アミド、
N,N−ジメチル−(α−クロル(又はブロム)−
α−ジメチル)酢酸アミド、N−モノメチル−
(α−クロル(又はブロム)−α−ジエチル)酢酸
アミド、N−モノエチル−(α−クロル(又はブ
ロム)−α−ジエチル)酢酸アミド、N,N−ジ
エチル−(α−クロル(又はブロム)−α−ジエチ
ル)酢酸アミド、N−モノフエニル−(α−クロ
ル(又はブロム)−α−メチル)酢酸アミド、N
−モノフエニル−(α−クロル(又はブロム)−α
−ジメチル)酢酸アミド、N−モノフエニル−
(α−クロル(又はブロム)−α−エチル)酢酸ア
ミド、N−モノフエニル−(α−クロル(又はブ
ロム)−α−ジエチル)酢酸アミド、N,N−メ
チルフエニル−(α−クロル(又はブロム)−α−
ジメチル)酢酸アミド、N,N−メチルフエニル
−(α−クロル(又はブロム)−α−ジエチル)酢
酸アミド、N,N−エチルフエニル−(α−クロ
ル(又はブロム)−α−ジメチル)酢酸アミド、
N,N−エチルフエニル−(α−クロル(又はブ
ロム)−α−ジエチル)酢酸アミド、N,N−ジ
フエニル−(α−クロル(又はブロム)−α−ジメ
チル)酢酸アミド、N,N−ジフエニル−(α−
クロル(又はブロム)−α−ジエチル)酢酸アミ
ド等のα−ハロゲノ酢酸誘導体が挙げられる。 上記α−ハロゲノ酢酸類と反応させるカルボン
酸塩とは次の一般式で表わされるものである。 RCOOM 但し、該式中Rは水素又はアルキル基、Mはア
ルカリ土類金属を示す。Rにおけるアルキル基の
炭素数は通常1〜5のものが使用される。又アル
カリ金属、アルカリ土類金属としては一般にナト
リウム、カリウム、カルシウム、マグネシウム等
が使用され、特にアルカリ金属が好ましく用いら
れる。かかる構造を持つ化合物としては具体的に
は、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、
カプロン酸等の各々アルカリ金属塩又はアルカリ
土類金属塩等が挙げられるが、酢酸ナトリウムが
最も実用的である。かかるカルボン酸塩は普通前
記α−ハロゲノ酢酸類に対し、1〜2モルの割合
で用いられる。 本発明の最大の特徴はα−ハロゲノ酢酸類とカ
ルボン酸塩の反応を特定溶媒中で行うことにあ
る。かかる溶媒としてはジメチルスルホキシド、
N,N−ジメチルホルムアミド及びこれらの混合
溶媒が挙げられる。又、かかる特定有機溶媒に対
して等量程度までならば従来公知の他の有機溶
媒、例えばベンゼン、トルエン、キシレン等の芳
香族炭化水素系有機溶媒、ジクロロメタン、ジク
ロロエタン、クロロホルム等のハロゲン化炭化水
素系有機溶媒の他更に必要に応じて前記各種有機
溶媒と水との混合溶媒も用いることができる。 かかる特定有機溶媒を用いることにより、前述
した如く、触媒を使用せずに、前記カルボン酸の
量を少くすることができ、かつα−ハロゲノ酢酸
類のポリマー化による副生物の発生を抑制するこ
とができ、その結果、目的とするアシロキシ酢酸
類を効率的にしかも高収率で得ることができるの
である。勿論、必要であれば四級アンモニウム塩
やホスホニウム塩等の触媒を使用しても何等差支
えない。 本発明の方法を行う場合、反応温度は前記化合
物(α−ハロゲノ酢酸類、カルボン酸塩)の沸点
以下で行えば特に支障はなく、普通0〜200℃、
より好ましくは20〜120℃の範囲で行うと良好な
結果が得られる。又反応時間は、使用する化合
物、溶媒等の種類によつて異なるので限定できな
いが、通常は0.5〜24時間で終了する。反応液は
必要に応じて過、洗浄、脱水などの処理を施し
た後、減圧下にて溶媒を留去すると次記一般式で
示される本発明の目的とするところのアシロキシ
酢酸類を得ることができる。 但し、該式中R1〜R3、Rは前述したα−ハロ
ゲノ酢酸類及びカルボン酸塩に対応するものであ
る。かかる構造式で示される化合物としては、ア
セトキシ酢酸メチル、アセトキシ酢酸エチル、ア
セトキシ酢酸プロピル、プロポキシ酢酸メチル、
プロポキシ酢酸エチル、プロポキシ酢酸プロピ
ル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、
ブトキシ酢酸プロピル等のアシロキシ酢酸のアル
キルエステル、更にN−モノメチル−アセトキシ
酢酸アミド、N−モノエチル−アセトキシ酢酸ア
ミド、N,N−ジメチル−アセトキシ酢酸アミ
ド、N,N−ジエチル−アセトキシ酢酸アミド、
N,N−メチルエチル−アセトキシ酢酸アミド、
N−モノフエニル−アセトキシ酢酸アミド、N,
N−メチルフエニル−アセトキシ酢酸アミド、
N,N−エチルフエニル−アセトキシ酢酸アミ
ド、N,N−ジフエニル−アセトキシ酢酸アミ
ド、N−モノメチル−(α−アセトキシ−α−メ
チル)酢酸アミド、N−モノメチル−(α−アセ
トキシ−α−ジメチル)酢酸アミド、N−モノエ
チル−(α−アセトキシ−α−メチル)酢酸アミ
ド、N−モノエチル−(α−アセトキシ−α−ジ
メチル)酢酸アミド、N,N−ジメチル−(α−
アセトキシ−α−ジメチル)酢酸アミド、N−モ
ノメチル−(α−アセトキシ−α−ジエチル)酢
酸アミド、N−モノエチル−(α−アセトキシ−
α−ジエチル)酢酸アミド、N,N−ジエチル−
(α−アセトキシ−α−ジエチル)酢酸アミド、
N−モノフエニル−(α−アセトキシ−α−メチ
ル)酢酸アミド、N−モノフエニル−(α−アセ
トキシ−α−ジメチル)酢酸アミド、N−モノフ
エニル−(α−アセトキシ−α−エチル)酢酸ア
ミド、N−モノフエニル−(α−アセトキシ−α
−ジエチル)酢酸アミド、N,N−メチルフエニ
ル−(α−アセトキシ−α−ジメチル)酢酸アミ
ド、N,N−メチルフエニル−(α−アセトキシ
−α−ジエチル)酢酸アミド、N,N−エチルフ
エニル−(α−アセトキシ−α−ジメチル)酢酸
アミド、N,N−エチルフエニル−(α−アセト
キシ−α−ジエチル)酢酸アミド、N,N−ジフ
エニル−(α−アセトキシ−α−ジメチル)酢酸
アミド、N,N−ジフエニル−(α−アセトキシ
−α−ジエチル)酢酸アミド等の他、これらの誘
導体中のα位のアセトキシ基がプロポキシ基又は
ブトキシ基等になつたアシロキシ酢酸誘導体が挙
げられる。 かくして得られるアシロキシ酢酸類は各種農
薬、医薬等の中間体として有用である。 該アシロキシ酢酸類は更に加水分解等によりグ
リコール酢酸としても有用である。かかるグリコ
ール酢酸類とは で示されるものである。但し、R1〜R3はアシロ
キシ酢酸類のR1〜R3の各々に対応する。加水分
解には特別な操作は必要でなく公知の方法に従つ
て行う。即ち得られたアシロキシ酢酸類を水中に
あるいはエタノール、メタノール等のアルコール
中に溶解あるいは分散させ、触媒の共存下系を環
流させる。かかる状態で温度を通常100℃以下に
保持しながら反応を行い、アシロキシ基を水酸基
に変換させるのである。触媒としては、水酸化ナ
トリウム、水酸化カリウム等のアルカリ触媒、又
塩酸、硫酸、イオン交換樹脂等の酸触媒が適宜用
いられる。 加水分解反応は数分〜10時間程度で終了するの
で以下必要に応じて過、抽出、脱水などの後処
理を行つた後、減圧下に溶媒を留去すると本発明
の目的とするところのグリコール酸類が得られ
る。更に必要ならば再結晶などの公知の方法によ
り、精製することもできる。 尚、化学式()と()を反応させる際に前
記特定有機溶媒と共に水を存在させると直接グリ
コール酸が得られるので特に前記した二段反応は
必ずしも必要とはしない。 かかるグリコール酸類の代表的なものを例示す
ると、グリコール酸メチル、グリコール酸エチ
ル、グリコール酸プロピル、N−モノメチル−グ
リコール酸アミド、N−モノエチル−グリコール
酸アミド、N,N−ジメチル−グリコール酸アミ
ド、N,N−ジエチル−グリコール酸アミド、
N,N−メチルエチル−グリコール酸アミド、N
−モノフエニル−グリコール酸アミド、N,N−
メチルフエニル−グリコール酸アミド、N,N−
エチルフエニル−グリコール酸アミド、N,N−
ジフエニル−グリコール酸アミド、N−モノメチ
ル−α−メチルグリコール酸アミド、N−モノメ
チル−α−ジメチルグリコール酸アミド、N−モ
ノエチル−α−メチルグリコール酸アミド、N−
モノエチル−α−ジメチルグリコール酸アミド、
N,N−ジメチル−α−ジメチルグリコール酸ア
ミド、N−モノメチル−α−エチルグリコール酸
アミド、N−モノメチル−α−ジエチルグリコー
ル酸アミド、N−モノエチル−α−エチルグリコ
ール酸アミド、N−モノエチル−α−ジエチルグ
リコール酸アミド、N,N−ジエチル−α−ジエ
チルグリコール酸アミド、N−モノフエニル−α
−メチルグリコール酸アミド、N−モノフエニル
−α−ジメチルグリコール酸アミド、N−モノフ
エニル−α−エチルグリコール酸アミド、N−モ
ノフエニル−α−ジエチルグリコール酸アミド、
N,N−メチルフエニル−α−ジメチルグリコー
ル酸アミド、N,N−メチルフエニル−α−ジエ
チル−グリコール酸アミド、N,N−エチルフエ
ニル−α−ジメチルグリコール酸アミド、N,N
−エチルフエニル−α−ジエチルグリコール酸ア
ミド、N,N−ジフエニル−α−ジメチルグリコ
ール酸アミド、N,N−ジフエニル−α−ジエチ
ルグリコール酸アミド等が挙げられる。 以下実施例によつて本発明を更に具体的に説明
する。 実施例 1 (α−ブロム−α−メチル)酢酸−n−ヘキシ
ルエステル1.125g(0.005モル)と酢酸ナトリウ
ム0.82g(0.01モル)を15mlのN,N−ジメチル
ホルムアミドに加え、100℃で3時間撹拌した。
冷却後ベンゼン100ml、水100mlを加えて有機層と
水層を分液し、更に抽出水洗を行つた後、ベンゼ
ン層を硫酸ナトリウムで脱水した。減圧下、ベン
ゼン層を留去して1.01gの液体を得た。 該化合物をNMRで分析した結果下記の如き特
性値が得られ、(α−アセトキシ−α−メチル)
酢酸−n−ヘキシルエステルであることが確認さ
れた。 (α−ブロム−α−メチル)酢酸−n−ヘキシ
ルエステルに対する収率は99モル%であつた。 NMR特性値(δppm、CCl4中) (a):0.6〜1.9(14H) (b):2.1(s:3H) (c):4.1(t:2H) (d):4.9(q:1H) 実施例 2 N,N−メチルフエニル−α−クロル酢酸アミ
ド3.673g(0.02モル)、酢酸ナトリウム1.804g
(0.022モル)を20mlのN,N−ジメチルホルムア
ミドに加え、73℃で3時間反応させた。以下実施
例1と同様にして処理し、白色(無色)結晶4.10
gを得た。この結晶の融点は54〜56℃で又NMR
による分析で下記の如き特性値が得られ、N,N
−メチルフエニル−アセトキシ酢酸アミドである
ことが確認された。該化合物のN,N−メチルフ
エニル−α−クロル酢酸アミドに対する収率は、
99.0モル%であつた。 NMR特性値(δppm、CCl4中) (a):2.0(S:3H) (b):3.25(S:3H) (c):4.3(S:2H) (d):7.4(S:5H) 実施例 3、4 実施例2において溶媒及び反応条件を以下の如
く変更した以外は同例と同様にして目的物を得
た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of producing a compound represented by the following general formula () by reacting an α-halogenoacetic acid represented by the following general formula () with a carboxylic acid salt represented by the general formula () in the presence of a catalyst. The present invention relates to a method for producing the shown acyloxyacetic acid in good yield. [However, in the above formula, X is chlorine or bromine, R 1 ,
R 2 is hydrogen or alkyl group, R 3 is OR′, NR″R
(R' is an alkyl group, R'', R is hydrogen, an alkyl group, or an aryl group).] [However, in the above formula, R is hydrogen or an alkyl group,
M represents an alkali metal or an alkaline earth metal. ] [However, in the above formula, R 1 to R 3 and R are the formula (),
Indicates the same group as (). ] Acyloxyacetic acids are useful as intermediates for agricultural chemicals, especially herbicides. However, as a method for producing this compound, a method in which the above-mentioned α-halogenoacetic acids and a carboxylic acid salt are reacted is conventionally known. However, in this method, in order to prevent polymerization of the raw material α-halogenoacetic acid,
The fact that twice the molar amount of carboxylic acid salt is essential, and even if such preventive measures are taken, the yield of the target product remains low.
The problem is that it is only about 70-80%. When producing acyloxyacetic acids industrially,
The yield as described above is not necessarily satisfactory, and of course requires an operation to recover unreacted carboxylic acid salts, which poses many problems. However, the present inventor discovered that the desired product could be obtained efficiently by using a quaternary ammonium salt or phosphonium salt as a catalyst as a solution to this problem.
190952)). However, as a result of further research by the present inventors, the inventor discovered the surprising fact that when a specific solvent, namely dimethyl sulfoxide, is used during the reaction, the reaction proceeds extremely efficiently even without the use of the catalyst. This discovery led to the completion of the present invention. The α-halogenoacetic acids referred to in the present invention are represented by the following general formula. However, in this formula, X is chlorine or bromine, R 1 and R 2 are hydrogen or an alkyl group, and R 3 is OR' or NR″R
(R' is an alkyl group, R'', R is hydrogen, an alkyl group, or an aryl group). R 1 to R 3 and R' to R
The number of carbon atoms in the alkyl group is generally between 1 and 7, but the present invention is not limited thereto. Further, the aryl group may be a substituted aryl group substituted with chlorine, bromine, or the like. Specifically, compounds having such a structure include α-chloro (or bromo) methyl acetate, α-chloro (or bromo) ethyl acetate, α-chloro (or bromo) ethyl acetate, and α-chloro (or bromo) ethyl acetate.
Alkyl esters of α-halogenoacetic acid such as propyl acetate, those further substituted at the α position with a methyl group, ethyl group, etc., N-monomethyl-α-chloro(or bromo)acetic acid amide, N-monoethyl-α
-chloro(or bromo)acetamide, N,N-dimethyl-α-chloro(or bromo)acetamide,
N,N-diethyl-α-chloro(or bromo)acetamide, N,N-methylethyl-α-chloro(or bromo)acetamide, N-monophenyl-
α-chloro(or bromo)acetamide, N,N-
Methylphenyl-α-chloro(or bromo)acetamide, N,N-ethylphenyl-α-chloro(or bromo)acetamide, N,N-diphenyl-α-chloro(or bromo)acetamide, N-monomethyl-(α -chloro(or bromo)-α-methyl)acetamide, N-monomethyl-(α-chloro(or bromo)-α-dimethyl)acetamide, N-
Monoethyl-(α-chloro(or bromo)-α-methyl)acetamide, N-monoethyl-(α-chloro(or bromo)-α-dimethyl)acetamide,
N,N-dimethyl-(α-chloro(or bromo)-
α-dimethyl)acetamide, N-monomethyl-
(α-chloro(or bromo)-α-diethyl)acetamide, N-monoethyl-(α-chloro(or bromo)-α-diethyl)acetamide, N,N-diethyl-(α-chloro(or bromo) -α-diethyl)acetamide, N-monophenyl-(α-chloro(or bromo)-α-methyl)acetamide, N
-monophenyl-(α-chlor(or bromo)-α
-dimethyl)acetamide, N-monophenyl-
(α-chloro(or bromo)-α-ethyl)acetamide, N-monophenyl-(α-chloro(or bromo)-α-diethyl)acetamide, N,N-methylphenyl-(α-chloro(or bromo)) −α−
dimethyl)acetamide, N,N-methylphenyl-(α-chloro(or bromo)-α-diethyl)acetamide, N,N-ethylphenyl-(α-chloro(or bromo)-α-dimethyl)acetamide,
N,N-ethylphenyl-(α-chloro(or bromo)-α-diethyl)acetamide, N,N-diphenyl-(α-chloro(or bromo)-α-dimethyl)acetamide, N,N-diphenyl- (α−
Examples include α-halogenoacetic acid derivatives such as chloro(or bromo)-α-diethyl)acetamide. The carboxylic acid salt to be reacted with the above α-halogenoacetic acid is represented by the following general formula. RCOOM However, in this formula, R represents hydrogen or an alkyl group, and M represents an alkaline earth metal. The alkyl group in R usually has 1 to 5 carbon atoms. As the alkali metals and alkaline earth metals, sodium, potassium, calcium, magnesium, etc. are generally used, and alkali metals are particularly preferably used. Specifically, compounds with such a structure include formic acid, acetic acid, propionic acid, butyric acid, valeric acid,
Examples include alkali metal salts or alkaline earth metal salts such as caproic acid, but sodium acetate is the most practical. Such a carboxylic acid salt is usually used in a ratio of 1 to 2 moles based on the α-halogenoacetic acid. The most important feature of the present invention is that the reaction between α-halogenoacetic acids and carboxylic acid salts is carried out in a specific solvent. Such solvents include dimethyl sulfoxide,
Examples include N,N-dimethylformamide and mixed solvents thereof. In addition, other conventionally known organic solvents, such as aromatic hydrocarbon organic solvents such as benzene, toluene, and xylene, and halogenated hydrocarbons such as dichloromethane, dichloroethane, and chloroform, up to the same amount as the specific organic solvent. In addition to the organic solvents, a mixed solvent of the above-mentioned various organic solvents and water can also be used if necessary. By using such a specific organic solvent, as described above, the amount of the carboxylic acid can be reduced without using a catalyst, and the generation of by-products due to polymerization of α-halogenoacetic acids can be suppressed. As a result, the desired acyloxyacetic acids can be obtained efficiently and in high yield. Of course, if necessary, a catalyst such as a quaternary ammonium salt or a phosphonium salt may be used without any problem. When carrying out the method of the present invention, there is no particular problem as long as the reaction temperature is below the boiling point of the above-mentioned compound (α-halogenoacetic acid, carboxylate), and is usually 0 to 200°C,
More preferably, good results are obtained when the temperature is 20 to 120°C. The reaction time is not limited as it varies depending on the type of compound, solvent, etc. used, but it is usually completed in 0.5 to 24 hours. The reaction solution is subjected to treatments such as filtration, washing, and dehydration as necessary, and then the solvent is distilled off under reduced pressure to obtain the acyloxyacetic acid represented by the following general formula, which is the object of the present invention. I can do it. However, in this formula, R 1 to R 3 and R correspond to the above-mentioned α-halogenoacetic acids and carboxylic acid salts. Compounds represented by such structural formulas include methyl acetoxyacetate, ethyl acetoxyacetate, propyl acetoxyacetate, methyl propoxyacetate,
Ethyl propoxy acetate, propyl propoxy acetate, methyl butoxy acetate, ethyl butoxy acetate,
Alkyl esters of acyloxyacetic acid such as propyl butoxyacetate, further N-monomethyl-acetoxyacetamide, N-monoethyl-acetoxyacetamide, N,N-dimethyl-acetoxyacetamide, N,N-diethyl-acetoxyacetamide,
N,N-methylethyl-acetoxyacetamide,
N-monophenyl-acetoxyacetic acid amide, N,
N-methylphenyl-acetoxyacetic acid amide,
N,N-ethylphenyl-acetoxyacetamide, N,N-diphenyl-acetoxyacetamide, N-monomethyl-(α-acetoxy-α-methyl)acetamide, N-monomethyl-(α-acetoxy-α-dimethyl)acetic acid Amide, N-monoethyl-(α-acetoxy-α-methyl)acetamide, N-monoethyl-(α-acetoxy-α-dimethyl)acetamide, N,N-dimethyl-(α-
Acetoxy-α-dimethyl)acetamide, N-monomethyl-(α-acetoxy-α-diethyl)acetamide, N-monoethyl-(α-acetoxy-
α-diethyl)acetamide, N,N-diethyl-
(α-acetoxy-α-diethyl)acetamide,
N-monophenyl-(α-acetoxy-α-methyl)acetamide, N-monophenyl-(α-acetoxy-α-dimethyl)acetamide, N-monophenyl-(α-acetoxy-α-ethyl)acetamide, N- Monophenyl-(α-acetoxy-α
-diethyl)acetamide, N,N-methylphenyl-(α-acetoxy-α-dimethyl)acetamide, N,N-methylphenyl-(α-acetoxy-α-diethyl)acetamide, N,N-ethylphenyl-(α -acetoxy-α-dimethyl)acetamide, N,N-ethylphenyl-(α-acetoxy-α-diethyl)acetamide, N,N-diphenyl-(α-acetoxy-α-dimethyl)acetamide, N,N- Examples include diphenyl-(α-acetoxy-α-diethyl)acetic acid amide and the like, as well as acyloxyacetic acid derivatives in which the acetoxy group at the α-position in these derivatives has become a propoxy group, a butoxy group, or the like. The acyloxyacetic acids thus obtained are useful as intermediates for various agricultural chemicals, pharmaceuticals, and the like. The acyloxyacetic acids are also useful as glycolic acetic acids by hydrolysis and the like. What are such glycolic acetic acids? This is shown in . However, R 1 to R 3 correspond to each of R 1 to R 3 of acyloxyacetic acids. Hydrolysis does not require any special operation and is carried out according to known methods. That is, the obtained acyloxyacetic acids are dissolved or dispersed in water or an alcohol such as ethanol or methanol, and the system is refluxed in the presence of a catalyst. Under these conditions, the reaction is carried out while maintaining the temperature usually below 100°C to convert the acyloxy group to a hydroxyl group. As the catalyst, alkali catalysts such as sodium hydroxide and potassium hydroxide, and acid catalysts such as hydrochloric acid, sulfuric acid, and ion exchange resins are used as appropriate. The hydrolysis reaction is completed in a few minutes to about 10 hours, so after performing post-treatments such as filtration, extraction, and dehydration as necessary, the solvent is distilled off under reduced pressure to produce the glycol that is the object of the present invention. Acids are obtained. Further, if necessary, it can be purified by known methods such as recrystallization. Incidentally, when the chemical formulas () and () are reacted, if water is present together with the specific organic solvent, glycolic acid can be obtained directly, so the two-step reaction described above is not necessarily necessary. Representative examples of such glycolic acids include methyl glycolate, ethyl glycolate, propyl glycolate, N-monomethyl-glycolic acid amide, N-monoethyl-glycolic acid amide, N,N-dimethyl-glycolic acid amide, N,N-diethyl-glycolic acid amide,
N,N-methylethyl-glycolic acid amide, N
-monophenyl-glycolic acid amide, N,N-
Methylphenyl-glycolic acid amide, N,N-
Ethyl phenyl-glycolic acid amide, N,N-
Diphenyl-glycolic acid amide, N-monomethyl-α-methylglycolic acid amide, N-monomethyl-α-dimethylglycolic acid amide, N-monoethyl-α-methylglycolic acid amide, N-
monoethyl-α-dimethylglycolic acid amide,
N,N-dimethyl-α-dimethylglycolic acid amide, N-monomethyl-α-ethylglycolic acid amide, N-monomethyl-α-diethylglycolic acid amide, N-monoethyl-α-ethylglycolic acid amide, N-monoethyl- α-diethylglycolic acid amide, N,N-diethyl-α-diethylglycolic acid amide, N-monophenyl-α
-Methylglycolic acid amide, N-monophenyl-α-dimethylglycolic acid amide, N-monophenyl-α-ethylglycolic acid amide, N-monophenyl-α-diethylglycolic acid amide,
N,N-methylphenyl-α-dimethylglycolic acid amide, N,N-methylphenyl-α-diethyl-glycolic acid amide, N,N-ethylphenyl-α-dimethylglycolic acid amide, N,N-methylphenyl-α-dimethylglycolic acid amide
-Ethyl phenyl-α-diethylglycolic acid amide, N,N-diphenyl-α-dimethylglycolic acid amide, N,N-diphenyl-α-diethylglycolic acid amide, and the like. The present invention will be explained in more detail below using Examples. Example 1 1.125 g (0.005 mol) of (α-bromo-α-methyl)acetic acid-n-hexyl ester and 0.82 g (0.01 mol) of sodium acetate were added to 15 ml of N,N-dimethylformamide and heated at 100°C for 3 hours. Stirred.
After cooling, 100 ml of benzene and 100 ml of water were added to separate the organic layer and the aqueous layer. After extraction and washing with water, the benzene layer was dehydrated with sodium sulfate. The benzene layer was distilled off under reduced pressure to obtain 1.01 g of liquid. As a result of NMR analysis of this compound, the following characteristic values were obtained, (α-acetoxy-α-methyl)
It was confirmed that it was acetic acid-n-hexyl ester. The yield based on (α-bromo-α-methyl)acetic acid-n-hexyl ester was 99 mol%. NMR characteristic value (δppm, in CCl 4 ) (a): 0.6-1.9 (14H) (b): 2.1 (s: 3H) (c): 4.1 (t: 2H) (d): 4.9 (q: 1H) Example 2 N,N-methylphenyl-α - Chloroacetamide 3.673g (0.02mol), sodium acetate 1.804g
(0.022 mol) was added to 20 ml of N,N-dimethylformamide and reacted at 73°C for 3 hours. The following treatment was carried out in the same manner as in Example 1, and white (colorless) crystals were obtained at 4.10%.
I got g. The melting point of this crystal is 54-56℃, and NMR
The following characteristic values were obtained by analysis, and N, N
-Methylphenyl-acetoxyacetic acid amide was confirmed. The yield of this compound based on N,N-methylphenyl-α-chloroacetamide is:
It was 99.0 mol%. NMR characteristic value (δppm, in CCl 4 ) (a): 2.0 (S: 3H) (b): 3.25 (S: 3H) (c): 4.3 (S: 2H) (d): 7.4 (S: 5H) Examples 3 and 4 Solvent in Example 2 The desired product was obtained in the same manner as in the same example except that the reaction conditions were changed as follows. 【table】

Claims (1)

【特許請求の範囲】 1 下記一般式()で示されるα−ハロゲノ酢
酸類と下記一般式()で示されるカルボン酸塩
を反応させて下記一般式()で示されるアシロ
キシ酢酸類を製造するに当たり、溶媒としてジメ
チルスルホキシド、N,N−ジメチルホルムアミ
ドから選ばれる少なくとも一種を使用することを
特徴とするアシロキシ酢酸類の製造方法。 〔但し、上記式中、Xは塩素又は臭素、R1
R2は水素又はアルキル基、R3はOR′、又はNR″R
(R′はアルキル基、R″、Rは水素又はアル
キル基又はアリール基)を示す。〕 〔但し、上記式中、Rは水素又はアルキル基、
Mはアルカリ金属又はアルカリ土類金属を示す。〕 〔但し、上記式中、R1、R2、R3、Rは式
()、()と同じ基を示す。〕
[Scope of Claims] 1. An α-halogenoacetic acid represented by the following general formula () is reacted with a carboxylic acid salt represented by the following general formula () to produce an acyloxyacetic acid represented by the following general formula (). A method for producing acyloxyacetic acids, characterized in that at least one selected from dimethyl sulfoxide and N,N-dimethylformamide is used as a solvent. [However, in the above formula, X is chlorine or bromine, R 1 ,
R 2 is hydrogen or alkyl group, R 3 is OR′ or NR″R
(R' is an alkyl group, R'', R is hydrogen, an alkyl group, or an aryl group).] [However, in the above formula, R is hydrogen or an alkyl group,
M represents an alkali metal or an alkaline earth metal. ] [However, in the above formula, R 1 , R 2 , R 3 , and R represent the same groups as in formulas () and (). ]
JP13321083A 1983-07-20 1983-07-20 Production of acyloxyacetic acid compound Granted JPS6025954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13321083A JPS6025954A (en) 1983-07-20 1983-07-20 Production of acyloxyacetic acid compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13321083A JPS6025954A (en) 1983-07-20 1983-07-20 Production of acyloxyacetic acid compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP30406491A Division JPH0662507B2 (en) 1991-10-22 1991-10-22 Method for producing glycol acetic acid

Publications (2)

Publication Number Publication Date
JPS6025954A JPS6025954A (en) 1985-02-08
JPH0425261B2 true JPH0425261B2 (en) 1992-04-30

Family

ID=15099300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13321083A Granted JPS6025954A (en) 1983-07-20 1983-07-20 Production of acyloxyacetic acid compound

Country Status (1)

Country Link
JP (1) JPS6025954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883137A (en) * 2017-02-14 2017-06-23 江苏快达农化股份有限公司 The method that one kettle way prepares N methyl N phenyl-acetamides acetic acid esters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883137A (en) * 2017-02-14 2017-06-23 江苏快达农化股份有限公司 The method that one kettle way prepares N methyl N phenyl-acetamides acetic acid esters

Also Published As

Publication number Publication date
JPS6025954A (en) 1985-02-08

Similar Documents

Publication Publication Date Title
US4467112A (en) Process for producing p-n-alkylbenzoic acid
JPH0251908B2 (en)
WO2012046857A1 (en) 3,4-dialkylbiphenyldicarboxylic acid compound, 3,4-dicarboalkoxybiphenyl-3',4'-dicarboxylic acid and corresponding acid anhydrides, and processes for producing these compounds
JPH0425261B2 (en)
WO2006128952A1 (en) Process for the preparation of adamantane derivatives
US20060270870A1 (en) Process for the preparation of adamantane derivatives
JP5128787B2 (en) Process for producing high purity halogen-free o-phthalaldehyde
JP3907787B2 (en) Method for producing benzoic acid derivative
KR101856566B1 (en) New preparation method of 4'-Hydroxy-4-biphenylcarboxylic acid
JPS59190953A (en) Production of glycolic acid
JP3814839B2 (en) Method for producing aromatic dialdehyde
US4339594A (en) Process for the manufacture of phenylacetic acid and simple derivatives thereof
JP3563424B2 (en) Method for producing 4H-pyran-4-one
JP3792030B2 (en) Method for producing 4-biphenylylacetic acid
JPH05320096A (en) Production of glycollic acids
JPH10204020A (en) Production of chloro-benzoyl chloride compounds
JP4266111B2 (en) Process for producing polycarboxyadamantane derivatives
JPH04243851A (en) Production of 4'-hydroxybiphenyl-4-carboxylic acid
JP2001247509A (en) Method of producing 2, 3, 5, 6-tetrachloro-1, 4- benzenedicarboxylic acid
JPH06107599A (en) Production of aromatic dicarboxlic acid monoester compounds
JP2003137835A (en) Method for producing (r)-3-hydroxy-3-(2-phenyl)hexanoic acid
JP2003171327A (en) Method for producing optically active 1,1'-bi-2-naphthols
JP2001048826A (en) Production of 1-phenyl-1,3-butanedione
JPH1149722A (en) Production of biphenyl derivative
JPH08169868A (en) Production of 4-cyano-4'-hydroxybiphenyl