JPH0425232B2 - - Google Patents

Info

Publication number
JPH0425232B2
JPH0425232B2 JP59254119A JP25411984A JPH0425232B2 JP H0425232 B2 JPH0425232 B2 JP H0425232B2 JP 59254119 A JP59254119 A JP 59254119A JP 25411984 A JP25411984 A JP 25411984A JP H0425232 B2 JPH0425232 B2 JP H0425232B2
Authority
JP
Japan
Prior art keywords
calcium
aqueous solution
phosphate
compound
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59254119A
Other languages
Japanese (ja)
Other versions
JPS61132555A (en
Inventor
Hideto Kamiaka
Senjo Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP59254119A priority Critical patent/JPS61132555A/en
Publication of JPS61132555A publication Critical patent/JPS61132555A/en
Publication of JPH0425232B2 publication Critical patent/JPH0425232B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は噴霧熱分解法により合成したリン酸カ
ルシウムを焼結することにより得られる高強度セ
ラミツクスの製造方法に関する。 〔従来の技術〕 リン酸カルシウムは生体内で反応し新生骨を成
長させる骨誘導能力があることより、生体材料と
しての応用研究が盛んに行われている。 従来のリン酸カルシウム焼結体は原料としてカ
ルシウム化合物とリン酸化合物の水溶液を混合
し、PH調整し共沈させて得られるリン酸カルシウ
ム沈澱物をろ過、乾燥したのち、その乾燥物を焼
結することによつてつくられている。 〔発明が解決しようとする問題点〕 しかしながら共沈法は共沈に伴つて時々刻々PH
が変化すること、変化するPHを調整するための調
整液の添加により瞬間的に、部分的にPHが変動す
ることから液全体のPH調整および2液の均一化が
難しい。PHが変化すると得られる合成粉末の組成
がバラツキやすく、そのためこの合成粉末を焼結
すると目的とするCa3(PO42の他にCa2P2OG7
の不純物を含んでしまうことになる。これは前述
の如くPH調整時および2液混合時に局部的なPH低
下が生じ、そのため沈澱物のCa/P原子比が変
化することによるものと考えられる。また沈澱物
の結晶形も様々であり、微粒子で結晶性の悪いも
のから結晶の発達した棒状のものまで種々含まれ
るものとなる。そのためこのような粉末を焼結す
ると焼結体中の粒子が一部異常成長し、強度の低
いものになるという欠点があつた。 〔問題点を解決するための手段〕 本発明は上記の如き従来法の欠点を解消すべく
種々の実験および研究を重ねた結果、Ca/P原
子比が1.5になるようにカルシウム化合物とリン
酸化合物を配合しPH4以下に調整した水溶液を噴
霧熱分解することにより得られる合成粉末を焼結
することにより高強度リン酸カルシウム焼結体が
得られることを見出し、本発明を完成するに至つ
たものである。噴霧熱分解法を採用すると原料水
溶液が十分微細な液滴となり、瞬時に分解反応を
受けるため、多成分系粒子において偏析が少な
く、均一な組成のものが得られる。 以下に本発明を詳細に説明する。 本発明において使用されるカルシウム化合物と
しては硝酸カルシウム、塩化カルシウム、水酸化
カルシウム、酢酸カルシウム、リン酸水素カルシ
ウム、カルシウムアルコキシドなどが挙げられ、
これらのうちでも硝酸カルシウムが好ましい。リ
ン酸化合物としてはリン酸、リン酸アンモニウ
ム、リン酸水素2アンモニウム、リン酸2水素ア
ンモニウムなどが挙げられる。 カルシウム化合物およびリン酸化合物はCa/
P原子比が1.5になるように配合し、かつPHを4
以下に調整しながら水に溶解する。PH調整剤とし
ては硝酸、塩酸などが使用される。この際溶液中
の原料濃度はCa3(PO42換算で0.1〜0.7mol/
程度である。 次に以上のようにして得られた調整剤溶液を噴
霧熱分解温度300〜1200℃、好ましくは700〜1100
℃に調節した噴霧熱分解装置に注入する。かくし
てCa3(PO42組成の10〜30μmの球状粒子もしく
は中空球状粒子が得られる。その粒子を粉砕する
ことにより平均1μm前後の合成粉末が得られる。
粉砕の際不純物の混入を極力避けるようにする必
要がある。粉砕して得られたCa3(PO42粉末を、
目的とする形状に成形し、800〜1200℃で1〜6
時間焼結することにより、本発明の高強度リン酸
カルシウム焼結体が得られる。 〔実施例〕 実施例 硝酸を用いてPH3.5に保ちながら、硝酸カルシ
ウム(試薬特級)とリン酸水素2アンモニウム
(試薬特級)をCa/P原子比が1.5になるように配
合したものを水に溶解し、濃度0.2mol/に調
整して調整済溶液を得た。この溶液を温度800℃
の噴霧熱分解装置内に噴霧して球状粒子を製造し
た。得られた粒子にアセトンを加え樹脂ライニン
グボールミルに投入し24時間湿式粉砕した。粉砕
後、乾燥した粉末を500Kgf/cm2で加圧成形した
後、通常の電気炉にて1150℃、1時間焼結させて
Ca3(PO42焼結体を得た。得られた焼結体の曲げ
強度をJIS R1601に従つて測定した。結果を第1
表に示す。 比較例(共沈法) 硝酸カルシウムとリン酸水素2アンモニウムを
アンモニアでPH10に調整しながらそれぞれ水に溶
解して硝酸カルシウム水溶液(以下水溶液Aとす
る)とリン酸水素2アンモニウム水溶液(以下水
溶液Bとする)を作製し、撹拌されている水溶液
A中へ水溶液Bを滴下した。この際Ca/P原子
比1.5溶液濃度0.2mol/になるよう滴下混合反
応させ、共沈物を生成させるためこの混合物を24
時間撹拌した。その後吸引ろ過し、洗浄したもの
を60℃で乾燥した。その乾燥物を850℃で1時間
仮焼した。得られた仮焼物(粒子)にアセトンを
加え樹脂ライニングボールミルで湿式粉砕し、乾
燥し成形したのち焼結し曲げ強度を測定した。得
られた結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method for producing high-strength ceramics obtained by sintering calcium phosphate synthesized by a spray pyrolysis method. [Prior Art] Calcium phosphate has an osteoinductive ability that reacts in vivo and grows new bone, and therefore, application research as a biomaterial is being actively conducted. Conventional calcium phosphate sintered bodies are made by mixing an aqueous solution of a calcium compound and a phosphoric acid compound as raw materials, adjusting the pH, co-precipitating the resulting calcium phosphate precipitate, filtering and drying it, and then sintering the dried product. It is made with [Problems to be solved by the invention] However, in the coprecipitation method, the pH changes from time to time as the coprecipitation occurs.
It is difficult to adjust the pH of the entire liquid and to make the two liquids uniform because the pH changes instantaneously and locally due to the addition of an adjustment liquid to adjust the changing pH. The composition of the resulting synthetic powder tends to vary when the pH changes, so when this synthetic powder is sintered, it ends up containing impurities such as Ca 2 P 2 OG 7 in addition to the target Ca 3 (PO 4 ) 2 . Become. This is thought to be due to the fact that, as mentioned above, a local pH decrease occurs during pH adjustment and mixing of the two liquids, and as a result, the Ca/P atomic ratio of the precipitate changes. The crystal forms of the precipitate also vary, ranging from fine particles with poor crystallinity to rod-like forms with well-developed crystals. Therefore, when such powder is sintered, some of the particles in the sintered body grow abnormally, resulting in a low strength. [Means for Solving the Problems] As a result of repeated various experiments and researches in order to solve the above-mentioned drawbacks of the conventional method, the present invention has been developed by combining calcium compounds and phosphoric acid so that the Ca/P atomic ratio is 1.5. It was discovered that a high-strength calcium phosphate sintered body can be obtained by sintering a synthetic powder obtained by spray pyrolysis of an aqueous solution containing a compound and adjusted to a pH of 4 or less, which led to the completion of the present invention. be. When the spray pyrolysis method is adopted, the raw material aqueous solution becomes sufficiently fine droplets and undergoes a decomposition reaction instantly, so that multi-component particles with a uniform composition can be obtained with little segregation. The present invention will be explained in detail below. Calcium compounds used in the present invention include calcium nitrate, calcium chloride, calcium hydroxide, calcium acetate, calcium hydrogen phosphate, calcium alkoxide, etc.
Among these, calcium nitrate is preferred. Examples of the phosphoric acid compound include phosphoric acid, ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and the like. Calcium compounds and phosphate compounds are Ca/
Blended so that the P atomic ratio is 1.5, and the PH is 4.
Dissolve in water with the following adjustments. Nitric acid, hydrochloric acid, etc. are used as pH adjusters. At this time, the raw material concentration in the solution is 0.1 to 0.7 mol/calculated as Ca 3 (PO 4 ) 2.
That's about it. Next, the modifier solution obtained as described above is sprayed at a thermal decomposition temperature of 300 to 1200°C, preferably 700 to 1100°C.
Inject into a spray pyrolysis apparatus controlled at °C. In this way, 10-30 μm spherical particles or hollow spherical particles having a composition of Ca 3 (PO 4 ) 2 are obtained. By pulverizing the particles, a synthetic powder with an average size of around 1 μm can be obtained.
It is necessary to avoid contamination with impurities as much as possible during crushing. The Ca 3 (PO 4 ) 2 powder obtained by pulverization is
Form into the desired shape and heat at 800 to 1200℃ for 1 to 6
The high-strength calcium phosphate sintered body of the present invention can be obtained by time-sintering. [Example] Example A mixture of calcium nitrate (special grade reagent) and diammonium hydrogen phosphate (special grade reagent) with a Ca/P atomic ratio of 1.5 was added to water while maintaining the pH at 3.5 using nitric acid. and adjusted the concentration to 0.2 mol/ml to obtain an adjusted solution. This solution is heated to a temperature of 800℃.
Spherical particles were produced by spraying into a spray pyrolysis apparatus. Acetone was added to the obtained particles, which were then placed in a resin-lined ball mill and wet-milled for 24 hours. After pulverization, the dried powder was pressure-molded at 500Kgf/cm 2 and then sintered in a regular electric furnace at 1150℃ for 1 hour.
A Ca 3 (PO 4 ) 2 sintered body was obtained. The bending strength of the obtained sintered body was measured according to JIS R1601. Results first
Shown in the table. Comparative example (co-precipitation method) Calcium nitrate and diammonium hydrogen phosphate were dissolved in water while adjusting the pH to 10 with ammonia to form a calcium nitrate aqueous solution (hereinafter referred to as aqueous solution A) and a diammonium hydrogen phosphate aqueous solution (hereinafter referred to as aqueous solution B). Aqueous solution B was added dropwise to aqueous solution A which was being stirred. At this time, dropwise mixing reaction was carried out so that the Ca/P atomic ratio was 1.5 and the solution concentration was 0.2 mol/2.
Stir for hours. Thereafter, it was suction filtered, and the washed product was dried at 60°C. The dried product was calcined at 850°C for 1 hour. Acetone was added to the obtained calcined product (particles), which was wet-pulverized in a resin-lined ball mill, dried, molded, and then sintered to measure the bending strength. The results obtained are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は従来法に比べ曲げ強度が約2倍
に向上した。この強度は人骨の強度に匹敵するも
のであり、生体材料としての利用価値が大きい。
The method of the present invention improved the bending strength by about twice as compared to the conventional method. This strength is comparable to that of human bone, and has great utility as a biomaterial.

Claims (1)

【特許請求の範囲】[Claims] 1 Ca/Pの原子比が1.5になるようにカルシウ
ム化合物とリン酸化合物を配合し、PH4以下に調
整した水溶液を噴霧熱分解することにより合成し
たリン酸カルシウム粉末を焼結することを特徴と
する高強度セラミツクス焼結体の製造方法。
1 A high-density compound characterized by sintering calcium phosphate powder synthesized by spray pyrolysis of an aqueous solution containing a calcium compound and a phosphoric acid compound so that the atomic ratio of Ca/P is 1.5 and adjusted to a pH of 4 or less. A method for producing a strong ceramic sintered body.
JP59254119A 1984-12-03 1984-12-03 Manufacture of high strength ceramic sintered body Granted JPS61132555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59254119A JPS61132555A (en) 1984-12-03 1984-12-03 Manufacture of high strength ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59254119A JPS61132555A (en) 1984-12-03 1984-12-03 Manufacture of high strength ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS61132555A JPS61132555A (en) 1986-06-20
JPH0425232B2 true JPH0425232B2 (en) 1992-04-30

Family

ID=17260483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59254119A Granted JPS61132555A (en) 1984-12-03 1984-12-03 Manufacture of high strength ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS61132555A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283255U (en) * 1985-11-15 1987-05-27
JP2520859B2 (en) * 1987-12-03 1996-07-31 株式会社アドバンス Method for producing tricalcium phosphate coating
EP0587888B1 (en) * 1992-04-06 1998-07-01 Mitsui Chemicals, Inc. Process for producing a carbonaceous composition
US6395245B1 (en) 1992-04-06 2002-05-28 Mitsui Chemicals, Inc. Method for preparing carbon-containing composition

Also Published As

Publication number Publication date
JPS61132555A (en) 1986-06-20

Similar Documents

Publication Publication Date Title
Lazić et al. The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid
Monmaturapoj Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route
Lafon et al. Processing of AB-type carbonated hydroxyapatite Ca10− x (PO4) 6− x (CO3) x (OH) 2− x− 2y (CO3) y ceramics with controlled composition
Descamps et al. Effects of powder stoichiometry on the sintering of β-tricalcium phosphate
Salma et al. Calcium phosphate bioceramics prepared from wet chemically precipitated powders
KR100593262B1 (en) Methods for the manufacturing of apatite powders
Chaair et al. Synthesis of β-tricalcium phosphate
JPS6287406A (en) Production of beta-tricalcium phosphate
JP2010100521A (en) Single-phase carbonate-substituted hydroxyapatite composition
Kannan et al. Effect of Ca/P ratio of precursors on the formation of different calcium apatitic ceramics—An X-ray diffraction study
CN103395764A (en) Method for synthesizing hydroxyapatite crystals
JPH0425232B2 (en)
KR20190044553A (en) Manufacturing method of octacalcium phosphate and octacalcium phosphate manufactured by thereby
JPH0415166B2 (en)
CN110510592B (en) Method for regulating and preparing hydroxyapatite with excellent cell compatibility
JP2756703B2 (en) Spherical apatite, method for producing the same, and molded article with porous structure
Klinkaewnarong et al. Nanocrystalline hydroxyapatite powders by a polymerized complex method
JPS624324B2 (en)
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JP3668530B2 (en) Method for producing tetracalcium phosphate
CN101264872A (en) Method for preparing alpha-, beta-tricalcium phosphate from natural bone powder
JPS62256707A (en) Production of calcium tertiary phosphate
JPH06122510A (en) Method for producing hexacalcium phosphate
JPH0458406B2 (en)
JPH0572332B2 (en)