JPS624324B2 - - Google Patents

Info

Publication number
JPS624324B2
JPS624324B2 JP13247082A JP13247082A JPS624324B2 JP S624324 B2 JPS624324 B2 JP S624324B2 JP 13247082 A JP13247082 A JP 13247082A JP 13247082 A JP13247082 A JP 13247082A JP S624324 B2 JPS624324 B2 JP S624324B2
Authority
JP
Japan
Prior art keywords
hydroxyapatite
calcium
grinding
aqueous solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13247082A
Other languages
Japanese (ja)
Other versions
JPS5921509A (en
Inventor
Ryogo Tsukisaka
Yonemasa Furusawa
Takashi Inaga
Harukichi Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRAISHI CHUO KENKYUSHO KK
Original Assignee
SHIRAISHI CHUO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRAISHI CHUO KENKYUSHO KK filed Critical SHIRAISHI CHUO KENKYUSHO KK
Priority to JP13247082A priority Critical patent/JPS5921509A/en
Publication of JPS5921509A publication Critical patent/JPS5921509A/en
Publication of JPS624324B2 publication Critical patent/JPS624324B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、結晶度高く、品質一定で、化学的活
性大なる水酸アパタイトの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydroxyapatite with high crystallinity, constant quality, and high chemical activity.

水酸アパタイトは、理論式Ca10(PO46
(OH)2で示される塩基性リン酸カルシウムであ
り、骨、歯等を構成する生体内の主要無機成分で
ある。水酸アパタイトは、有機化合物との優れた
親和性を有していることから、新しい無機材料と
しても注目されている。水酸アパタイトの合成方
法としては、従来固相反応による乾式法、沈殿反
応による湿式法等種々の方法が知られているが、
化学的に活性の大きな水酸アパタイトを製造する
には、カルシウム塩水溶液と燐酸塩水溶液又は水
酸化カルシウムと燐酸とを混合反応させた後、熟
成を行なう湿式法が有利であるとされている。し
かしながら、公知の湿式法及び該方法により得ら
れる水酸アパタイトには、以下の如き難点が存在
する。(i)高温で長時間の熟成工程を必要とする、
(ii)水酸アパタイトの化学量論的なCa/Pモル比
は、1.67である。しかしながら、湿式法では、反
応により生成した非晶質燐酸カルシウム(Ca/
Pモル比=1.48〜1.67程度)やカルシウムイオン
欠損水酸アパタイト、オクタ燐酸カルシウム等
(以下これ等を前駆物質という)が熟成により最
終的に水酸アパタイト結晶に転移する過程におい
て、結晶化速度、Ca/Pモル比の変化、温度、
PH、熟成時間並びにその他の多数の因子の影響を
受けやすい為、水酸アパタイト結晶のCa/Pモ
ル比が1.48〜1.67の範囲内でバラツキを生じ、粉
体としての性質も均質とはなり難い、(iii)湿式法で
得られる水酸アパタイト沈殿物は、一般に結晶度
が低く、ゲル状物となりやすい為、沈殿操作が繁
雑となり、これがやはりCa/Pモル比を変動さ
せる一因となる。
Hydroxyapatite has the theoretical formula Ca 10 (PO 4 ) 6
It is a basic calcium phosphate represented by (OH) 2 , and is a major inorganic component in living organisms that make up bones, teeth, etc. Since hydroxyapatite has excellent affinity with organic compounds, it is attracting attention as a new inorganic material. Various methods are known for synthesizing hydroxyapatite, such as a dry method using a solid phase reaction and a wet method using a precipitation reaction.
In order to produce hydroxyapatite with high chemical activity, it is said that a wet method in which a calcium salt aqueous solution and a phosphate aqueous solution or calcium hydroxide and phosphoric acid are mixed and reacted and then aged is advantageous. However, the known wet method and the hydroxyapatite obtained by the method have the following drawbacks. (i) Requires a long aging process at high temperatures;
(ii) The stoichiometric Ca/P molar ratio of hydroxyapatite is 1.67. However, in the wet method, amorphous calcium phosphate (Ca/
In the process in which calcium ion-deficient hydroxyapatite, calcium octaphosphate, etc. (hereinafter referred to as precursors) are finally transformed into hydroxyapatite crystals through aging, the crystallization rate, Changes in Ca/P molar ratio, temperature,
Because it is easily influenced by pH, aging time, and many other factors, the Ca/P molar ratio of hydroxyapatite crystals varies within the range of 1.48 to 1.67, and the properties of the powder are difficult to be homogeneous. (iii) The hydroxyapatite precipitate obtained by the wet method generally has a low crystallinity and tends to form a gel-like substance, making the precipitation operation complicated, which is also a factor in changing the Ca/P molar ratio.

本発明者は、公知の水酸アパタイトの湿式製造
方法の問題点に鑑みて種々実験及び研究を重ねた
結果、原料カルシウム源とリン源との反応過程に
摩砕処理を併用することにより、これ等問題が大
巾に軽減若しくは実質上解消されることを見出し
た。即ち、本発明は、水酸化カルシウム及びカル
シウム塩の少なくとも1種を含有する水溶液又は
懸濁液と燐酸及び燐酸塩の少なくとも1種を含有
する水溶液又は懸濁液を摩砕しつつ反応させるか
又は混合後摩砕反応させることを特徴とする水酸
アパタイトの製造方法に係る。
The present inventor has conducted various experiments and research in view of the problems of the known wet production method of hydroxyapatite, and as a result, the present inventor has found that this method can be achieved by combining a grinding treatment with the reaction process of the raw calcium source and the phosphorus source. It has been found that these problems can be greatly reduced or virtually eliminated. That is, the present invention involves reacting an aqueous solution or suspension containing at least one of calcium hydroxide and a calcium salt with an aqueous solution or suspension containing at least one of phosphoric acid and a phosphate while grinding; The present invention relates to a method for producing hydroxyapatite, which is characterized by carrying out a grinding reaction after mixing.

本発明方法によれば、結晶度が高く、Ca/P
モル比が1.67に極めて近く、化学的活性の大きい
水酸アパタイトが、高温で長時間の熟成を要する
ことなく短時間内に容易に製造される。又、生成
物は、簡単な水洗操作により高純度の水酸アパタ
イトとすることが出来る。
According to the method of the present invention, the crystallinity is high and Ca/P
Hydroxyapatite, which has a molar ratio very close to 1.67 and has high chemical activity, can be easily produced within a short time without requiring long-term aging at high temperatures. Moreover, the product can be made into highly pure hydroxyapatite by a simple water washing operation.

本発明においては、カルシウム源としては、
Ca(OH)2又はCaCl2、Ca(NO32
(CH3COO)2Ca、(CaO)4・P2O5、Ca2(HPO4
(OH)2等のカルシウム塩の1種又は2種以上を水
溶液又は水懸濁液として使用し、リン源として
は、H3PO4又はNH4H2PO4、(NH42HPO4、Ca
(H2PO42、CaHPO4等の燐酸塩の1種又は2種
以上を水溶液又は水懸濁液として使用する。Ca
(OH)2及び/又はカルシウム塩の液中濃度は、通
常Ca(OH)2として4〜15重量%(以下%とある
のは、重量%を示す)程度、H3PO4及び/又は燐
酸塩の液中濃度は、通常H3PO4として2〜8%程
度であり、反応時のCa/Pモル比が1.60〜1.70程
度となり且つ摩砕時の固形分濃度が5〜20%程度
となる様に両液を摩砕下に混合して又は混合後摩
砕して反応させる。原料の濃度が低過ぎる場合に
は、経済的に不利となり、一方濃度が高過ぎる場
合には、生成した前駆物質を水酸アパタイトに転
移させる為の摩砕処理時間が長くなるので、やは
り経済的に不利である。反応時の温度は、特に限
定されないが、100℃以下が望ましく、一般に常
温で十分である。反応系のPHは、7以上であれば
良い。
In the present invention, the calcium source is
Ca(OH) 2 or CaCl 2 , Ca(NO 3 ) 2 ,
(CH 3 COO) 2 Ca, (CaO) 4・P 2 O 5 , Ca 2 (HPO 4 )
One or more calcium salts such as (OH) 2 are used as an aqueous solution or suspension, and the phosphorus source is H 3 PO 4 or NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , Ca
One or more phosphates such as (H 2 PO 4 ) 2 and CaHPO 4 are used as an aqueous solution or suspension. Ca
The concentration of (OH) 2 and/or calcium salt in the liquid is usually about 4 to 15% by weight as Ca(OH) 2 (hereinafter % indicates weight %), H 3 PO 4 and/or phosphoric acid. The concentration of salt in the liquid is usually about 2 to 8% as H 3 PO 4 , the Ca/P molar ratio at the time of reaction is about 1.60 to 1.70, and the solid content concentration at the time of grinding is about 5 to 20%. Both liquids are mixed while being triturated, or mixed and then triturated to react. If the concentration of the raw material is too low, it will be economically disadvantageous, while if the concentration is too high, the grinding time will be longer to transfer the generated precursor to hydroxyapatite, so it will be economically disadvantageous. disadvantageous to The temperature during the reaction is not particularly limited, but is preferably 100°C or less, and generally room temperature is sufficient. The pH of the reaction system may be 7 or higher.

本発明においては、カルシウム源原料とリン源
原料とを反応させつつ、生成した前駆物質を摩砕
処理することを必須とする。摩砕手段としては、
振動ミル、サンドミル、グレンミル等の摩砕媒体
を使用する撹拌ミルを例示することが出来る。摩
砕媒体を使用することなく、例えば回転翼により
単に液を撹拌するだけでは、前駆物質の水酸アパ
タイトへの転移を十分に促進することが出来ず、
又得られた水酸アパタイトの性質も満足すべきも
のとはいえない。本発明で採用される摩砕とは、
容器内で連続的に運動する多数のメデイアにより
メカノケミカル的に被処理物を摺りつぶす操作を
言い、メデイアとしては、比重2.0〜8.0g/cm3
好ましくは2.2〜6.0g/cm3の0.5〜50mm程度のボー
ルが通常使用される。メデイアとしては、アルミ
ナボール、ガラスビーズ等のセラミツク製のもの
が好ましい。
In the present invention, it is essential to react the calcium source raw material and the phosphorus source raw material while grinding the generated precursor. As a grinding means,
Examples include agitated mills using a grinding medium such as vibrating mills, sand mills, and grain mills. Simply stirring the liquid, for example with a rotary blade, without using a grinding medium cannot sufficiently promote the transition of the precursor to hydroxyapatite;
Furthermore, the properties of the obtained hydroxyapatite cannot be said to be satisfactory. The grinding employed in the present invention is
Refers to an operation in which the object to be treated is mechanochemically crushed using a large number of media that move continuously in a container, and the media have a specific gravity of 2.0 to 8.0 g/cm 3 ,
Balls of about 0.5 to 50 mm and preferably weighing 2.2 to 6.0 g/cm 3 are usually used. As the media, media made of ceramic such as alumina balls and glass beads are preferred.

本発明方法により得られた水酸アパタイトは、
結晶度が高く、高純度で、比表面積が大きく、化
学的活性に優れているので、歯科材料、人工骨等
の製造原料、吸着材、食品その他への添加剤とし
て有用である。
The hydroxyapatite obtained by the method of the present invention is
Because it has high crystallinity, high purity, large specific surface area, and excellent chemical activity, it is useful as a manufacturing raw material for dental materials, artificial bones, etc., as an adsorbent, and as an additive for foods and other products.

実施例 1 1mm大のガラスビーズ(比重2.5g/cm3)7.5Kg
を摩砕媒体とする容積14のサンドミルに濃度10
%、温度25℃の水酸化カルシウム懸濁液(PH
13.1)2.96Kgを収容し、回転数600rpmで撹拌し
つつ、濃度40%の燐酸水溶液0.6Kgを約4分間に
わたり滴下した後、更に10分間撹拌摩砕を継続し
た。反応系のCa/Pモル比は、1.67であつた。
得られた水酸アパタイトの水懸濁物をフイルター
プレスで脱水し、続いて加熱乾燥したもののX線
回折図は、第1図に示す通りであり、ピークの分
離が良く、半価幅もせまく、試料の結晶度の高さ
を示している。又、乾燥生成物の比表面積
(BET法による)は、150m2/g、Ca/Pモル比
は1.66であつた。
Example 1 1 mm glass beads (specific gravity 2.5 g/cm 3 ) 7.5 kg
A sand mill with a volume of 14 and a concentration of 10
%, calcium hydroxide suspension (PH
13.1) 0.6 kg of phosphoric acid aqueous solution with a concentration of 40% was added dropwise over about 4 minutes while stirring at 600 rpm, and stirring and grinding were continued for an additional 10 minutes. The Ca/P molar ratio of the reaction system was 1.67.
The X-ray diffraction pattern of the resulting water suspension of hydroxyapatite, which was dehydrated using a filter press and then dried by heating, is as shown in Figure 1, with good peak separation and a narrow half-width. , indicating the high degree of crystallinity of the sample. Further, the specific surface area (by BET method) of the dried product was 150 m 2 /g, and the Ca/P molar ratio was 1.66.

比較例 1 (イ) ガラスビーズを摩砕媒体として使用しない以
外は、実施例1と同様にして反応生成物を得
た。該反応生成物をフイルタープレスで脱水
し、加熱乾燥したもののX線回折図は、第2図
に示す通りであり、ピークの分離が悪く、半価
幅もせまく、水酸アパタイト以外の成分のピー
ク(a)及び(b)が認められる。
Comparative Example 1 (a) A reaction product was obtained in the same manner as in Example 1, except that glass beads were not used as the grinding medium. The X-ray diffraction pattern of the reaction product obtained by dehydrating it with a filter press and drying it by heating is as shown in Figure 2. The peak separation is poor, the half width is narrow, and the peaks of components other than hydroxyapatite are present. (a) and (b) are accepted.

(ロ) 上記(イ)と同様にして得られた反応生成物を反
応液中常温で24時間放置した後、フイルタープ
レスで脱水し、加熱乾燥したもののX線回折図
は、第2図とほぼ同様で、不純物のピークを示
しており、この程度の熟成では高純度の水酸ア
パタイトは得られなかつた。
(b) The X-ray diffraction pattern of the reaction product obtained in the same manner as in (a) above was left in the reaction solution at room temperature for 24 hours, dehydrated with a filter press, and dried by heating. Similarly, impurity peaks were shown, indicating that highly pure hydroxyapatite could not be obtained with this degree of ripening.

実施例 2 濃度40%の燐酸水溶液0.6Kgを約20分間かけて
滴下する以外は、実施例1と同様にして水酸アパ
タイト結晶を得た。
Example 2 Hydroxyapatite crystals were obtained in the same manner as in Example 1, except that 0.6 kg of a 40% phosphoric acid aqueous solution was dropped over about 20 minutes.

得られた結晶のX線回折図は、第1図と同様で
あり、Ca/Pモル比は1.67であつた。
The X-ray diffraction pattern of the obtained crystal was similar to that shown in FIG. 1, and the Ca/P molar ratio was 1.67.

実施例 3 1mm大のガラスビーズ7.5Kgを摩砕媒体とする
容積14のサンドミルに濃度10%の第二燐酸カル
シウム(CaHPO4・2H2O)懸濁液2.58Kgを収容
し、回転数600rpmで回転しつつ、濃度10%の水
酸化カルシウム懸濁液0.744Kgを約1分間かけて
滴下した。滴下開始時を起点として経時的に反応
液を採取し、脱水及び乾燥を行なつて得た乾燥粉
体のX線回折結果によれば、滴下開始40分後に前
駆物質から水酸アパタイトへの変換の終了が認め
られた。
Example 3 2.58 kg of dicalcium phosphate (CaHPO 4 2H 2 O) suspension with a concentration of 10% was placed in a sand mill with a capacity of 14 using 7.5 kg of 1 mm size glass beads as the grinding medium, and the rotation speed was 600 rpm. While rotating, 0.744 kg of a 10% calcium hydroxide suspension was dropped over about 1 minute. According to the X-ray diffraction results of the dry powder obtained by sampling the reaction solution over time from the start of dropping, dehydrating and drying it, the precursor was converted to hydroxyapatite 40 minutes after the start of dropping. The termination of the project was approved.

比較例 2 摩砕材料を使用しない以外は、実施例3と同様
にして第二燐酸カルシウム懸濁液に水酸化カルシ
ウム懸濁液を滴下した後、常温で6時間撹拌し、
更に24時間放置した。反応生成物を脱水及び乾燥
したもののX線回折図には、第二燐酸カルシウム
のピークが認められた。
Comparative Example 2 The calcium hydroxide suspension was added dropwise to the dibasic calcium phosphate suspension in the same manner as in Example 3, except that no grinding material was used, and then stirred at room temperature for 6 hours.
It was left for another 24 hours. A peak of dibasic calcium phosphate was observed in the X-ray diffraction pattern of the dehydrated and dried reaction product.

実施例 4 濃度10%の酢酸カルシウム水溶液1.76Kgと濃度
10%の燐酸二アンモニウム水溶液0.79Kgとを混合
し、40%アンモニア水でPH8.5に調整した後、直
径1mmのガラスビーズ7.5Kgを摩砕媒体とする容
積14のサンドミルに収容し、回転数600rpmで
10分間撹拌摩砕した。生成した水懸濁物を脱水及
び乾燥したもののCa/Pモル比は、1.61であ
り、X線回折図は水酸アパタイトの回折を示し
た。
Example 4 1.76Kg of calcium acetate aqueous solution with 10% concentration and concentration
After mixing with 0.79 kg of 10% diammonium phosphate aqueous solution and adjusting the pH to 8.5 with 40% ammonia water, it was placed in a sand mill with a capacity of 14 using 7.5 kg of glass beads with a diameter of 1 mm as the grinding medium, and the rotation speed was at 600rpm
The mixture was stirred and ground for 10 minutes. The resulting aqueous suspension was dehydrated and dried, and the Ca/P molar ratio was 1.61, and the X-ray diffraction pattern showed hydroxyapatite diffraction.

比較例 3 実施例4と同様にして酢酸カルシウム水溶液に
燐酸二アンモニウム水溶液を加え、アンモニア水
でPH8.5に調整した混合液を摩砕材料を使用しな
い容積14のサンドミルに収容し、回転数
600rpmで6時間撹拌した。生成した水懸濁液を
脱水及び乾燥したもののCa/Pモル比は、1.49
であり、X線回折図は水酸アパタイト以外のピー
クを示しており、生成物の結晶性が低いことを示
していた。
Comparative Example 3 A diammonium phosphate aqueous solution was added to a calcium acetate aqueous solution in the same manner as in Example 4, and the mixed solution was adjusted to pH 8.5 with aqueous ammonia. The mixture was placed in a sand mill with a capacity of 14 without using any grinding material, and the number of revolutions was increased.
Stirred at 600 rpm for 6 hours. The resulting aqueous suspension was dehydrated and dried, and the Ca/P molar ratio was 1.49.
The X-ray diffraction diagram showed peaks other than hydroxyapatite, indicating that the product had low crystallinity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1に示す本発明方法により得
られた水酸アパタイトのX線回折図を示し、第2
図は、比較例1で得られた水酸アパタイトのX線
回折図を示す。
FIG. 1 shows an X-ray diffraction pattern of hydroxyapatite obtained by the method of the present invention shown in Example 1, and
The figure shows an X-ray diffraction pattern of hydroxyapatite obtained in Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化カルシウム及びカルシウム塩の少なく
とも1種を含有する水溶液又は懸濁液と燐酸及び
燐酸塩の少なくとも1種を含有する水溶液又は懸
濁液を摩砕しつつ反応させるか又は混合後摩砕反
応させることを特徴とする水酸アパタイトの製造
方法。
1 Reaction of an aqueous solution or suspension containing at least one of calcium hydroxide and a calcium salt with an aqueous solution or suspension containing at least one of phosphoric acid and a phosphate, or a grinding reaction after mixing. A method for producing hydroxyapatite, the method comprising:
JP13247082A 1982-07-28 1982-07-28 Manufacture of hydroxylapatite Granted JPS5921509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13247082A JPS5921509A (en) 1982-07-28 1982-07-28 Manufacture of hydroxylapatite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13247082A JPS5921509A (en) 1982-07-28 1982-07-28 Manufacture of hydroxylapatite

Publications (2)

Publication Number Publication Date
JPS5921509A JPS5921509A (en) 1984-02-03
JPS624324B2 true JPS624324B2 (en) 1987-01-29

Family

ID=15082122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13247082A Granted JPS5921509A (en) 1982-07-28 1982-07-28 Manufacture of hydroxylapatite

Country Status (1)

Country Link
JP (1) JPS5921509A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287406A (en) * 1985-10-11 1987-04-21 Agency Of Ind Science & Technol Production of beta-tricalcium phosphate
JP2543685B2 (en) * 1986-10-31 1996-10-16 旭光学工業株式会社 Method for producing calcium phosphate
JP2613488B2 (en) * 1989-04-21 1997-05-28 旭光学工業株式会社 Functional paper
US6569396B1 (en) * 1999-03-26 2003-05-27 Nara Machinery Co., Ltd. Method for producing calcium phosphate powder
US6592989B1 (en) 1999-03-26 2003-07-15 Nara Machinery Co., Ltd. Method for synthesis of hydroxyapatite, and hydroxyapatite complex and method for preparing the same
CN103204485B (en) * 2013-04-25 2015-02-11 连云港树人科创食品添加剂有限公司 Production method of food grade tricalcium phosphate
RU2641919C1 (en) * 2016-12-20 2018-01-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" Method for hydroxiapatite obtaining
JP2020117423A (en) * 2019-01-25 2020-08-06 株式会社バイオアパタイト Hydroxyapatite for oral cavity, composition for oral cavity, and method for producing hydroxyapatite for oral cavity

Also Published As

Publication number Publication date
JPS5921509A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
JPH0544404B2 (en)
US6921544B2 (en) Magnesium-substituted hydroxyapatites
JPS6291410A (en) Calcium phosphate hydroxyapatite for chromatographic separation and its production
JP2001526169A (en) Method for producing magnesium and carbonate substituted hydroxyapatite
JPH0369844B2 (en)
JP3211215B2 (en) Method for producing crystalline zirconium phosphate compound
JPS624324B2 (en)
JP2704421B2 (en) Method for producing chain-like horizontal clay mineral
US5180564A (en) Process for the production of an aqueous suspension of hydroxylapatite
JP3384412B2 (en) Method for producing crystalline zirconium phosphate
JP3767041B2 (en) Method for synthesizing zeolite β
JP3247896B2 (en) Method for producing hydroxyapatite
JPS63159207A (en) Production of hydroxyapatite
JP3247899B2 (en) Method for producing hydroxyapatite
JPS62252307A (en) Wet synthesis of hydroxy apatite
KR960012708B1 (en) Process for the preparation of hydroxy appatite
JPH07106887B2 (en) Method for producing strontium hydroxyapatite powder
JPH07206411A (en) Production of octacalcium phosphate
JP3211216B2 (en) Method for producing silver-containing crystalline zirconium phosphate
JPH04927B2 (en)
JPH0426509A (en) Hydroxyapatite fine crystal and its production
JPS6146402B2 (en)
JPH10236806A (en) Hydroxyapatite and its production
KR890002544B1 (en) Method for preparation of apatite
JPH0425232B2 (en)