JPS6146402B2 - - Google Patents

Info

Publication number
JPS6146402B2
JPS6146402B2 JP2611377A JP2611377A JPS6146402B2 JP S6146402 B2 JPS6146402 B2 JP S6146402B2 JP 2611377 A JP2611377 A JP 2611377A JP 2611377 A JP2611377 A JP 2611377A JP S6146402 B2 JPS6146402 B2 JP S6146402B2
Authority
JP
Japan
Prior art keywords
calcium
apatite
cao
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2611377A
Other languages
Japanese (ja)
Other versions
JPS53110999A (en
Inventor
Hideki Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO IKA SHIKA DAIGAKUCHO
Original Assignee
TOKYO IKA SHIKA DAIGAKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO IKA SHIKA DAIGAKUCHO filed Critical TOKYO IKA SHIKA DAIGAKUCHO
Priority to JP2611377A priority Critical patent/JPS53110999A/en
Publication of JPS53110999A publication Critical patent/JPS53110999A/en
Publication of JPS6146402B2 publication Critical patent/JPS6146402B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は結晶質CaO−P2O5系アパタイトの製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing crystalline CaO-P 2 O 5 apatite.

結晶質CaO−P2O5系アパタイト物質が最近新
しい人工骨や人工歯根などの生体用材料の源材料
として極めて効果的なものであることがわかり、
これらの利用について整形外科および歯科領域に
おいて新しい治療法の一分野が開かれつつある。
こうしたことから、このCaO−P2O5系アパタイ
ト物質を安価にそして大量に製造することのでき
る方法の確立が、緊急且つ極めて重要な課題にな
つてきている。
Crystalline CaO-P 2 O 5 -based apatite material has recently been found to be extremely effective as a source material for biomaterials such as new artificial bones and artificial tooth roots.
These uses are opening up a new field of treatment in orthopedics and dentistry.
For these reasons, it has become an urgent and extremely important issue to establish a method that can produce this CaO-P 2 O 5 -based apatite material inexpensively and in large quantities.

ところで、従来、結晶質CaO−P2O5系アパタ
イト物質の製造法に関して、生化学や、地質鉱物
学などの基礎科学分野でいくつか報告されてはい
たが、いずれも実験室的規模のものであり、工業
的規模での生産を意図したものではなかつたた
め、それらの方法によつては、所望のCaO−
P2O5系アパタイト物質を効率よく大量生産する
のは多くの問題があつて不可能であつた。
By the way, although there have been several reports on the production method of crystalline CaO-P 2 O 5 -based apatite materials in basic science fields such as biochemistry and geological mineralogy, none of them have been conducted on a laboratory scale. However, since these methods were not intended for production on an industrial scale, the desired CaO−
Efficient mass production of P 2 O 5 -based apatite materials has been impossible due to many problems.

本発明者は、結晶質CaO−P2O5系物質を工業
的規模で効率的に生産することのできる方法を先
に提案した(特願昭51−157406号−特公昭59−
13443号公報)が、該方法は、カルシウム塩水溶
液とリン酸水溶液をPH5〜10、5〜95℃で反応さ
せてCa/P=1.40〜1.67の間にあるアパタイト類
似物質であるリン酸カルシウムを製造し、これを
さらに結晶質アパタイトへ変換させるという内容
のものであるところ、なお、カルシウム塩とリン
酸塩の原料を水に溶解乃至懸濁させるという余分
の工程を必要とすることの他、使用原料が高価な
ものである等の問題がある。
The present inventor has previously proposed a method that can efficiently produce crystalline CaO-P 2 O 5 based substances on an industrial scale (Japanese Patent Application No. 157406/1983 -
13443), the method involves reacting an aqueous calcium salt solution and an aqueous phosphoric acid solution at a pH of 5 to 10 and a temperature of 5 to 95°C to produce calcium phosphate, an apatite-like substance with a Ca/P ratio between 1.40 and 1.67. , which further converts this into crystalline apatite, but in addition to requiring an extra step of dissolving or suspending the calcium salt and phosphate raw materials in water, the raw materials used are There are problems such as the fact that it is expensive.

本発明者は、こうした問題を解決して所望の
CaO−P2O5系物質を工業的規模で効率よく生産
してそれを安価に提供することを可能にする方法
を開発すべく鋭意研究を重ねた結果、出発物質と
して安価に適宜入手することのできる炭酸カルシ
ウム(CaCO3)、酸化カルシウム(CaO)、水酸
化カルシウム〔Ca(OH)2〕、フツ化カルシウム
(CaF2)、塩化カルシウム(CaCl2)、硝酸カルシ
ウム〔Ca(NO32〕、シユウ酸カルシウム〔Ca
(COO)2〕を使用し、これらの粉状の一種又はそ
れ以上にリン酸水溶液を加え、中性付近のPH条件
下、温度60℃〜80℃で反応処理したところ、カル
シウムとリンのモル比Ca/Pが1.63〜1.65間にあ
る、即ち1.63<Ca/P<1.65の微結晶質のリン酸
カルシウムが得られ、さらにこれに上記カルシウ
ム化合物の一種またはそれ以上を化学量論的アパ
タイトのCa/P=1.67に比べて不足している量
かそれ以上の量添加し、よく混合した後、その混
合物を、800℃以上の温度条件で固相反応に付し
たところ、純粋にして結晶性に富み、1400℃付近
まで加熱されても分解することのない熱安定性に
富む結晶物が得られ、それらは骨親和性を有して
いて、焼結加工した場合所望の人工骨や人工歯根
たり得るものになる知見を得、本発明を完成する
に至つた。
The present inventor has solved these problems and achieved the desired
As a result of intensive research to develop a method that would enable CaO-P 2 O 5- based substances to be efficiently produced on an industrial scale and provided at low cost, we found that we were able to obtain them as starting materials at low prices. Calcium carbonate (CaCO 3 ), calcium oxide (CaO), calcium hydroxide [Ca(OH) 2 ], calcium fluoride (CaF 2 ), calcium chloride (CaCl 2 ), calcium nitrate [Ca(NO 3 ) 2 ] ], calcium oxalate [Ca
(COO) 2 ] was used, an aqueous phosphoric acid solution was added to one or more of these powders, and a reaction treatment was performed at a temperature of 60℃ to 80℃ under near-neutral PH conditions. A microcrystalline calcium phosphate with a ratio Ca/P between 1.63 and 1.65, i.e. 1.63<Ca/P<1.65, is obtained, which is further treated with one or more of the above calcium compounds in a stoichiometric apatite Ca/P ratio. After adding the amount insufficient or more than P = 1.67 and mixing well, the mixture was subjected to a solid phase reaction at a temperature of 800℃ or higher, and it was found to be pure and highly crystalline. , a highly thermally stable crystalline product that does not decompose even when heated to around 1400°C is obtained, which has an affinity for bone and can be used to create the desired artificial bone or artificial tooth root when sintered. We have obtained valuable knowledge and have completed the present invention.

即ち本発明は、炭酸カルシウム(CaCO3)、酸
化カルシウム(CaO)、水酸化カルシウム〔Ca
(OH)2〕、フツ化カルシウム(CaF2)、塩化カル
シウム(CaCl2)、硝酸カルシウム〔Ca
(NO32〕及びシユウ酸カルシウム〔Ca
(COO)2〕よりなる群から選択されたカルシウム
化合物の一種もしくはそれ以上の粉体に、リン酸
水溶液を徐々に加え、中性付近のPHで温度60℃〜
80℃で反応後、水洗・ロ過・乾燥させてカルシウ
ムとリンのモル比Ca/P1.63〜1.65の微結晶リン
酸カルシウムを得、さらにこれに上記カルシウム
化合物の一種もしくはそれ以上を化学量論的アパ
タイトのCa/P=1.67に比べて不足している量
かそれ以上の量加え、よく混合し、これらの混合
物を温度800℃以上で固相反応せしめることを特
徴とする結晶質CaO−P2O5系アパタイトの製造
法を提供するものである。
That is, the present invention uses calcium carbonate (CaCO 3 ), calcium oxide (CaO), calcium hydroxide [Ca
(OH) 2 ], calcium fluoride (CaF 2 ), calcium chloride (CaCl 2 ), calcium nitrate [Ca
(NO 3 ) 2 ] and calcium oxalate [Ca
(COO) 2 ] Gradually add an aqueous phosphoric acid solution to powder of one or more calcium compounds selected from the group consisting of
After the reaction at 80°C, washing with water, filtration, and drying yields microcrystalline calcium phosphate with a molar ratio of calcium to phosphorus, Ca/P 1.63 to 1.65, which is then stoichiometrically mixed with one or more of the above calcium compounds. Crystalline CaO-P 2 characterized by adding an amount that is insufficient or more than Ca/P of apatite = 1.67, mixing well, and causing the mixture to undergo a solid phase reaction at a temperature of 800°C or higher . The present invention provides a method for producing O5 - based apatite.

前記構成内容の、本発明の方法は、原料に、炭
酸カルシウム(CaCO3)、酸化カルシウム
(CaO)、水酸化カルシウム〔Ca(OH)2〕、フツ
化カルシウム(CaF2)、塩化カルシウム
(CaCl2)、硝酸カルシウム〔Ca(NO32〕シユウ
酸カルシウム〔Ca(COO)2〕等の安価に入手し得
るカルシウム化合物を使用していて、処理操作が
容易であり、それでいて、1400℃付近まで加熱さ
れても分解することがなく、純度の高い結晶質物
質であつて、動物骨に対して骨親和性を有し、焼
結加工した場合、所望の人工骨や人工歯根を与え
る他、各種プラスチツクス、金属等などの複合材
料としても有用である、結晶質アパタイトの効率
的大量生産を可能にするものである。
The method of the present invention having the above constitution uses calcium carbonate (CaCO 3 ), calcium oxide (CaO), calcium hydroxide [Ca(OH) 2 ], calcium fluoride (CaF 2 ), calcium chloride (CaCl) as raw materials. 2 ) It uses inexpensively available calcium compounds such as calcium nitrate [Ca(NO 3 ) 2 ] and calcium oxalate [Ca(COO) 2 ], and is easy to process, yet can be heated to temperatures around 1400℃. It is a highly pure crystalline substance that does not decompose even when heated to a high temperature, and has an affinity for animal bones. When sintered, it can be used to create desired artificial bones and artificial tooth roots. The present invention enables efficient mass production of crystalline apatite, which is useful as a composite material for various plastics, metals, etc.

本発明の方法において、炭酸カルシウム
(CaCO3)、酸化カルシウム(CaO)、水酸化カル
シウム〔Ca(OH)2〕、フツ化カルシウム
(CaF2)、塩化カルシウム(CaCl2)、硝酸カルシ
ウム〔Ca(NO32〕シユウ酸カルシウム〔Ca
(COO)2〕よりなる群から選択されたカルシウム
化合物の一種もしくはそれ以上の粉体に、リン酸
水溶液を徐々に加え、中性付近のPHで、温度60℃
〜80℃の温度で反応せしめることころは、反応生
成物を、理想モデルの結晶質アパタイト(化学量
論量Ca/P=1.67)に出来得るかぎり近いもの
にするための工程である。上記リン酸水溶液は単
独でもよく、その場合濃度は比較的高い、例えば
80%程度にされる。しかし、場合によつてはカ性
ソーダ水溶液を使してもよく、その場合のカ性ソ
ーダ水溶液は1N程度のものが使用される。PH値
を中性付近にする理由は、そのPH値域に被処理物
がある場合反応が最も安定して進行することによ
る。また反応温度を60℃〜80℃の範囲にする理由
は、該温度範囲での反応処理により得られる反応
生成物が、理想モデルの結晶質アパタイトに近い
微結晶質のリン酸カルシウムとなり、それが故に
所望の製品を与えることにつながるという実験的
に確認された事実による。このようにして得られ
た微結晶質のリン酸カルシウムは、ついで、理想
モデルの結晶質アパタイトの化学量論量Ca/P
=1.67に比べて不足している量の当量か若しくは
それ以上の量の、上記カルシウム化合物のうちか
ら選ばれる一種もしくはそれ以上と、好ましくは
これらを粉末の状態として混合し、例えばロータ
リーキルン法等の公知の固相反応手段の反応域に
導入し、800℃以上好ましくは800℃以上で1300℃
迄の温度で固相反応に付し、所望の結晶質アパタ
イトを得る。固相反応を800℃以上の温度で行う
理由は、800℃以下の温度では、前段で得られた
微結晶質のリン酸カルシウムが未反応のまま残存
してしまうことが多々あり、望ましい結果が得ら
れないことによる。また、固相反応温度を好まし
くは1300℃迄とする理由は、それ以上の温度の場
合反応が安定して行われない場合が生じて好まし
くないことによる。
In the method of the present invention, calcium carbonate (CaCO 3 ), calcium oxide (CaO), calcium hydroxide [Ca(OH) 2 ], calcium fluoride (CaF 2 ), calcium chloride (CaCl 2 ), calcium nitrate [Ca( NO 3 ) 2 ] Calcium oxalate [Ca
(COO) 2 ] Gradually add an aqueous phosphoric acid solution to powder of one or more calcium compounds selected from the group consisting of
The reaction at a temperature of ~80° C. is a step to make the reaction product as close as possible to the ideal model of crystalline apatite (stoichiometry Ca/P=1.67). The above phosphoric acid aqueous solution may be used alone, in which case the concentration is relatively high, e.g.
It will be reduced to about 80%. However, in some cases, a caustic soda aqueous solution may be used, and in that case, a caustic soda aqueous solution of about 1N is used. The reason why the PH value is set around neutrality is that the reaction proceeds most stably when the object to be treated is in that PH value range. The reason why the reaction temperature is set in the range of 60°C to 80°C is that the reaction product obtained by the reaction treatment in this temperature range becomes microcrystalline calcium phosphate, which is close to the ideal model of crystalline apatite. Due to the experimentally confirmed fact that it leads to giving a product of The microcrystalline calcium phosphate obtained in this way is then converted to the stoichiometric Ca/P of the ideal model of crystalline apatite.
= 1.67, one or more selected from the above calcium compounds are mixed in an amount equivalent to or more than the amount that is insufficient compared to 1.67, preferably in the form of powder, and then mixed, for example, in a rotary kiln method or the like. Introduced into the reaction zone of a known solid phase reaction means and heated at 800°C or higher, preferably at 800°C or higher to 1300°C.
The desired crystalline apatite is obtained by subjecting it to a solid phase reaction at a temperature of The reason why solid phase reactions are performed at temperatures above 800°C is that at temperatures below 800°C, the microcrystalline calcium phosphate obtained in the previous step often remains unreacted, making it difficult to obtain the desired results. By not having one. Further, the reason why the solid phase reaction temperature is preferably set to 1300° C. is that if the temperature is higher than that, the reaction may not be carried out stably, which is not preferable.

以下、本発明を実施例を挙げて更に詳しく説明
するが、本発明はこれらの例に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples.

実施例 1 (1) 炭酸カルシウム(CaCO3)、酸化カルシウム
(CaO)、水酸化カルシウム〔Ca(OH)2〕、フ
ツ化カルシウム(CaF2)、塩化カルシウム
(CaCl2)、硝酸カルシウム〔Ca(NO32〕及び
シユウ酸カルシウム〔Ca(COO)2〕よりなる群
から選択されるカルシウム化合物の一種の0.5
モルの粉体に80%リン酸水溶液と必要に応じて
1Nカ性ソーダ水溶液とをPHが7付近になるま
で徐々に加え、撹拌しながら温度60℃及び80℃
で24時間反応させた。反応後、水洗し、ロ過・
乾燥した。これらの粉体を粉末X線回析法で調
べると、反応生成物の回析は鋭くなり、結晶質
アパタイトの回析図形と酷似することが認めら
れた。またカルシウムとリンのモル比Ca/P
を調べると60℃の場合1.63、80℃の場合1.65と
なり化学量論的アパタイトの1.67に比べてカル
シウムが僅かに不足していることがわかつた。
Example 1 (1) Calcium carbonate (CaCO 3 ), calcium oxide (CaO), calcium hydroxide [Ca(OH) 2 ], calcium fluoride (CaF 2 ), calcium chloride (CaCl 2 ), calcium nitrate [Ca( 0.5 of a type of calcium compound selected from the group consisting of NO 3 ) 2 ] and calcium oxalate [Ca(COO) 2 ].
80% phosphoric acid aqueous solution to molar powder and optionally
Gradually add 1N caustic soda aqueous solution until the pH becomes around 7, and increase the temperature to 60℃ and 80℃ while stirring.
was allowed to react for 24 hours. After the reaction, wash with water, filter and
Dry. When these powders were examined by powder X-ray diffraction, it was found that the diffraction of the reaction product was sharp and closely resembled the diffraction pattern of crystalline apatite. Also, the molar ratio of calcium and phosphorus Ca/P
When examined, it was found that the values were 1.63 at 60℃ and 1.65 at 80℃, indicating a slight deficiency in calcium compared to the stoichiometric apatite of 1.67.

これに対し、前記反応を温度10℃、20℃及び
40℃の各条件下で行い、これ以外は前記条件と
同じ条件で反応を行うと、得られる反応生成物
はアパタイト物質に類似した微結晶体となるも
のの、60℃及び80℃で反応を行つた場合にくら
べてX線回析図が結晶質アパタイトのそれに酷
似せず、さらにカルシウムとリンのモル比
Ca/Pがそれぞれ1.40、1.50及び1.60となり、
化学量論的アパタイトのそれの1.67にくらべて
カルシウムが相当に不足したものとなつた。
In contrast, the reaction was carried out at temperatures of 10°C, 20°C and
If the reaction is carried out under each condition of 40℃ and other conditions are the same as above, the reaction product obtained will be a microcrystalline substance similar to an apatite substance, but if the reaction is carried out at 60℃ and 80℃. The X-ray diffraction pattern does not closely resemble that of crystalline apatite, and the molar ratio of calcium to phosphorus is
Ca/P is 1.40, 1.50 and 1.60 respectively,
Compared to the stoichiometric apatite, which is 1.67, the calcium content was considerably deficient.

(2) (1)で得たCa/Pが1.63及び1.65のカルシウム
が不足したアパタイト類似物質各500gに対し
て、炭酸カルシウム(CaCO3)、酸化カルシウ
ム(CaO)、水酸化カルシウム〔Ca(OH)2〕、
塩化カルシウム(CaCl2)、フツ化カルシウム
(CaF2)硝酸カルシウム〔Ca(NO32〕又はシユ
ウ酸カルシウム〔Ca(COO)2〕のうち1種を選
んで、その100gを加えよく粉砕混合した。こ
れら混合物を800℃、1000℃、1200℃の各温度
で5時間、空気中で固相反応させた。反応後、
水洗をよく行なつた。生成物を粉末X線回析法
と赤外吸収スペクトルで調べると、反応生成物
はいずれも純粋な結晶性の極めてよいアパタイ
ト結晶となつた。
(2) Calcium carbonate (CaCO 3 ), calcium oxide (CaO), calcium hydroxide [Ca (OH ) 2 ],
Select one of calcium chloride (CaCl 2 ), calcium fluoride (CaF 2 ), calcium nitrate [Ca(NO 3 ) 2 ], or calcium oxalate [Ca(COO) 2 ], add 100g of it, and mix well. did. These mixtures were subjected to a solid phase reaction in air at temperatures of 800°C, 1000°C, and 1200°C for 5 hours. After the reaction,
Washed thoroughly with water. When the products were examined by powder X-ray diffraction and infrared absorption spectroscopy, all reaction products were found to be pure apatite crystals with excellent crystallinity.

なお、上記反応を600℃で実施すると生成物
中に未反応の出発物質が間々残存し、所望の結
晶質アパタイトを得ることができなかつた。
Note that when the above reaction was carried out at 600°C, unreacted starting materials remained in the product, making it impossible to obtain the desired crystalline apatite.

800℃〜1200℃の温度の固相反応で得られた
アパタイト結晶を、水洗して乾燥し、粉末に
し、高温で焼結処理し、得られた材料を人工骨
及び人工歯根への利用を考えて成犬の大腿骨及
び顎骨に埋入し、骨親和性を8カ月間調べたと
ころ、いずれも拒絶反応がなく、骨親和性がき
わめてすぐれていることが確認された。
Apatite crystals obtained through a solid-state reaction at a temperature of 800℃ to 1200℃ are washed with water, dried, powdered, and sintered at high temperatures.The resulting material is considered for use in artificial bones and artificial tooth roots. They were implanted into the femur and jawbone of adult dogs, and their bone compatibility was examined for 8 months. There was no rejection reaction in either case, and it was confirmed that they had extremely good bone compatibility.

実施例 2 実施例1の(1)で得たCa/Pが1.63及び1.65のカ
ルシウムが不足したアパタイト類似物質各50gに
対して、各モル比が1対1の組み合せの炭酸カル
シウム−酸化カルシウム(CaCO3−CaO)、水酸
化カルシウム−塩化カルシウム〔Ca(OH)2
CaCl2〕、水酸化カルシウム−フツ化カルシウム
〔Ca(OH)2−CaF2〕、酸化カルシウム−硝酸カル
シウム〔CaO−Ca(NO32〕、水酸化カルシウム
−シユウ酸カルシウム〔Ca(OH)2−Ca
(COO)2〕のうち1組みを選んで、重量百分率で
10%に相当する5gを加えて混合し、800℃〜1300
℃の温度範囲、200mmHgの水蒸気雰囲気中で3時
間ロータリーキルン法により、回転させながら連
続的に固相反応させた。反応後水洗をよく行なつ
た。生成物はいずれも純粋な結晶性のよいアパタ
イト結晶であつた。しかし、上記反応を500℃〜
800℃未満の温度範囲で行うと生成物中に未反応
の出発物質が相当量残存し、除去困難で純粋な結
晶性のよいアパタイト結晶を得ることはできなか
つた。
Example 2 For each 50 g of calcium-deficient apatite-like substances with Ca/P of 1.63 and 1.65 obtained in (1) of Example 1, calcium carbonate-calcium oxide (calcium carbonate-calcium oxide) was added at a molar ratio of 1:1. CaCO 3 −CaO), calcium hydroxide − calcium chloride [Ca(OH) 2
CaCl2 ] , calcium hydroxide-calcium fluoride [Ca(OH) 2 - CaF2 ], calcium oxide-calcium nitrate [CaO-Ca( NO3 ) 2 ], calcium hydroxide-calcium oxalate [Ca(OH)] 2 −Ca
(COO) 2 Select one set from [2 ] and express it in weight percentage.
Add 5g equivalent to 10%, mix, and heat from 800℃ to 1300℃.
A continuous solid phase reaction was carried out while rotating in a rotary kiln method for 3 hours in a steam atmosphere of 200 mmHg at a temperature range of .degree. After the reaction, the mixture was thoroughly washed with water. All the products were pure apatite crystals with good crystallinity. However, the above reaction is carried out at 500℃~
When carried out in a temperature range below 800°C, a considerable amount of unreacted starting material remained in the product, making it difficult to remove and making it impossible to obtain pure apatite crystals with good crystallinity.

800℃〜1300℃の温度の固相反応で得られたア
パタイト結晶を、水洗して乾燥し、粉末にし、高
温で焼結処理し、得られた材料を人工骨及び人工
歯根への利用を考えて成犬の大腿骨及び顎骨に埋
入し、骨親和性を8カ月間調べたところ、いずれ
も拒絶反応がなく、骨親和性がきわめてすぐれて
いることが確認された。
Apatite crystals obtained through solid-state reaction at temperatures between 800℃ and 1300℃ are washed with water, dried, turned into powder, and sintered at high temperatures.The resulting material is considered for use in artificial bones and artificial tooth roots. They were implanted into the femur and jawbone of adult dogs, and their bone compatibility was examined for 8 months. There was no rejection reaction in either case, and it was confirmed that they had extremely good bone compatibility.

Claims (1)

【特許請求の範囲】 1 炭酸カルシウム(CaCO3)、酸化カルシウム
(CaO)、水酸化カルシウム〔Ca(OH)2〕、フツ
化カルシウム(CaF2)、塩化カルシウム
(CaCl2)、硝酸カルシウム〔Ca(NO32〕及びシ
ユウ酸カルシウム〔Ca(COO)2〕よりなる群から
選択されたカルシウム化合物の一種もしくはそれ
以上の粉体に、リン酸水溶液を徐々に加え、中性
付近のPHで温度60℃〜80℃で反応後、水洗・ロ
過・乾燥させてカルシウムとリンのモル比Ca/
P1.63〜1.65の微結晶リン酸カルシウムを得、さ
らにこれに上記カルシウム化合物の一種もしくは
それ以上を、化学量論的アパタイトのCa/P=
1.67に比べて不足している量かそれ以上の量加
え、よく混合し、これらの混合物を温度800℃以
上で固相反応せしめることを特徴とする結晶質
CaO−P2O5系アパタイトの製造法。
[Claims] 1 Calcium carbonate (CaCO 3 ), calcium oxide (CaO), calcium hydroxide [Ca(OH) 2 ], calcium fluoride (CaF 2 ), calcium chloride (CaCl 2 ), calcium nitrate [Ca An aqueous phosphoric acid solution is gradually added to powder of one or more calcium compounds selected from the group consisting of (NO 3 ) 2 ] and calcium oxalate [Ca(COO) 2 ], and the powder is heated at a pH near neutrality. After reacting at a temperature of 60℃ to 80℃, the molar ratio of calcium and phosphorus is determined by washing with water, filtering, and drying.
Microcrystalline calcium phosphate with a P1.63 to 1.65 is obtained, and one or more of the above calcium compounds is added to the stoichiometric apatite Ca/P=
A crystalline material characterized by adding an insufficient amount or more than 1.67, mixing well, and causing the mixture to undergo a solid phase reaction at a temperature of 800°C or higher.
Production method of CaO−P 2 O 5 -based apatite.
JP2611377A 1977-03-11 1977-03-11 Method of making caoop205 base apatite Granted JPS53110999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2611377A JPS53110999A (en) 1977-03-11 1977-03-11 Method of making caoop205 base apatite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2611377A JPS53110999A (en) 1977-03-11 1977-03-11 Method of making caoop205 base apatite

Publications (2)

Publication Number Publication Date
JPS53110999A JPS53110999A (en) 1978-09-28
JPS6146402B2 true JPS6146402B2 (en) 1986-10-14

Family

ID=12184518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2611377A Granted JPS53110999A (en) 1977-03-11 1977-03-11 Method of making caoop205 base apatite

Country Status (1)

Country Link
JP (1) JPS53110999A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2862446D1 (en) * 1978-06-29 1984-11-15 Osteo Ag Carbon fiber reinforced bone cement
CA1247960A (en) 1983-03-24 1989-01-03 Hideki Aoki Transcutaneously implantable element
US5047031A (en) * 1988-04-20 1991-09-10 Norian Corporation In situ calcium phosphate minerals method
KR100511338B1 (en) * 2002-02-26 2005-08-31 재단법인서울대학교산학협력재단 Calcium phosphate colloids, dots, islands, thin films or granules and its preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381499A (en) * 1976-12-28 1978-07-18 Tokyo Ika Shika Daigakuchiyou Method of making caoop205 base apatite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381499A (en) * 1976-12-28 1978-07-18 Tokyo Ika Shika Daigakuchiyou Method of making caoop205 base apatite

Also Published As

Publication number Publication date
JPS53110999A (en) 1978-09-28

Similar Documents

Publication Publication Date Title
JP3028375B2 (en) Apatite whisker and method for producing the same
JPH0369844B2 (en)
JP2004026648A (en) Method for manufacture alpha- and beta-tricalcium phosphate powder
JPS6146402B2 (en)
JPS5951485B2 (en) Production method of CaO-P↓2O↓5-based apatite
JPS5913443B2 (en) Production method of CaO-P↓2O↓5-based apatite
JPS63159207A (en) Production of hydroxyapatite
García et al. Effect of some physical-chemical variables in the synthesis of hydroxyapatite by the precipitation route
CN1114635A (en) Process for producing potassium sulfate by plaster stone conversion method
JPH04342500A (en) Hydroxyapatite whisker
JPS5921509A (en) Manufacture of hydroxylapatite
JPS63100008A (en) Preparation of tricalcium phosphate
JP3668530B2 (en) Method for producing tetracalcium phosphate
JPH01100048A (en) Production of calcium phosphate-based set material
Pujiastuti et al. The kinetics reaction of phosphoric acid formation from cow bone
Skinner Studies in the basic mineralizing system, CaO-P 2 O 5-H 2 O
RU2029731C1 (en) Method of calcium fluoride producing
JPH0297409A (en) Production of natural hydroxyapatite
JPH02180708A (en) Production of hydroxyapatite
JP2590431B2 (en) Method for producing Bi5O7 (NO3)
JPS61151011A (en) Production of carbonic acid-containing hydroxy apatite
JPH0549618B2 (en)
EP1473273A1 (en) Method of preparing alpha-and beta-tricalcium phosphate powders
JPH03210271A (en) Production of biomaterial of calcium phosphate system
JPH01290513A (en) Preparation of hydroxyapatite