JPH06122510A - Method for producing hexacalcium phosphate - Google Patents

Method for producing hexacalcium phosphate

Info

Publication number
JPH06122510A
JPH06122510A JP3274253A JP27425391A JPH06122510A JP H06122510 A JPH06122510 A JP H06122510A JP 3274253 A JP3274253 A JP 3274253A JP 27425391 A JP27425391 A JP 27425391A JP H06122510 A JPH06122510 A JP H06122510A
Authority
JP
Japan
Prior art keywords
phosphate
calcium
reaction
ocp
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3274253A
Other languages
Japanese (ja)
Inventor
Seiji Ban
清治 伴
Jiro Hasegawa
二郎 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meito Sangyo KK
Original Assignee
Meito Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meito Sangyo KK filed Critical Meito Sangyo KK
Priority to JP3274253A priority Critical patent/JPH06122510A/en
Publication of JPH06122510A publication Critical patent/JPH06122510A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/325Preparation by double decomposition

Abstract

PURPOSE:To produce octacalcium phosphate improved in its purity by mixing calcium hydrogen phosphate with a non-calcium phosphate salt in a specific Ca/P atomic ratio in water and subsequently subjecting the formed aqueous suspension to reaction at a prescribed temperature. CONSTITUTION:A non-calcium phosphate salt such as CaCO3 having a solubility of >=0.0015g/100g in water is dissolved in water, and the produced aqueous solution is mixed with calcium hydrogen phosphate such as CaHPO4 or CaHPO4.2H2O having high surface slipperiness and proper solubility in an atomic Ca/P ratio of 1.30-1.60 to prepare the aqueous suspension having a solid concentration of 1-4wt.%. The aqueous suspension is subjected to a reaction at 35-68 deg.C for 5-50hr with stirring, and the reaction product is filtered off, dried under vacuum, and further dried by heating at <=65 deg.C to provide the highly pure octacalcium phosphate [Ca8H2(PO4)6.5H2O] in good yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リン酸八カルシウムを
容易にかつ収率良好に製造できる方法に関する。本発明
の方法により製造したリン酸八カルシウムは、高純度で
あり、生体適合性を要求される、人工骨、歯、歯根など
の補綴材料ないしセメント材料等に適用可能である。
FIELD OF THE INVENTION The present invention relates to a method for producing octacalcium phosphate easily and in good yield. The octacalcium phosphate produced by the method of the present invention has a high purity and can be applied to prosthetic materials such as artificial bones, teeth, and roots, or cement materials that require biocompatibility.

【0002】なお、本明細書で使用する略号の意味を下
記に示しておく。
The meanings of the abbreviations used in this specification are shown below.

【0003】(i) OCP…リン酸八カルシウム、別名、
六リン酸二水素八カルシウム五水和物( Ca8H2(PO4)6
5H2O)をいう。OCPは生体内でハイドロキシアパタイ
ト[Ca10(PO4)6・(OH)2 ]が生成される前の前駆体とい
われている。また、歯石や象牙細管内での沈着物の一部
としても検出されている。OCPを動物体内に埋入する
とハイドロキシアパタイトに転化して行くことが報告さ
れている。また、実験室的にも、OCPが血清や疑似体
液などの中性溶液中でハイドロキシアパタイトに転化し
て行くことが確認されている。
(I) OCP ... octacalcium phosphate, also known as
Octacalcium dihydrogen hexaphosphate pentahydrate (Ca 8 H 2 (PO 4 ) 6
5H 2 O). OCP is said to be a precursor before hydroxyapatite [Ca 10 (PO 4 ) 6. (OH) 2 ] is produced in vivo. It has also been detected as part of deposits in tartar and dentinal tubules. It has been reported that when OCP is implanted in an animal body, it is converted into hydroxyapatite. It has also been confirmed in the laboratory that OCP is converted into hydroxyapatite in a neutral solution such as serum or simulated body fluid.

【0004】(ii)pH…水素イオン指数。(Ii) pH ... Hydrogen ion index.

【0005】[0005]

【従来の技術】上記OCPは、前述の化学的性質によ
り、生体活性物質として注目されてきている。人工骨、
歯、歯根などの補綴材料ないしセメント材料等の、生体
適合材としての需要増大が期待されている。
2. Description of the Related Art The OCP has been attracting attention as a bioactive substance due to the aforementioned chemical properties. Artificial bones,
It is expected that demand for biocompatible materials such as prosthetic materials such as teeth and roots or cement materials will increase.

【0006】このOCPの製造方法としては、例えば、
下記の工程を含むOCPの製造方法が提案されている
(特開平3−28197号公報参照)。
As a method of manufacturing this OCP, for example,
A method for producing OCP including the following steps has been proposed (see Japanese Patent Laid-Open No. 3-28197).

【0007】「約60〜90℃の範囲の温度において、
カルシウム陽イオンの水性溶液及びリン酸陰イオンの水
性溶液を添加が完了するまで約4〜7の範囲の pH に維
持された水性媒体へ同時に加えることにより化学量論的
な量で一緒にして、リン酸八カルシウムを含有している
分散液を作る工程、この分散液を冷却し、それによりリ
ン酸八カルシウムの結晶が生成する工程、」
"At temperatures in the range of about 60 to 90 ° C,
Combined in stoichiometric amounts by simultaneously adding an aqueous solution of calcium cations and an aqueous solution of phosphate anions to an aqueous medium maintained at a pH in the range of about 4-7 until the addition is complete, Making a dispersion containing octacalcium phosphate, cooling the dispersion, which produces crystals of octacalcium phosphate, "

【0008】[0008]

【発明が解決しようとする課題】しかし、上記方法の場
合、下記のような問題点があることが分った。
However, it has been found that the above method has the following problems.

【0009】(i) カルシウム源及びリン酸根源は、とも
に水溶性のものに限られ、反応化合物の種類が限定され
る。
(I) Both the calcium source and the phosphate root source are water-soluble, and the types of reaction compounds are limited.

【0010】(ii)反応液のpHを所定範囲に制御する必要
があると共に、反応温度も60℃以上と相当高温に制御
する必要があり、製造が必ずしも容易とは言えない。
(Ii) The pH of the reaction solution needs to be controlled within a predetermined range, and the reaction temperature needs to be controlled at a considerably high temperature of 60 ° C. or higher, which is not always easy to manufacture.

【0011】(iii) 純度の高いOCPを収率良好に製造
し難い。
(Iii) It is difficult to produce OCP with high purity in good yield.

【0012】本発明は、上記にかんがみて、高純度のO
CPを容易かつ収率良好に製造可能な製造方法を提供す
ることにある。
In view of the above, the present invention provides high purity O.
An object of the present invention is to provide a production method capable of producing CP easily and in good yield.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために、鋭意開発に努力する過程で、リン酸
水素カルシウムと非リン酸カルシウム塩とを懸濁液中で
反応させた反応生成物から、固液分離して高純度のOC
P粉末が得られることを見いだし、下記構成の本発明に
想到した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made an effort to develop the reaction, and in the process of reacting calcium hydrogen phosphate and a non-calcium phosphate salt in a suspension. High-purity OC by solid-liquid separation from the product
It was found that P powder was obtained, and the present invention having the following constitution was conceived.

【0014】リン酸水素カルシウムと非リン酸カルシウ
ム塩とを反応させてリン酸八カルシウムを製造するに際
して、前記両反応化合物を水懸濁液中で反応させた反応
生成物を、固液分離・乾燥して製造することを特徴とす
る。
In producing octacalcium phosphate by reacting calcium hydrogen phosphate with a non-calcium calcium salt, the reaction product obtained by reacting both reaction compounds in an aqueous suspension is solid-liquid separated and dried. It is characterized by being manufactured by

【0015】[0015]

【手段の詳細な説明】以下、上記各手段について、詳細
に説明をする。
Detailed Description of Means Each of the above means will be described in detail below.

【0016】(i) リン酸水素カルシウムとしては、リン
酸一水素カルシウム( CaHPO4 )、リン酸二水素カルシ
ウム( Ca(H2PO4)2 )、及びそれらの水和物を挙げるこ
とができる。特に、これらの内で、リン酸一水素カルシ
ウム又はその二水和物が、溶解度が適度であり、また、
表面活性が高く、さらには、その上にOCP結晶が成長
し易い板状結晶粒子である、等の理由で望ましい。
(I) Examples of calcium hydrogen phosphate include calcium monohydrogen phosphate (CaHPO 4 ), calcium dihydrogen phosphate (Ca (H 2 PO 4 ) 2 ), and hydrates thereof. . In particular, among these, calcium monohydrogen phosphate or its dihydrate has an appropriate solubility, and
It is desirable for the reason that it is a plate-like crystal particle which has high surface activity and on which OCP crystals are easily grown.

【0017】(ii)非リン酸カルシウム塩(リン酸を含ま
ないカルシウム塩)としては、30℃で水100gに約
0.0015 g以上溶解するものなら特に限定されない。具
体的には、炭酸カルシウム(CaCO3 )、硝酸カルシウ
ム、塩化カルシウム、等を挙げることができる。特に、
これらのCa供給源の内で、炭酸カルシウムが、 pH 緩衝
作用を有するため望ましい。なお、炭酸カルシウムに
は、六方晶系と斜方晶系があるが、どちらでもよい。
(Ii) As non-phosphoric acid calcium salt (calcium salt not containing phosphoric acid), about 30 g / 100 g of water is added.
There is no particular limitation as long as it dissolves 0.0015 g or more. Specific examples include calcium carbonate (CaCO 3 ), calcium nitrate, calcium chloride, and the like. In particular,
Of these Ca sources, calcium carbonate is desirable because it has a pH buffering effect. The calcium carbonate has a hexagonal system and an orthorhombic system, but either one may be used.

【0018】ここで、非リン酸カルシウム塩の代わり
に、酸化カルシウムないし水酸カルシウムの使用も考え
られるが、pHを塩基側に移行させるという問題点があ
り、生産性の見地からは望ましい選択ではない。
Here, it is possible to use calcium oxide or calcium hydroxide instead of the non-phosphoric acid calcium salt, but there is a problem in that the pH is shifted to the base side, and this is not a desirable selection from the viewpoint of productivity.

【0019】(iii) 反応は二つの反応化合物であるリン
酸水素カルシウム塩と非リン酸カルシウム塩とを水懸濁
液中で行う。懸濁液状態の維持は、通常、攪拌により行
う。
(Iii) The reaction is carried out in an aqueous suspension of the two reaction compounds, calcium hydrogen phosphate and non-calcium phosphate. The suspension is usually maintained by stirring.

【0020】ここで、懸濁液の固形分濃度(両反応化
合物の合計量の)は、通常 0.2〜4.5 wt%、好ましくは
1.5 〜3wt%とする。0.2 wt%未満では、反応速度が遅
過ぎ、また、4.5 wt%を超えると懸濁液の維持が困難と
なる。
Here, the solid content concentration (of the total amount of both reaction compounds) of the suspension is usually 0.2 to 4.5 wt%, preferably
1.5 to 3 wt% If it is less than 0.2 wt%, the reaction rate is too slow, and if it exceeds 4.5 wt%, it becomes difficult to maintain the suspension.

【0021】両反応化合物は、通常、Ca/P= 1.30〜1.
60、好ましくは、Ca/P= 1.30〜1.45、さらに望ましく
は、OCPの化学量論比であるCa/P=1.33の原子比とな
るように混合する。Ca/Pがこの範囲外では、OCPの化
学量論比(Ca/P=1.33)からはずれ過ぎて、高純度のO
CPを得がたい。
Both reaction compounds usually have Ca / P = 1.30 to 1.
The mixing ratio is 60, preferably Ca / P = 1.30 to 1.45, and more preferably, the atomic ratio of Ca / P = 1.33, which is the stoichiometric ratio of OCP. If Ca / P is out of this range, it will deviate from the stoichiometric ratio of OCP (Ca / P = 1.33), and high purity O
It's hard to get a CP.

【0022】反応温度は、通常、30〜68℃、望ま
しくは、45〜65℃とする。30℃未満では、反応速
度が遅過ぎ、68℃を超えると、OCPの純度が低下す
る(OCPの熱分解及びハイドロキシアパタイトへの転
化に起因すると推定される。)。
The reaction temperature is usually 30 to 68 ° C, preferably 45 to 65 ° C. When the temperature is lower than 30 ° C, the reaction rate is too slow, and when the temperature is higher than 68 ° C, the purity of OCP is lowered (presumed to be caused by thermal decomposition of OCP and conversion to hydroxyapatite).

【0023】反応時間は、通常、反応温度によるが、
反応温度を60℃とした場合、通常、5〜50h、望ま
しくは、10〜30hとする。5h未満では、十分反応
が進行せず、反応生成物の収率が良好でない。また、5
0hを超えると、OCP純度が低下する(OCPがハイ
ドロキシアパタイトに転化することに起因すると推定さ
れる。)。
The reaction time usually depends on the reaction temperature,
When the reaction temperature is 60 ° C., it is generally 5 to 50 hours, preferably 10 to 30 hours. If it is less than 5 hours, the reaction does not proceed sufficiently and the yield of the reaction product is not good. Also, 5
When it exceeds 0 h, the OCP purity is lowered (it is presumed that OCP is converted to hydroxyapatite).

【0024】(iv)こうして製造した反応生成物は、通常
濾過または遠心分離などの慣用の方法により固液分離
・乾燥して粉末状として使用する。本発明の好ましい態
様では、混入する可能性のある不純物としては、未反応
の原料、水および炭酸ガスであるので水洗操作は必要な
く、単に反応液を固液分離すれば十分である。
(Iv) The reaction product thus produced is usually used in the form of powder after solid-liquid separation and drying by a conventional method such as filtration or centrifugation. In a preferred embodiment of the present invention, unreacted raw materials, water and carbon dioxide gas are impurities that may be mixed in, so that washing operation is not necessary, and it is sufficient to simply perform solid-liquid separation of the reaction liquid.

【0025】固液分離物の乾燥は、常温乾燥でもよい
が、通常、凍結乾燥、真空乾燥、熱風乾燥により強制乾
燥する。熱風乾燥する場合は約65℃以下で行うことが
望ましい。65℃以上ではOCPが熱分解してしまうお
それがある。
The solid-liquid separated product may be dried at room temperature, but it is usually forcedly dried by freeze drying, vacuum drying, or hot air drying. When drying with hot air, it is desirable to perform the drying at about 65 ° C or lower. At 65 ° C or higher, OCP may be thermally decomposed.

【0026】また、反応液から、直接、噴霧乾燥により
粉末状とすることもできる。
Alternatively, the reaction liquid may be directly spray-dried into a powder form.

【0027】さらには、反応生成物の適用分野によって
は、粉末状にせず、反応液をそのまま、または、適宜、
pH 調製剤等の薬剤を加えて使用することも可能であ
る。
Further, depending on the field of application of the reaction product, the reaction liquid may be used as it is without being made into powder, or as appropriate.
It is also possible to add and use a drug such as a pH adjusting agent.

【0028】[0028]

【発明の作用・効果】本発明のOCPの製造方法は、上
記の如く、リン酸水素カルシウムと非リン酸カルシウム
塩とを水懸濁液中で反応させた反応生成物を、固液分離
・乾燥して製造する簡単な製造方法である。即ち、pH調
製が不要で、かつ、通常68℃以下の比較的低い温度に
制御するだけでよく、OCPを収率良好に製造できる。
また、原料のCa/P比を初めに化学量論比近傍としておけ
ば、精製が実質的に不要な極めて高純度のOCP粉末が
得られる。
As described above, the method for producing OCP according to the present invention comprises solid-liquid separation and drying of a reaction product obtained by reacting calcium hydrogen phosphate and a non-calcium phosphate salt in an aqueous suspension. Is a simple manufacturing method. That is, pH adjustment is not necessary, and it is usually only necessary to control to a relatively low temperature of 68 ° C. or lower, and OCP can be produced in good yield.
Moreover, if the Ca / P ratio of the raw material is first set to be near the stoichiometric ratio, an OCP powder of extremely high purity that does not substantially require purification can be obtained.

【0029】従って、高純度のOCPを、安価に大量生
産可能となる。このことにより、人工骨、歯、歯根など
の補綴材料ないしセメント材料等、さらに従来高価で適
用が制限された、生体材料等の他の分野にも適用可能と
なるものである。
Therefore, high-purity OCP can be mass-produced at low cost. As a result, the present invention can be applied to other fields such as artificial bones, teeth, tooth roots and other prosthetic materials or cement materials, and biomaterials, which have been conventionally expensive and limited in application.

【0030】ここで、OCP純度の高い反応生成物を収
率良好に製造できるのは、原料の溶解度が比較的低く、
たとえばリン酸一水素カルシウムと炭酸カルシウムとの
組み合せの場合では、リン酸一水素カルシウムの板状結
晶粒子の上にOCPが生成していき、最終的にリン酸一
水素カルシウムがすべてOCPに転化するという反応機
構をとるためと推定される。
Here, the reason why the reaction product having high OCP purity can be produced in good yield is that the solubility of the raw material is relatively low.
For example, in the case of a combination of calcium monohydrogen phosphate and calcium carbonate, OCP is produced on the plate-like crystal particles of calcium monohydrogen phosphate, and finally all the calcium monohydrogen phosphate is converted into OCP. It is presumed that the reaction mechanism is taken.

【0031】なお、特開昭62ー87406号公報にお
いて、本発明と出発原料を同じくして、β−リン酸三カ
ルシウムの製造方法が開示され、β−リン酸三カルシウ
ムの反応生成時に、下記式を引用してOCPが準安定相
として生成する旨と報告している。
Incidentally, Japanese Patent Application Laid-Open No. 62-87406 discloses a method for producing β-tricalcium phosphate, using the same starting material as in the present invention. It is reported that OCP is generated as a metastable phase by quoting the formula.

【0032】[0032]

【化1】 [Chemical 1]

【0033】しかし、上記方法では、原料を固形分濃度
5%以上のスラリー状態とし、該スラリーをポットミル
等で摩砕反応させる方法であり、本発明を示唆するもの
ではない。そして、β−TCPを製造することを目的と
して原料のCa/P比を1.5 前後に限定するとともに、機械
的に摩砕されるため、中間生成物であるOCPも、結晶
成長が妨げられ、OCP特有の細長いシート状結晶が得
られていないと推定される。
However, the above method is a method in which the raw material is made into a slurry having a solid content concentration of 5% or more and the slurry is subjected to a grinding reaction with a pot mill or the like, and does not suggest the present invention. Then, the Ca / P ratio of the raw material is limited to about 1.5 for the purpose of producing β-TCP, and because it is mechanically ground, the OCP, which is an intermediate product, also hinders the crystal growth and the OCP. It is presumed that a specific elongated sheet crystal was not obtained.

【0034】[0034]

【実施例】以下、本発明の効果を確認するために比較例
とともに行った実施例について、説明をする。
[Examples] Hereinafter, examples carried out together with comparative examples for confirming the effects of the present invention will be described.

【0035】A.試料の調製 (i) 各実施例・比較例で使用した薬剤は下記の通りであ
る。
A. Preparation of sample (i) The drugs used in each Example and Comparative Example are as follows.

【0036】リン酸水素カルシウム…リン酸一水素カ
ルシウムニ水和物(JIS 試薬特級)、米山薬品工業社
製、 非リン酸カルシウム塩…炭酸カルシウム(六方晶系、
JIS 試薬特級)、米山薬品工業製、 (ii)各実施例・比較例は、上記両反応化合物を表示のCa
/P比で、固形分濃度が2%前後となるように200ml蒸
留水を入れたフラスコ中に混合分散させ、表示の反応条
件で反応させた。このとき、反応液の懸濁状態を維持す
るためにマグネチックスターラで攪拌した(攪拌子の長
さ:5cm、回転数:200rpm )。
Calcium hydrogen phosphate: calcium monohydrogen phosphate dihydrate (JIS reagent special grade), Yoneyama Pharmaceutical Co., Ltd., non-calcium phosphate: calcium carbonate (hexagonal system,
(JIS reagent special grade), Yoneyama Pharmaceutical Co., Ltd.
The / P ratio was mixed and dispersed in a flask containing 200 ml of distilled water so that the solid content concentration was about 2%, and the reaction was carried out under the reaction conditions shown. At this time, the reaction liquid was stirred with a magnetic stirrer in order to maintain the suspension state (length of stir bar: 5 cm, rotation speed: 200 rpm).

【0037】上記反応液を、慣用の方法で濾過(固液分
離)し、真空乾燥後さらに60℃で48時間以上乾燥し
て、試料粉末を調製した。
The above reaction solution was filtered (solid-liquid separation) by a conventional method, vacuum dried, and further dried at 60 ° C. for 48 hours or more to prepare a sample powder.

【0038】(iii) 各試料粉末について、下記測定・試
験を行った。
(Iii) The following measurements and tests were performed for each sample powder.

【0039】粉末X線回折…X線回折計(リガク社製
「ローターフレックスRAD-rC」)を使用して計測した。
Powder X-ray diffraction: Measured using an X-ray diffractometer ("Rotorflex RAD-rC" manufactured by Rigaku Corporation).

【0040】二次電子像の観察…走査形電子顕微鏡
(日本電子社製「JSM-6400FX」)を使用して行った。
Observation of secondary electron image: It was performed using a scanning electron microscope (“JSM-6400FX” manufactured by JEOL Ltd.).

【0041】OCP粉末収量…試料粉末重量を測定
し、当該重量と原料(反応化合物合計重量)との比から
求めた。
OCP powder yield: The weight of the sample powder was measured and determined from the ratio of the weight to the raw materials (total weight of the reaction compounds).

【0042】OCP粉末純度…X線回折図形における
OCP結晶相のピークと、他の結晶相のピークとの比か
ら求めた。
OCP powder purity ... Determined from the ratio of the peaks of the OCP crystal phase and the peaks of other crystal phases in the X-ray diffraction pattern.

【0043】試料のCa/P比…エネルギー分散形X線分
析装置(トレイコアナーザン社製「TN-2000/4000」)に
よる定量分析結果から求めた。
Ca / P ratio of the sample: Determined from the result of quantitative analysis by an energy dispersive X-ray analyzer ("TN-2000 / 4000" manufactured by Traycore Nazan Co., Ltd.).

【0044】B.試験結果及び評価 (i) 粉末X線回折の結果は、実施例・比較例ともすべて
OCP特有の2θ=4.7 °でミラー指数(010)の強
い回折線が見られた。特に、各実施例の粉末試料ではO
CP単一相であると確認できた。また、比較例1は未反
応のリン酸一水素カルシウムが、比較例2では未反応の
炭酸カルシウムがそれぞれ混入していた。比較例3では
OCPの転化により生じたハイドロキシアパタイトが混
入していた。
B. Test Results and Evaluation (i) As for the powder X-ray diffraction results, a strong diffraction line with a Miller index (010) was observed at 2θ = 4.7 °, which is peculiar to OCP, in both Examples and Comparative Examples. Particularly, in the powder samples of the respective examples, O
It was confirmed to be a CP single phase. Further, in Comparative Example 1, unreacted calcium monohydrogen phosphate was mixed, and in Comparative Example 2, unreacted calcium carbonate was mixed. In Comparative Example 3, the hydroxyapatite produced by the conversion of OCP was mixed.

【0045】(ii)粉末の形態の二次電子像の観察では、
実施例・比較例ともに、肉厚0.02μm以下、幅1〜
2μm、長さ2〜10μmのOCP特有の板状のOCP
の結晶粒子が確認された。
(Ii) In observing the secondary electron image in the form of powder,
In both Examples and Comparative Examples, the thickness is 0.02 μm or less, and the width is 1 to 1.
2μm, 2-10μm long OCP peculiar to OCP
Was confirmed.

【0046】(iii) 上記(i) 、(ii)以外の試験結果につ
いては表1に示す。
(Iii) Table 1 shows the test results other than the above (i) and (ii).

【0047】実施例1〜3及び比較例1〜2(反応条
件において原料のCa/P比を変動させた群):原料のCa/P
比が1.30〜1.60の実施例1〜3は、OCP収量が良好で
かつOCP純度も高いことが分る。他方、その範囲から
はずれる比較例1〜2は、OCP純度が格段に低く、か
つ、OCP収量も余り高くない。OCP純度について
は、試料のCa/P比からも伺える(試料粉末のCa/P比が1.
33に近い程、OCP純度が高い。) 実施例4〜5及び比較例3(反応条件において反応温
度を変動させた群):反応温度が40℃でも一定の純度
のOCPを得ることができることが分る(実施例4)。
反応温度が68℃以上になると、OCP純度が格段に劣
ることが分る(比較例3)。
Examples 1 to 3 and Comparative Examples 1 and 2 (group in which the Ca / P ratio of the raw material was changed under the reaction conditions): Ca / P of the raw material
It can be seen that Examples 1 to 3 in which the ratio is 1.30 to 1.60 have a good OCP yield and a high OCP purity. On the other hand, in Comparative Examples 1 and 2 which are out of the range, OCP purity is remarkably low, and OCP yield is not so high. The OCP purity can be seen from the Ca / P ratio of the sample (the Ca / P ratio of the sample powder is 1.
The closer to 33, the higher the OCP purity. ) Examples 4 to 5 and Comparative Example 3 (group in which the reaction temperature was changed under the reaction conditions): It was found that OCP having a constant purity can be obtained even at a reaction temperature of 40 ° C (Example 4).
It can be seen that when the reaction temperature is 68 ° C. or higher, the OCP purity is significantly inferior (Comparative Example 3).

【0048】実施例6〜7及び比較例4〜5(反応条
件において反応時間を変動させた群):反応温度が60
℃の場合、5h未満では、OCP純度が格段に低く、ま
た、40hを超えると、逆に、OCP純度が低下する
(比較例4〜5)。その理由は、反応時間が長くなる
と、生成した反応生成物が、ハイドロキシアパタイト等
の他の化合物に転化するものと推定される。
Examples 6 to 7 and Comparative Examples 4 to 5 (groups in which the reaction time was varied under the reaction conditions): the reaction temperature was 60.
In the case of 0 ° C., the OCP purity is remarkably low when it is less than 5 hours, and conversely, when it exceeds 40 hours, the OCP purity is lowered (Comparative Examples 4 to 5). The reason for this is presumed that when the reaction time becomes long, the produced reaction product is converted into another compound such as hydroxyapatite.

【0049】反応時間について総合的に考察すると、反
応時間5〜50hの範囲内では、高純度(略80%以
上)のOCPが収率良好に得られることが分る。
Comprehensive consideration of the reaction time shows that OCP of high purity (approximately 80% or more) can be obtained in good yield within the reaction time of 5 to 50 hours.

【0050】<応用例>実施例1で調製した試料粉末を
ddYマウス筋膜下に埋入し、3週間経過後、摘出し
た。摘出物は粉末X線回折により、OCP特有の2θ=
4.7°の(010)の強い回折線が見られず、2θが
32°付近が特徴的である結晶性の低いHAが観察され
た。このOCPから転化したHAのX線回折図形はマウ
スの自然骨のそれときわめて酷似していた。また、赤外
分光分析結果はOCPから転化したHAがマウスの自然
骨のものと同様なCO3 を含む炭酸アパタイトであるこ
とを示しており、生体活性の高いOCPであることが確
認された。
<Application Example> The sample powder prepared in Example 1 was embedded under the fascia of ddY mouse, and after 3 weeks, it was extracted. The extracted product was analyzed by powder X-ray diffraction and was 2θ = peculiar to OCP.
A strong diffraction line of (010) at 4.7 ° was not observed, and HA having low crystallinity, which is characteristic near 2θ of 32 °, was observed. The X-ray diffraction pattern of HA converted from this OCP was very similar to that of natural mouse bone. Further, the results of infrared spectroscopic analysis showed that HA converted from OCP was carbonate apatite containing CO 3 similar to that of natural bone of mouse, and it was confirmed that OCP has high bioactivity.

【0051】[0051]

【表1】 [Table 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リン酸水素カルシウムと非リン酸カルシ
ウム塩とを反応させてリン酸八カルシウムを製造するに
際して、 前記両反応化合物を水懸濁液中で反応させて製造するこ
とを特徴とするリン酸八カルシウム製造方法。
1. When producing octacalcium phosphate by reacting calcium hydrogen phosphate with a non-calcium phosphate salt, the both reaction compounds are reacted in an aqueous suspension to produce phosphoric acid. Eight-calcium production method.
【請求項2】 請求項1のリン酸八カルシウムの製造方
法において、前記両反応化合物を、Ca/P= 1.30〜1.60の
原子比となるように混合し、懸濁液固形分濃度1〜4wt
%、反応温度35〜68℃、反応時間5〜50hの条件
で反応させることを特徴とするリン酸八カルシウム製造
方法。
2. The method for producing octacalcium phosphate according to claim 1, wherein the both reaction compounds are mixed in an atomic ratio of Ca / P = 1.30 to 1.60, and a suspension solid content concentration of 1 to 4 wt.
%, A reaction temperature of 35 to 68 ° C., and a reaction time of 5 to 50 hours.
【請求項3】 請求項1のリン酸八カルシウムの製造方
法において、前記リン酸水素カルシウムがリン酸一水素
カルシウムであり、前記非リン酸カルシウム塩が炭酸カ
ルシウムであることを特徴とするリン酸八カルシウム製
造方法。
3. The method for producing octacalcium phosphate according to claim 1, wherein the calcium hydrogen phosphate is calcium monohydrogen phosphate, and the non-calcium phosphate is calcium carbonate. Production method.
JP3274253A 1991-10-22 1991-10-22 Method for producing hexacalcium phosphate Withdrawn JPH06122510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3274253A JPH06122510A (en) 1991-10-22 1991-10-22 Method for producing hexacalcium phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3274253A JPH06122510A (en) 1991-10-22 1991-10-22 Method for producing hexacalcium phosphate

Publications (1)

Publication Number Publication Date
JPH06122510A true JPH06122510A (en) 1994-05-06

Family

ID=17539124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274253A Withdrawn JPH06122510A (en) 1991-10-22 1991-10-22 Method for producing hexacalcium phosphate

Country Status (1)

Country Link
JP (1) JPH06122510A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227689B2 (en) 2004-04-19 2007-06-05 Konica Minolta Holdings, Inc. Birefringence optical element and manufacturing method thereof
JP2010110404A (en) * 2008-11-05 2010-05-20 Tohoku Univ Artificial bone material
WO2012089276A1 (en) 2010-12-31 2012-07-05 Ahmet Cuneyt Tas Preparation method of brushite and octacalcium phosphate granules
CN106395781A (en) * 2016-08-31 2017-02-15 金华 Novel dehydration method of calcium hydrogen phosphate product slurry
JP2021502319A (en) * 2017-10-20 2021-01-28 ヒューデンス カンパニー, リミテッド Method for producing octacalcium phosphate and octacalcium phosphate produced thereby

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227689B2 (en) 2004-04-19 2007-06-05 Konica Minolta Holdings, Inc. Birefringence optical element and manufacturing method thereof
JP2010110404A (en) * 2008-11-05 2010-05-20 Tohoku Univ Artificial bone material
WO2012089276A1 (en) 2010-12-31 2012-07-05 Ahmet Cuneyt Tas Preparation method of brushite and octacalcium phosphate granules
CN106395781A (en) * 2016-08-31 2017-02-15 金华 Novel dehydration method of calcium hydrogen phosphate product slurry
JP2021502319A (en) * 2017-10-20 2021-01-28 ヒューデンス カンパニー, リミテッド Method for producing octacalcium phosphate and octacalcium phosphate produced thereby
US11584648B2 (en) 2017-10-20 2023-02-21 Hudens Bio Co., Ltd. Method for preparing octacalcium phosphate and octacalcium phosphate prepared thereby

Similar Documents

Publication Publication Date Title
Bayraktar et al. Chemical preparation of carbonated calcium hydroxyapatite powders at 37 C in urea-containing synthetic body fluids
Rodrıguez-Lorenzo et al. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite
KR101423982B1 (en) Whitlockite and method for manufacturing the same
US20050186249A1 (en) Magnesium-substituted hydroxypatites
US7695740B2 (en) Synthetic calcium phosphate comprising silicon and trivalent cation
CN102616762B (en) Method for hydro-thermal preparation of hydroxyapatite powder by calcium silicate precursor
JP2000512971A (en) Novel minerals and their production and use
Kannan et al. Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites
Graham et al. The low temperature formation of octacalcium phosphate
JPS6287406A (en) Production of beta-tricalcium phosphate
JP2004026648A (en) Method for manufacture alpha- and beta-tricalcium phosphate powder
Tsyganova et al. Role of Mg 2+, Sr 2+, and F–ions in octacalcium phosphate crystallization
JPH06122510A (en) Method for producing hexacalcium phosphate
CN105948012A (en) Method for preparing beta-tricalcium phosphate crystal material under low temperature condition
JPS5951485B2 (en) Production method of CaO-P↓2O↓5-based apatite
RU2657817C1 (en) Method for producing ceramic powder based on hydroxyapatite and wollastonite
JP3880090B2 (en) Preparation method of non-stoichiometric witrockite by liquid phase reaction
KR20040051381A (en) Sythesis of Hydroxyapatite Nanopowder
JP3668530B2 (en) Method for producing tetracalcium phosphate
Guerra-López et al. Effects of nickel on calcium phosphate formation
JPH10130099A (en) Production of hydroxyapatite whisker
KR960012708B1 (en) Process for the preparation of hydroxy appatite
KR100275628B1 (en) Manufacturing method of high-purity crystalline hydroxyapatite
RU2714188C1 (en) Method of producing colored single-phase calcium pyrophosphate
GB2349877A (en) Preparing carbonated hydroxyapatite

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107