JPH0425119Y2 - - Google Patents

Info

Publication number
JPH0425119Y2
JPH0425119Y2 JP1986078226U JP7822686U JPH0425119Y2 JP H0425119 Y2 JPH0425119 Y2 JP H0425119Y2 JP 1986078226 U JP1986078226 U JP 1986078226U JP 7822686 U JP7822686 U JP 7822686U JP H0425119 Y2 JPH0425119 Y2 JP H0425119Y2
Authority
JP
Japan
Prior art keywords
solvent
activated carbon
layer
carbon layer
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986078226U
Other languages
Japanese (ja)
Other versions
JPS62192382U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986078226U priority Critical patent/JPH0425119Y2/ja
Publication of JPS62192382U publication Critical patent/JPS62192382U/ja
Application granted granted Critical
Publication of JPH0425119Y2 publication Critical patent/JPH0425119Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はドライクリーニング機械などに適用さ
れる溶剤回収装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a solvent recovery device applied to dry cleaning machines and the like.

(従来の技術) まず、第2図を用いて一般のドライクリーニン
グ工程を概説する。
(Prior Art) First, a general dry cleaning process will be outlined using FIG.

ドアー1から衣料2を投入しドアー1を閉じて
運転を開始すると、一般には次の順序で工程が進
行する。
When the clothing 2 is put in through the door 1, the door 1 is closed, and the operation is started, the steps generally proceed in the following order.

溶剤タンク3から溶剤4をバルブ5を介して
ポンプ6で汲揚げ、バルブ7、フイルタ8から
成る経路またはバルブ9から成る経路によつて
処理槽10に溶剤4を必要量送り込む。
The solvent 4 is pumped up from the solvent tank 3 through the valve 5 by the pump 6, and the required amount of the solvent 4 is sent into the processing tank 10 through the path consisting of the valve 7 and the filter 8 or the path consisting of the valve 9.

処理ドラム11をゆつくり回し、溶剤4を処
理槽10、ボタントラツプ12、バルブ13、
ポンプ6、バルブ7、フイルタ8またはバルブ
9から成る回路で循環して衣料2を洗浄する。
Gently rotate the processing drum 11 and pour the solvent 4 into the processing tank 10, button trap 12, valve 13,
Clothes 2 are washed by circulation through a circuit consisting of pump 6, valve 7, filter 8 or valve 9.

処理槽10、ボタントラツプ12、バルブ1
3、ポンプ6、バルブ14、蒸留器15の経路
で排液し、つづいて処理ドラム11が高速回転
して衣料2中の溶剤4を遠心分離し、同様に排
液する。
Processing tank 10, button trap 12, valve 1
3, the liquid is drained through the path of the pump 6, the valve 14, and the distiller 15, and then the processing drum 11 rotates at high speed to centrifugally separate the solvent 4 in the clothing 2, and the liquid is drained in the same way.

項、項の工程をくりかえす。 Repeat the steps in section and section.

処理槽10、ボタントラツプ12、バルブ1
3、バルブ5の経路で溶剤4を排液し、つづい
て処理ドラム11を高速回転して衣料2中の溶
剤4を遠心分離し、同様に排液しる。
Processing tank 10, button trap 12, valve 1
3. Drain the solvent 4 through the path of the valve 5, then rotate the processing drum 11 at high speed to centrifugally separate the solvent 4 in the clothing 2, and drain it in the same way.

再び処理ドラム11をゆつくり回し、フアン
16、エアクーラ17、エアヒータ18、から
成るリカバリエアダクト19と処理槽10の間
を矢印20の向きでエアを循環し、衣料2を乾
燥する。衣料2から蒸発した溶剤ガスはエアク
ーラ17で凝縮し、回収経路21を経て水分離
器22に入り、溶剤配管23を通つてクリンタ
ンク24に入る。
The processing drum 11 is slowly rotated again, and air is circulated in the direction of the arrow 20 between the recovery air duct 19 consisting of the fan 16, the air cooler 17, and the air heater 18 and the processing tank 10, thereby drying the clothes 2. The solvent gas evaporated from the clothing 2 is condensed in the air cooler 17, enters the water separator 22 through the recovery path 21, and enters the clean tank 24 through the solvent pipe 23.

乾燥が終了するとダンパ25,26が破線の
如く開き、ダンパ25から新鮮な空気をとり入
れて、ダンパ26からエアクーラ17では回収
できない未凝縮溶剤ガスを排気し、衣料2中の
溶剤臭を脱臭する。
When drying is completed, dampers 25 and 26 open as shown by broken lines, fresh air is taken in from the damper 25, and uncondensed solvent gas that cannot be recovered by the air cooler 17 is exhausted from the damper 26, thereby deodorizing the solvent odor in the clothing 2.

項の工程で蒸留器15に入つた溶剤4は蒸
発してコンデンサ27で凝縮回収され、水分離
器22、溶剤配管23を通つてクリーンタンク
24に入り、オーバフロー付仕切板28から溶
剤タンク3にもどる。なお、水分離器22で分
離した水は水配管29によつて系外へ排出す
る。
The solvent 4 that entered the distiller 15 in the step 2 evaporates and is condensed and recovered in the condenser 27, enters the clean tank 24 through the water separator 22 and solvent piping 23, and is transferred to the solvent tank 3 from the overflow partition plate 28. Return. Note that the water separated by the water separator 22 is discharged to the outside of the system through a water pipe 29.

次に溶剤回収装置について説明すると、乾燥工
程で衣料2より蒸発した溶剤ガスは、エアクーラ
17で冷却され、凝縮回収される。エアクーラ1
7は通常水冷式で井戸水を使用しており、溶剤ガ
スを32〜35℃程度に冷却する。そこで溶剤ガスは
凝縮液化して回収されることになるが、空気に含
まれる溶剤ガスは飽和濃度の関連で冷却温度が低
いほどよく除去される。このため例えば、溶剤が
パークロルエチレンの場合には冷却温度が35℃程
度では空気に含まれる溶剤の濃度を250g/m3
下とすることはできず、このままでは衣料2に強
い臭気が残ることになる。従つて、脱臭工程では
臭気を除去するためにダンパ25を開いて外気を
取入れ、これを衣料2に接触されて溶剤ガス濃度
を希釈させ、ダンパ26から機外に排出させる。
しかし、この排気中には希釈されたとはいえ、初
期には数万p.p.mに達する溶剤ガスの排出が行な
われ、大気汚染の問題が生じる。
Next, the solvent recovery device will be described. The solvent gas evaporated from the clothing 2 during the drying process is cooled by the air cooler 17 and condensed and recovered. air cooler 1
7 is usually water-cooled and uses well water to cool the solvent gas to about 32 to 35 degrees Celsius. Therefore, the solvent gas is condensed and liquefied and recovered, but the lower the cooling temperature, the better the solvent gas contained in the air is removed due to the saturation concentration. For this reason, for example, if the solvent is perchlorethylene, the concentration of the solvent in the air cannot be reduced to less than 250 g/m 3 if the cooling temperature is around 35°C, and if this continues, a strong odor will remain on the clothing 2. become. Therefore, in the deodorizing process, in order to remove odors, the damper 25 is opened to take in outside air, which is brought into contact with the clothing 2 to dilute the solvent gas concentration, and is then discharged from the damper 26 to the outside of the machine.
However, although the exhaust gas is diluted, it initially releases solvent gas that reaches tens of thousands of ppm, causing air pollution.

その対策および溶剤回収による省資源を目的と
して、従来もダンパ26からダクト30を介して
第3図に示す溶剤回収装置31に通し、溶剤ガス
をこの装置31内に設けた活性炭層32に吸着さ
せてきれいな空気のみを大気中に放出している。
この溶剤回収装置31は活性炭が溶剤ガスで飽和
に達すると蒸気配管33よりボイラー(図示せ
ず)で発生した高圧蒸気を吹きつけて、この溶剤
を蒸発させる。所謂、脱着を行なう。蒸発した溶
剤ガスは、水冷コンデンサ34に導かれて凝縮液
化し、水分離器35で回収溶剤と水に分離されて
回収される。脱着工程に続き乾燥フアン36を作
動させて活性炭層32を乾燥する乾燥工程に入
り、活性炭層32を再生して、次の吸着工程に備
えるという方法が従来一般的に行なわれている。
In order to counter this problem and to save resources through solvent recovery, conventionally, the solvent gas is passed from the damper 26 through the duct 30 to the solvent recovery device 31 shown in FIG. Only clean air is released into the atmosphere.
When the activated carbon reaches saturation with solvent gas, the solvent recovery device 31 blows high-pressure steam generated in a boiler (not shown) through a steam pipe 33 to evaporate the solvent. So-called detachment is performed. The evaporated solvent gas is led to a water-cooled condenser 34 where it is condensed and liquefied, and is separated into a recovered solvent and water by a water separator 35 and recovered. Following the desorption process, a drying process is generally performed in which the drying fan 36 is operated to dry the activated carbon layer 32, and the activated carbon layer 32 is regenerated in preparation for the next adsorption process.

ところで、前記活性炭層32で溶剤ガスを完全
に吸着するためには、一定以上の接触時間が必要
であり、溶剤ガスの流速にもよるが、通常300〜
500mmの層厚とするのだ普通である。脱着工程で
は高圧蒸気を活性炭層32の上部より吹付けて加
熱し、溶剤を蒸発させるが、前記の如く層厚が厚
いため下層まで加熱するのに相当の時間を要する
ことになり、時間短縮の妨げになつているのが実
情である。
By the way, in order for the activated carbon layer 32 to completely adsorb the solvent gas, a contact time of a certain length or more is required, and although it depends on the flow rate of the solvent gas, it is usually 300 to 300 seconds.
The layer thickness is usually 500mm. In the desorption process, high-pressure steam is sprayed from the top of the activated carbon layer 32 to heat it and evaporate the solvent, but as the layer is thick as described above, it takes a considerable amount of time to heat the bottom layer. The reality is that this is getting in the way.

(考案が解決しようとする問題点) このように、従来のこの種溶剤の回収装置にあ
つては、エア中の溶剤ガスを完全に吸着させるた
めに活性炭層を厚くしなければならず、そのため
脱着工程では高圧蒸気による加熱が下層に至るま
でに要する時間が長くかかり、処理効率の面から
大きな問題となつていた。
(Problems to be solved by the invention) As described above, in the conventional recovery equipment for this type of solvent, the activated carbon layer must be made thick in order to completely adsorb the solvent gas in the air. In the desorption process, it takes a long time for the heating with high-pressure steam to reach the lower layer, which poses a major problem in terms of processing efficiency.

本考案は、これらの問題点を解決すべくなされ
たものであつて、溶剤ガスの吸着は従来同様に完
全なものであり、脱着時間が大巾に減少される溶
剤回収装置を提供しようとするものである。
The present invention has been made to solve these problems, and aims to provide a solvent recovery device in which the adsorption of solvent gas is as complete as before, and the desorption time is greatly reduced. It is something.

(問題点を解決するための手段) このため本考案は、板厚300〜500mmの層厚の活
性炭層を段数に応じて分割してなる薄い活性炭層
により、内部空間を上流側と下流側に仕切つてな
る溶剤処理槽を、開閉弁を介して溶剤ガスの流れ
方向に少なくとも2段以上直列に設けると共に、
同各処理槽の上流側に液化溶剤出口を、下流側に
脱着蒸気入口を夫々並列に設けてなるもので、こ
れを課題解決のための手段とするものである。
(Means for solving the problem) Therefore, the present invention uses a thin activated carbon layer that is made by dividing an activated carbon layer with a thickness of 300 to 500 mm according to the number of stages, to divide the internal space into upstream and downstream sides. At least two or more stages of partitioned solvent treatment tanks are provided in series in the flow direction of the solvent gas via on-off valves, and
A liquefied solvent outlet is provided in parallel on the upstream side of each treatment tank, and a desorption steam inlet is provided on the downstream side in parallel, and this is used as a means to solve the problem.

(作用) 層厚を2分の1〜数分の1とうすくした複数の
活性炭層を、溶剤吸着時には溶剤ガスの流れが各
層を通過する如く直列に連結し、溶剤の完全吸着
を行なう。また、脱着時にはそれぞれの活性炭槽
毎に高圧蒸気を吹込むことにより、各層は並列し
て脱着が行なわれるため層厚に比例した従来の2
分の1〜数分の1の脱着時間で脱着を可能とす
る。
(Function) A plurality of activated carbon layers having a thickness of one-half to one-several times are connected in series so that the flow of solvent gas passes through each layer during solvent adsorption, thereby completely adsorbing the solvent. In addition, during desorption, high-pressure steam is blown into each activated carbon tank, so that each layer is desorbed in parallel, so it is possible to
Enables desorption in one to several fractions of the time.

(実施例) 以下、本考案の実施例を図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本考案の実施例である溶剤回収装置の
構成を示す説明図である。
FIG. 1 is an explanatory diagram showing the configuration of a solvent recovery device according to an embodiment of the present invention.

第3図に示す従来装置と異なる点は、従来1個
であつた溶剤回収装置31を2〜数個(図示例で
は4個の場合を示す。)に分割し、各溶剤回収槽
31a〜31dをバルブ41a〜41cを介して
直列に連結し、それぞれに従来の2分の1〜数分
の1の厚さの活性炭層32,32…を設け、各溶
剤回収槽31a〜31dの上部にはそれぞれ圧力
蒸気供給口を設けると共にその下部には同蒸気の
排出口が設けられ、それぞれが配管を介して1個
の水冷コンデンサ34に連通している。脱臭工程
で排出される溶剤ガスはダクト30よりバルブ3
9を介して最下段の溶剤回収槽31aに入り、溶
剤ガスを第1段目の活性炭層32に吸着させ、次
いでバルブ41aを介して次段の溶剤回収槽31
bに入つて同様に溶剤ガスを第2段目の活性炭層
32に吸着させ、このようにして順次後段の溶剤
回収槽31c,31dを経て次第にきれいな空気
となつてバルブ40より大気中に放出される。活
性炭の吸着機能は層厚で決まり各段の層厚がうす
くてもトータルで従来装置と同一の層厚をとれば
同一の吸着性能が得られる。
The difference from the conventional device shown in FIG. 3 is that the conventional one solvent recovery device 31 is divided into two to several (the illustrated example shows a case of four), and each solvent recovery tank 31a to 31d is are connected in series via valves 41a to 41c, and each is provided with an activated carbon layer 32, 32, . Each of them is provided with a pressure steam supply port, and a steam discharge port is provided below the pressure steam supply port, and each of them communicates with one water-cooled condenser 34 via piping. The solvent gas discharged during the deodorizing process is passed from the duct 30 to the valve 3.
9 enters the lowest stage solvent recovery tank 31a, the solvent gas is adsorbed on the first stage activated carbon layer 32, and then passes through the valve 41a to the next stage solvent recovery tank 31.
In the same way, the solvent gas is adsorbed on the activated carbon layer 32 in the second stage, and in this way, it passes through the solvent recovery tanks 31c and 31d in the subsequent stages, gradually becomes clean air, and is released into the atmosphere from the valve 40. Ru. The adsorption function of activated carbon is determined by the layer thickness, and even if the layer thickness of each stage is thin, the same adsorption performance can be obtained if the total layer thickness is the same as that of the conventional device.

活性炭は下段より飽和に達するため最上段が飽
和に達した時点で蒸気配管33より高圧蒸気を各
活性炭にいつせいに吹きつけて、この溶剤を蒸発
させる、所謂、脱着を行なう。蒸発した溶剤ガス
は、それぞれの配管を通つて水冷コンデンサ34
に導かれて従来方式と同様凝縮液化し、水分離器
で溶剤と水に分離されて回収される。
Since the activated carbon reaches saturation from the lower stage, when the uppermost stage reaches saturation, high pressure steam is blown from the steam pipe 33 onto each activated carbon one after another to evaporate the solvent, so-called desorption. The evaporated solvent gas passes through each pipe to a water-cooled condenser 34.
The solvent is condensed and liquefied as in the conventional method, separated into solvent and water in a water separator, and recovered.

本実施例にあつても、脱着工程に続き乾燥フア
ン36を作動させてバルブ38を介して各溶剤回
収槽の活性炭層32を乾燥する乾燥工程に入り、
活性炭層32を再生して次の吸着工程に備える従
来と同一の方法を取つている。
In this embodiment as well, following the desorption step, a drying step is started in which the drying fan 36 is operated to dry the activated carbon layer 32 of each solvent recovery tank via the valve 38.
The same method as the conventional method is used to regenerate the activated carbon layer 32 and prepare it for the next adsorption step.

なお、各活性炭層32,32…に吹きつけられ
る高圧蒸気の必要量は一般的には下段のものほど
多くなるため、活性炭への高圧蒸気流量を各段毎
に最適値に合わせることは省エネ対策として有効
な手段となるものである。
In addition, since the required amount of high-pressure steam to be blown onto each activated carbon layer 32, 32, etc. generally increases the lower the layer is, it is an energy-saving measure to adjust the flow rate of high-pressure steam to the activated carbon to the optimum value for each layer. This is an effective means.

(考案の効果) 以上詳細に説明した如く本考案は、薄い活性炭
層を内蔵した溶剤処理槽を、開閉弁を介して溶剤
ガスの流れ方向に少なくとも2段以上直列に設け
ると共に、同処理槽の上流側に液化溶剤出口を、
下流側に脱着蒸気入口を夫々並列に設けたもので
ある。
(Effects of the invention) As explained in detail above, the present invention provides at least two or more stages of solvent treatment tanks containing a thin activated carbon layer in series in the flow direction of the solvent gas via on-off valves, and A liquefied solvent outlet is provided on the upstream side.
Desorption steam inlets are provided in parallel on the downstream side.

一般に溶剤回収装置は、公害防止及び省資源を
目的に溶剤ガスを活性炭層に吸着させ、きれいな
空気のみを大気中に放出するものであり、一定の
接触時間が必要で、溶剤ガスの流速にもよるが、
通常300〜500mmの層厚としている。一方脱着工程
では、高圧蒸気を吸着槽上部より吹付け加熱して
溶剤を蒸発させるが、従来の場合は層厚が厚いた
め、下層まで加熱するのに相当の時間を要するこ
とになり、時間短縮の妨げになつていた。
In general, solvent recovery equipment adsorbs solvent gas onto an activated carbon layer for the purpose of pollution prevention and resource conservation, and releases only clean air into the atmosphere.It requires a certain contact time and is dependent on the flow rate of the solvent gas. It depends, but
The layer thickness is usually 300 to 500 mm. On the other hand, in the desorption process, high-pressure steam is sprayed from the top of the adsorption tank to heat it and evaporate the solvent, but in the conventional case, the layer is thick, so it takes a considerable amount of time to heat up to the bottom layer, which shortens the time. It was getting in the way.

本考案はこの従来の問題を解決したもので、層
厚を従来の2分の1〜数分の1と薄くした複数の
活性炭層を、溶剤吸着時には、溶剤ガスの流れが
各層を通過する如く直列に連結して溶剤の完全吸
着を行い、脱着時には、それぞれの吸着槽毎に高
圧蒸気を吹込むことにより、各活性炭層は並列し
て脱着が行なわれるため、層厚に比例した従来の
2分の1〜数分の1の脱着時間で脱着を可能と
し、効率のよい溶剤回収装置を提供できる効果が
ある。
The present invention solves this conventional problem by using multiple activated carbon layers that are one-half to a few times thinner than conventional ones. The activated carbon layers are connected in series to completely adsorb the solvent, and during desorption, high-pressure steam is blown into each adsorption tank, so that each activated carbon layer is desorbed in parallel. This has the effect of making desorption possible in a fraction of the desorption time and providing an efficient solvent recovery device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の実施例を示す溶剤回収装置の
概略説明図、第2図は従来のドライクリーナの概
略構成を示す側断面図、第3図は従来の溶剤回収
装置の概略説明図である。 図の主要部分の説明、31……溶剤回収装置、
31a〜31d……溶剤回収槽、32……活性炭
層、34……コンデンサ、35……水分離器、3
6……乾燥フアン。
Fig. 1 is a schematic explanatory diagram of a solvent recovery device showing an embodiment of the present invention, Fig. 2 is a side sectional view showing the schematic configuration of a conventional dry cleaner, and Fig. 3 is a schematic explanatory diagram of a conventional solvent recovery device. be. Explanation of the main parts of the figure, 31...Solvent recovery device,
31a to 31d...Solvent recovery tank, 32...Activated carbon layer, 34...Condenser, 35...Water separator, 3
6...Drying fan.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 板厚300〜500mmの層厚の活性炭層を段数に応じ
て分割してなる薄い活性炭層により、内部空間を
上流側と下流側に仕切つてなる溶剤処理槽を、開
閉弁を介して溶剤ガスの流れ方向に少なくとも2
段以上直列に設けると共に、同各処理槽の上流側
に液化溶剤出口を、下流側に脱着蒸気入口を夫々
並列に設けたことを特徴とする溶剤回収装置。
A thin activated carbon layer with a thickness of 300 to 500 mm is divided according to the number of stages, and the internal space is divided into an upstream side and a downstream side. At least 2 in the flow direction
What is claimed is: 1. A solvent recovery device characterized in that more than one stage is provided in series, and a liquefied solvent outlet is provided in parallel on the upstream side of each treatment tank, and a desorption vapor inlet is provided on the downstream side in parallel.
JP1986078226U 1986-05-26 1986-05-26 Expired JPH0425119Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986078226U JPH0425119Y2 (en) 1986-05-26 1986-05-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986078226U JPH0425119Y2 (en) 1986-05-26 1986-05-26

Publications (2)

Publication Number Publication Date
JPS62192382U JPS62192382U (en) 1987-12-07
JPH0425119Y2 true JPH0425119Y2 (en) 1992-06-15

Family

ID=30926972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986078226U Expired JPH0425119Y2 (en) 1986-05-26 1986-05-26

Country Status (1)

Country Link
JP (1) JPH0425119Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650385B2 (en) * 1977-03-22 1981-11-28

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650385U (en) * 1979-09-25 1981-05-02
JPS59146015U (en) * 1983-03-17 1984-09-29 三洋電機株式会社 Filter for dry cleaner
JPS60151527U (en) * 1984-03-19 1985-10-08 日立プラント建設株式会社 Fixed solvent recovery device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650385B2 (en) * 1977-03-22 1981-11-28

Also Published As

Publication number Publication date
JPS62192382U (en) 1987-12-07

Similar Documents

Publication Publication Date Title
JPS63181795A (en) Dry cleaning machiner for cloth
JPH0425119Y2 (en)
JP3657425B2 (en) Organic solvent recovery method and recovery device
JP2515329Y2 (en) Solvent recovery device
JP2792705B2 (en) Solvent recovery equipment for dry cleaning equipment
JPS6223419A (en) Wet type dehumidifier
JPH0422811Y2 (en)
JPS6142546Y2 (en)
JP2001293329A (en) Device and method for recovering organic solvent
JP2971127B2 (en) Dry cleaning method
JPH0639670Y2 (en) Solvent recovery device
JPH0422810Y2 (en)
JPH0122633Y2 (en)
JPH02149297A (en) Dry-cleaning method
JPH0747109Y2 (en) Solvent recovery device for dry cleaner
JPH04300622A (en) Method of controlling solvent vapor concentration in gas rock in device
JPH04348797A (en) Dry cleaning machine
JPH0815518B2 (en) Solvent recovery method in dry cleaning device
JP2813454B2 (en) Dry cleaning method
JP2749991B2 (en) Dry cleaning method
JP3082787B2 (en) Dry cleaning machine
JPS6345275Y2 (en)
JP2948302B2 (en) Dry cleaning machine
JPH0646494Y2 (en) Solvent gas recovery device
JPH0919596A (en) Method and apparatus for combustible solvent dry cleaning