JPH04250903A - Driving mechanism for main spindle of machine tool - Google Patents

Driving mechanism for main spindle of machine tool

Info

Publication number
JPH04250903A
JPH04250903A JP40909790A JP40909790A JPH04250903A JP H04250903 A JPH04250903 A JP H04250903A JP 40909790 A JP40909790 A JP 40909790A JP 40909790 A JP40909790 A JP 40909790A JP H04250903 A JPH04250903 A JP H04250903A
Authority
JP
Japan
Prior art keywords
coil
machine tool
motor
speed
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40909790A
Other languages
Japanese (ja)
Inventor
Atsuo Nakamura
厚生 中村
Yukio Katsusawa
幸男 勝沢
Osamu Masutani
道 桝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP40909790A priority Critical patent/JPH04250903A/en
Priority to PCT/JP1991/001791 priority patent/WO1992011963A1/en
Publication of JPH04250903A publication Critical patent/JPH04250903A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/12Asynchronous induction motors for multi-phase current
    • H02K17/14Asynchronous induction motors for multi-phase current having windings arranged for permitting pole-changing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To provide a driving mechanism for a main spindle of a machine tool, which is compact in its construction, which withstands both low speed & heavy load operation and high speed rotation, and which does not produce vibration or noise. CONSTITUTION:The system is constituted in such a way that an output shaft 42 of a motor 40 having a winding switching mechanism is provided with a through hole 42a, is supported by a ceramic bearing 44, and is directly connected to a main spindle 50 of a machine tool.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は工作機械主軸の駆動機構
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive mechanism for a main shaft of a machine tool.

【0002】0002

【従来の技術】工作機械の主軸は低速高負荷や高速回転
にさらされるが、一般の駆動モータではトルクヤ最高回
転数が低いため、主軸とモータとの間にギヤやベルト等
を介在させた減速機構や増速機構を必要としていた。
[Prior Art] The main spindle of a machine tool is exposed to low-speed, high-load and high-speed rotation, but since the maximum rotational speed of a general drive motor is low, a gear or belt is interposed between the main spindle and the motor to reduce the speed. It required a mechanism and a speed-up mechanism.

【0003】0003

【発明が解決しようとする課題】然しながら、ベルトは
振動やスリップの問題があり、また高速回転には適さな
い。ギヤも騒音が生じ、高速回転には適さない。また、
変速するためには主軸とモータとの間に中間軸が必要で
あり、この中間軸、ギヤ、並びにプーリ等の残留アンバ
ランスが振動の要因となる。更には減速、増速の各機構
の存在のためコンパクトさに欠ける。
However, belts have problems with vibration and slip, and are not suitable for high-speed rotation. Gears also make noise and are not suitable for high speed rotation. Also,
In order to change speed, an intermediate shaft is required between the main shaft and the motor, and residual unbalance in the intermediate shaft, gears, pulleys, etc. becomes a cause of vibration. Furthermore, it lacks compactness due to the presence of deceleration and speed increase mechanisms.

【0004】依って本発明はコンパクトであって、かつ
、低速高負荷や高速回転に耐え得ると共に、振動並びに
騒音の発生しない工作機械主軸の駆動機構の提供を目的
とする
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a drive mechanism for a main shaft of a machine tool that is compact, can withstand low-speed, high-load and high-speed rotation, and does not generate vibration or noise.

【0005】[0005]

【課題を解決するための手段】上記目的に鑑みて本発明
は、卷線切換機構を有するモータの出力軸が貫通穴を有
し、該出力軸がセラミック軸受で軸承されると共に工作
機械の主軸に直結したことを特徴とする工作機械主軸の
駆動機構を提供する。
[Means for Solving the Problems] In view of the above object, the present invention provides an output shaft of a motor having a coil switching mechanism, which has a through hole, and which is supported by a ceramic bearing and which is a main shaft of a machine tool. To provide a drive mechanism for a machine tool main shaft, which is characterized in that it is directly connected to a machine tool main shaft.

【0006】[0006]

【作用】モータと工作機械の主軸とを直結することによ
り増、減速機構をなくしたので振動、騒音が低減される
。更には、単に直結したのみでは主軸の低速高負荷や高
速回転には耐えられない。そこでモータに卷線切換機構
を具備させ、低速回転域においても高出力が得られるよ
うにし、更にはセラミック軸受を採用しているため高速
回転に伴う軸受の焼付きが防止される。また、主軸内に
切削液を貫流させて主軸先端の加工領域に前記切削液を
供給するためにモータの出力軸に貫通穴を設けている。
[Operation] Directly connecting the motor and the main shaft of the machine tool eliminates the need for an increase and decrease mechanism, reducing vibration and noise. Furthermore, simply connecting directly will not be able to withstand the low speed, high load and high speed rotation of the main shaft. Therefore, the motor is equipped with a coil switching mechanism so that high output can be obtained even in a low speed rotation range, and furthermore, ceramic bearings are used to prevent bearing seizing caused by high speed rotation. Further, a through hole is provided in the output shaft of the motor in order to allow the cutting fluid to flow through the main shaft and supply the cutting fluid to the machining area at the tip of the main shaft.

【0007】[0007]

【実施例】以下本発明を添付図面に示す実施例に基づい
て更に詳細に説明する。まず図2はU,V、及びWから
成る3相の交流モータにおける各相コイルをスター結線
した状態を示す模式図であり、図3はU相のみの巻設構
造を参照番号1,2,3等によって示しているスロット
位置との関係において実際の卷設構造として示した図で
ある。各相コイルU,V、及びWは中性点XYZにおい
て電気接続されており、各相内のコイルの巻設構造は互
いに同様であるため、以下U相のみについて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in more detail below based on embodiments shown in the accompanying drawings. First, FIG. 2 is a schematic diagram showing a state in which each phase coil in a three-phase AC motor consisting of U, V, and W is star-connected, and FIG. 3 shows the winding structure of only the U phase with reference numbers 1, 2, FIG. 3 is a diagram showing an actual winding structure in relation to the slot positions indicated by 3 and the like. The phase coils U, V, and W are electrically connected at the neutral point XYZ, and the winding structure of the coils in each phase is the same, so only the U phase will be described below.

【0008】U相コイル巻線の両端は夫々上記中性点X
YZと端子U1とに接続されている。ここでは例として
36スロットを有する交流モータを考えており、端子U
1を発したコイルはスロット1,12,2,11,3,
10の順に挿通して第1のコイル巻線X1を構成し、こ
れに引き続きスロット19,30,20,29,21,
28の順に挿通して他のコイル巻線X2を構成する。こ
こで各スロットの番号は、小さい番号のスロットから大
きい番号のものの順序にて円周方向に並んていることを
表わしている。上記スロット28を通過したコイルは端
子U2を経由して再びスロット1に挿通される。この後
、コイルの通るスロットの順序は上記の第1組のコイル
巻線X1及びX2の場合と同じであり、第2組のコイル
巻線X1′とX2′を構成する。最後のスロット28を
通過したコイルは中性点XYZに終端する。
Both ends of the U-phase coil winding are connected to the neutral point X, respectively.
It is connected to YZ and terminal U1. Here, we are considering an AC motor with 36 slots as an example, and the terminal U
The coils that emitted 1 are slots 1, 12, 2, 11, 3,
10 to constitute the first coil winding X1, and then the slots 19, 30, 20, 29, 21,
28 to form another coil winding X2. Here, the numbers of the slots indicate that the slots are arranged in the circumferential direction in order from the lowest number to the highest number. The coil that has passed through the slot 28 is inserted into the slot 1 again via the terminal U2. Thereafter, the order of the slots through which the coils pass is the same as for the first set of coil windings X1 and X2, forming a second set of coil windings X1' and X2'. The coil passing through the last slot 28 terminates at the neutral point XYZ.

【0009】以上の実施例では、例えば、第1組のコイ
ル巻線X1とX2を各スロットの奥部に配設し、第2組
のコイル巻線X1′とX2′とを各スロットの開口部に
近い方に配設している。本実施例では、中間部分の端子
は端子U2の1個のみであるが、必要に応じて上記のコ
イルの巻設順序に従って繰り返すことにより何個でも設
けることができる。図2及び図3に示す実施例の場合で
は、中性点XYZと端子U1を介して電力を供給すると
全てのコイル巻線X1,X2,X1′、及びX2′を使
用することとなるが、中性点XYZと端子U2を介して
電力を供給した場合は、コイル巻線X1′とX2′のみ
に通電され、残りのコイル巻線X1とX2とには通電さ
れない。これらの端子の切換装置としては、電磁継電気
(MCC)等がある。
In the above embodiment, for example, the first set of coil windings X1 and X2 are disposed deep in each slot, and the second set of coil windings X1' and X2' are arranged in the openings of each slot. It is located closer to the department. In this embodiment, there is only one terminal, terminal U2, in the intermediate portion, but any number of terminals can be provided by repeating the winding order of the coils as required. In the case of the embodiment shown in FIGS. 2 and 3, if power is supplied through the neutral point XYZ and the terminal U1, all the coil windings X1, X2, X1', and X2' are used. When power is supplied through the neutral point XYZ and the terminal U2, only the coil windings X1' and X2' are energized, and the remaining coil windings X1 and X2 are not energized. As a switching device for these terminals, there is a electromagnetic relay (MCC) or the like.

【0010】電力供給を電流制御によって行なうと、ジ
ュール熱等の損失を無視した条件においては、U相コイ
ルの発生させる磁場の強さは各スロットを挿通している
コイルの挿通回数、即ち、コイルの巻線に比例する。従
って出力パワーはこのコイル巻数と回転速度Nに比例す
ることとなる。従って交流モータを低速領域で使用する
場合には回転速度Nが小さいため高出力を得るには使用
するコイル巻数を多くし、高速回転させて使用する場合
にはコイル巻数は少なくても低速回転時と同じ程度の出
力を得ることができる。従って、低い回転速度Nでは端
子U1を介して電力供給を行ない、同一スロットS内の
コイルを全て使用する。また高い回転速度Nでは、低回
転速度の場合と同程度の出力を得るためには、コイルの
途中に設けた複数個の端子のうち適切な巻数となる端子
を選択して使用すればよい。各相に端子を2個ずつ設け
る場合において、使用予定の低回転速度域と高回転速度
域との各ベース回転速度NLとNH(図6参照)が定ま
っている場合には、これらの両回転速度比に応じたコイ
ル巻数となるよう端子U2を設定すればよい。電圧制御
によって電力供給する場合には、各スロットに挿通され
たコイル線に流れる電流値とコイル巻数、並びに回転速
度Nによって出力が変わるので、巻線の途中に設ける端
子の両端のコイル線を抵抗特性の異なる、例えば異なる
材質の線材を使用してもよい。
When power is supplied by current control, under conditions where losses such as Joule heat are ignored, the strength of the magnetic field generated by the U-phase coil is equal to the number of times the coil is inserted through each slot. is proportional to the winding. Therefore, the output power is proportional to the number of turns of the coil and the rotational speed N. Therefore, when using an AC motor in a low speed range, the rotational speed N is small, so in order to obtain high output, the number of coil turns used should be increased, and when used at high speed rotation, the number of coil turns should be small, even if the number of coil turns is small at low speed rotation. You can get the same amount of output as. Therefore, at low rotational speeds N, power is supplied through the terminal U1 and all the coils in the same slot S are used. Further, at a high rotational speed N, in order to obtain an output comparable to that at a low rotational speed, it is sufficient to select and use a terminal having an appropriate number of turns from among a plurality of terminals provided in the middle of the coil. In the case where two terminals are provided for each phase, if the base rotation speeds NL and NH (see Fig. 6) of the low rotation speed range and high rotation speed range that are planned to be used are determined, both of these rotation speeds are determined. The terminal U2 may be set so that the number of coil turns corresponds to the speed ratio. When power is supplied by voltage control, the output changes depending on the current value flowing through the coil wire inserted into each slot, the number of turns of the coil, and the rotation speed N, so the coil wire at both ends of the terminal provided in the middle of the winding is Wire rods having different characteristics, for example, made of different materials may be used.

【0011】図6は図2及び図3に示す本発明に係るコ
イル巻設構造を有する交流モータによる出力特性を図示
している。実線50はベース回転速度NLを有する低回
転速度領域で交流モータを使用した場合の出力Pの回転
速度Nに対する特性曲線を示し、他の実線52はベース
回転速度NHを有する高回転速度領域での出力Pの特性
曲線を示している。両特性曲線50及び52の交鎖する
回転速度NSを境として各相の使用コイル巻線を切換え
れば、使用可能な最大回転数Nmax とベース回転速
度NLとの間の領域においては出力変動の小さな、破線
54で示す出力特性が得られる。即ち、低回転速度領域
の使用時は、各相においてコイル巻線X1,X2,X1
′、及びX2′を全て使用し、高回転速度領域の使用に
おいてはコイル巻線X1′とX2′のみを使用する。
FIG. 6 illustrates the output characteristics of the AC motor having the coil winding structure according to the present invention shown in FIGS. 2 and 3. A solid line 50 shows a characteristic curve of output P versus rotational speed N when the AC motor is used in a low rotational speed region with a base rotational speed NL, and another solid line 52 shows a characteristic curve of the output P with respect to the rotational speed N in a high rotational speed region with a base rotational speed NH. The characteristic curve of the output P is shown. By switching the coil windings for each phase at the rotational speed NS where the characteristic curves 50 and 52 intersect, output fluctuations can be reduced in the region between the maximum usable rotational speed Nmax and the base rotational speed NL. A small output characteristic indicated by the dashed line 54 is obtained. That is, when using the low rotational speed region, the coil windings X1, X2, X1 in each phase
', and X2' are all used, and only the coil windings X1' and X2' are used in the high rotational speed range.

【0012】図2及び図3はコイル巻線を直列にのみ接
続した実施例であるが、図4には直列接続と共に並列接
続を取り入れた場合の他の実施例である。破線で示すS
Lは1つのスロットを表わしている。即ち端子U1から
電力供給すれば全てのコイル巻線A1,A2,A1′、
及びA2′が使用されるが、端子U2を使用するとコイ
ル巻線A1′とA2′のみが使用されることとなり、1
つのスロットSL内では非通電のコイルが存在すること
となる。
While FIGS. 2 and 3 show an embodiment in which the coil windings are connected only in series, FIG. 4 shows another embodiment in which both series connection and parallel connection are incorporated. S indicated by a broken line
L represents one slot. That is, if power is supplied from terminal U1, all coil windings A1, A2, A1',
and A2' are used, but if terminal U2 is used, only coil windings A1' and A2' are used, and 1
There is a non-energized coil in each slot SL.

【0013】図2から図4までは全てスター結線におけ
る実施例であるが、図5においてはデルタ結線における
一実施例を図示している。U相については、図2の場合
と同様に4つのコイル群X1,X2,X1′、及びX2
′は直列に接続されており、1つのスロットには破線S
Lで示す様に2つのコイル巻線(例えばX1とX1′)
の各一部分が挿入配設されている。このコイル巻設構造
において、低回転速度領域でモータを使用する場合には
、図示のスイッチSWを閉じ、SW′を開放して各相U
,V,Wへの電力供給を端子U1,V1,W1を介して
行なう。また高回転速度領域ではスイッチSW′を閉じ
、SWを開放して端子U2,V2,W2から電力供給を
行なう。後者の場合U相に関してはコイル巻線X1′と
X2′のみに通電が行なわれることになる。
Although FIGS. 2 to 4 are all star connection embodiments, FIG. 5 shows an embodiment of a delta connection. Regarding the U phase, four coil groups X1, X2, X1', and X2 are used as in the case of FIG.
' are connected in series, and one slot has a dashed line S.
Two coil windings (e.g. X1 and X1') as shown by L
A portion of each is inserted and arranged. In this coil winding structure, when the motor is used in a low rotational speed region, the switch SW shown in the figure is closed and the switch SW' is opened.
, V, W are supplied via terminals U1, V1, W1. Further, in a high rotational speed region, switch SW' is closed and SW is opened to supply power from terminals U2, V2, and W2. In the latter case, for the U phase, only the coil windings X1' and X2' are energized.

【0014】以下の説明から明らかな様に上記巻線切換
機構によれば、コイル巻線の結線を切換えることのみで
低回転速度から高回転速度までの広い回転速度範囲にお
いて高出力が保持される。従って、低回転速度並びに高
回転速度の両領域において使用する必要のある工作機械
のスピンドルモータ等に適用すれば安価で省スペース化
の達成された駆動源の提供が可能となる。また各相コイ
ル巻線の途中に設ける端子は、各相コイル巻線の使用コ
イル巻数を適切に選定して配設でき、また複数個所に設
けることができるので、高回転速度領域と低回転速度領
域の夫々のベース回転速度の比率を比較的任意に設定、
変更することができる。
As is clear from the following explanation, according to the above winding switching mechanism, high output can be maintained over a wide rotational speed range from low rotational speed to high rotational speed simply by switching the connection of the coil winding. . Therefore, if the present invention is applied to spindle motors of machine tools that need to be used in both low rotational speed and high rotational speed ranges, it becomes possible to provide an inexpensive and space-saving drive source. In addition, the terminals provided in the middle of each phase coil winding can be arranged by appropriately selecting the number of coil turns used in each phase coil winding, and can be provided in multiple locations, so it is possible to Set the base rotation speed ratio of each area relatively arbitrarily,
Can be changed.

【0015】次に図1を参照すると、工作機械の主軸5
0が、上述の巻線切換機構を有した駆動モータ40の出
力軸42と、周知のシュパンリング等の連結部材48を
介して同軸状に直結されている。
Next, referring to FIG. 1, the main shaft 5 of the machine tool
0 is coaxially directly connected to the output shaft 42 of the drive motor 40 having the above-mentioned winding switching mechanism via a connecting member 48 such as a well-known span ring.

【0016】また、モータ40の出力軸42はセラミッ
ク軸受44によって軸承されており、高速回転において
も焼付を生ずることがない。
Further, the output shaft 42 of the motor 40 is supported by a ceramic bearing 44, so that seizure does not occur even during high speed rotation.

【0017】主軸50内に配設されたドローバー52に
は主軸50の先端部分に加工液を供給するための貫通穴
52aが設けられており、モータ40の出力軸心42に
も同様に貫通穴42aが設けられており、この出力軸4
2の後端に配設されたロータリージョイント46を介し
て加工液が上記各貫通穴を通って主軸先端の加工領域に
供給される。また上記出力軸42の貫通穴42aはドロ
ーバー52をモータ40の後方から操作する設計機構を
採用する場合にも利用可能である。
The drawbar 52 disposed inside the main shaft 50 is provided with a through hole 52a for supplying machining fluid to the tip of the main shaft 50, and the output shaft center 42 of the motor 40 is also provided with a through hole 52a. 42a is provided, and this output shaft 4
The machining fluid is supplied to the machining area at the tip of the spindle through the through holes through a rotary joint 46 disposed at the rear end of the rotary joint 46. Further, the through hole 42a of the output shaft 42 can also be used when a designed mechanism in which the draw bar 52 is operated from the rear of the motor 40 is adopted.

【0018】上述した駆動モータ40は、増速機構なし
で主軸50と連結されており、主軸50の要求仕様であ
る高速回転まで回転可能に設計されており、また、出力
も主軸50の仕様に合致させている。従って、発熱が高
く、駆動モータ40を効率的に冷却する必要がある。そ
のためには、例えば、本出願人による特開平2−797
46 号公報に開示する様なモータの冷却構造を必要と
する場合もある。
The drive motor 40 described above is connected to the main shaft 50 without a speed increasing mechanism and is designed to be able to rotate up to the high speed rotation required by the main shaft 50, and the output also meets the specifications of the main shaft 50. It matches. Therefore, heat generation is high, and it is necessary to cool the drive motor 40 efficiently. For this purpose, for example, Japanese Patent Laid-Open No. 2-797 published by the applicant
In some cases, a motor cooling structure as disclosed in Japanese Patent No. 46 may be required.

【0019】また、モータの出力軸42と工作機械の主
軸50とが直結されているため、モータ側に回転位置等
の検出器54が設けてあれば、主軸そのもののための検
出器は不要である。
Furthermore, since the output shaft 42 of the motor and the main shaft 50 of the machine tool are directly connected, if a detector 54 for detecting rotational position etc. is provided on the motor side, there is no need for a detector for the main shaft itself. be.

【0020】[0020]

【発明の効果】以上の説明から明らかな様に本発明によ
れば、コンパクトであって、かつ、低速高負荷や高速回
転に耐え得ると共に、振動並びに騒音の発生しない工作
機械主軸の駆動機構の提供が可能となる。
As is clear from the above description, the present invention provides a machine tool spindle drive mechanism that is compact, can withstand low-speed, high-load and high-speed rotation, and does not generate vibration or noise. It becomes possible to provide.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る駆動機構を示す部分断面図である
FIG. 1 is a partial sectional view showing a drive mechanism according to the present invention.

【図2】駆動用モータのコイル巻設構造の第1の実施例
を示す模式図である。
FIG. 2 is a schematic diagram showing a first example of a coil winding structure of a drive motor.

【図3】図2のコイル巻設構造のうち1相をスロットと
の対応において示したコイル巻設構造図である。
3 is a diagram of a coil winding structure showing one phase of the coil winding structure of FIG. 2 in correspondence with a slot; FIG.

【図4】駆動用モータのコイル巻設構造の第2の実施例
を示す模式図である。
FIG. 4 is a schematic diagram showing a second embodiment of a coil winding structure of a drive motor.

【図5】駆動用モータのコイル巻設構造の第3の実施例
を示す模式図である。
FIG. 5 is a schematic diagram showing a third embodiment of a coil winding structure of a drive motor.

【図6】第1から第2の実施例に示すコイル巻設構造を
有するモータの出力特性グラフ図である。
FIG. 6 is an output characteristic graph of a motor having a coil winding structure shown in the first to second embodiments.

【符号の説明】[Explanation of symbols]

40…駆動モータ 42…出力軸 42a …貫通穴 44…セラミック軸受 48…連結部材 50…主軸 40...Drive motor 42...Output shaft 42a...Through hole 44...Ceramic bearing 48...Connection member 50...Main shaft

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  卷線切換機構を有するモータの出力軸
が貫通穴を有し、該出力軸がセラミック軸受で軸承され
ると共に工作機械の主軸に直結されたことを特徴とする
工作機械主軸の駆動機構。
1. A main shaft of a machine tool, characterized in that the output shaft of a motor having a coil switching mechanism has a through hole, the output shaft is supported by a ceramic bearing, and is directly connected to the main shaft of the machine tool. Drive mechanism.
JP40909790A 1990-12-28 1990-12-28 Driving mechanism for main spindle of machine tool Pending JPH04250903A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP40909790A JPH04250903A (en) 1990-12-28 1990-12-28 Driving mechanism for main spindle of machine tool
PCT/JP1991/001791 WO1992011963A1 (en) 1990-12-28 1991-12-27 Device for driving main shaft of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40909790A JPH04250903A (en) 1990-12-28 1990-12-28 Driving mechanism for main spindle of machine tool

Publications (1)

Publication Number Publication Date
JPH04250903A true JPH04250903A (en) 1992-09-07

Family

ID=18518473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40909790A Pending JPH04250903A (en) 1990-12-28 1990-12-28 Driving mechanism for main spindle of machine tool

Country Status (2)

Country Link
JP (1) JPH04250903A (en)
WO (1) WO1992011963A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543351B2 (en) * 2000-01-07 2010-09-15 株式会社安川電機 Method and apparatus for controlling spindle device of lathe with electric chuck
CN102554282A (en) * 2012-02-08 2012-07-11 绍兴文理学院 Multifunctional inductive electric spindle
CN102581318A (en) * 2012-02-08 2012-07-18 绍兴文理学院 Multifunctional permanent-magnet synchronous electric spindle
CN103111895A (en) * 2013-03-15 2013-05-22 中国工程物理研究院机械制造工艺研究所 Shifting fork type precise flexible connection driving mechanism
CN104308198A (en) * 2014-09-28 2015-01-28 浙江日创机电科技有限公司 Main shaft device for direct-drive numerical-control hobbing tool rest

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBA20010022A1 (en) * 2001-05-11 2002-11-11 Jupiter Srl PRECISION HEAD WITH CONTROLLED AXES WITH AUTOMATIC GEARBOXES CHANGE
CN104907588B (en) * 2014-03-14 2016-12-14 宁波贝仕利机电技术有限公司 Autonomous air impervious environment-friendly type high-speed electric main shaft
DE102015105338A1 (en) * 2015-04-08 2016-10-27 Lti Motion Gmbh Tool drive with spindle shaft and operating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139848A (en) * 1980-03-27 1981-10-31 Makino Milling Mach Co Ltd Spindle device for machine tool
JPS6239154A (en) * 1985-08-12 1987-02-20 Toshiba Mach Co Ltd Spindle head of machine tool
JPS63272442A (en) * 1987-04-30 1988-11-09 フリードリッヒ デッケル アクチエンゲゼルシャフト Tool spindle with electric drive motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953136A (en) * 1982-09-14 1984-03-27 Teijin Seiki Co Ltd Main shaft driving apparatus
JP2704263B2 (en) * 1988-02-22 1998-01-26 ファナック 株式会社 Winding switching control device
JPH0618721Y2 (en) * 1989-01-31 1994-05-18 三菱重工業株式会社 Machine tool spindle head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139848A (en) * 1980-03-27 1981-10-31 Makino Milling Mach Co Ltd Spindle device for machine tool
JPS6239154A (en) * 1985-08-12 1987-02-20 Toshiba Mach Co Ltd Spindle head of machine tool
JPS63272442A (en) * 1987-04-30 1988-11-09 フリードリッヒ デッケル アクチエンゲゼルシャフト Tool spindle with electric drive motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543351B2 (en) * 2000-01-07 2010-09-15 株式会社安川電機 Method and apparatus for controlling spindle device of lathe with electric chuck
CN102554282A (en) * 2012-02-08 2012-07-11 绍兴文理学院 Multifunctional inductive electric spindle
CN102581318A (en) * 2012-02-08 2012-07-18 绍兴文理学院 Multifunctional permanent-magnet synchronous electric spindle
CN103111895A (en) * 2013-03-15 2013-05-22 中国工程物理研究院机械制造工艺研究所 Shifting fork type precise flexible connection driving mechanism
CN103111895B (en) * 2013-03-15 2015-03-04 中国工程物理研究院机械制造工艺研究所 Shifting fork type precise flexible connection driving mechanism
CN104308198A (en) * 2014-09-28 2015-01-28 浙江日创机电科技有限公司 Main shaft device for direct-drive numerical-control hobbing tool rest

Also Published As

Publication number Publication date
WO1992011963A1 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
US8618760B2 (en) Electrical machine
AU643525B2 (en) Dual-stator induction synchronous motor
US6097127A (en) Permanent magnet direct current (PMDC) machine with integral reconfigurable winding control
US4785213A (en) Variable speed controlled induction motor
US7134180B2 (en) Method for providing slip energy control in permanent magnet electrical machines
KR920000683B1 (en) Variable speed induction motor
AU729691B2 (en) Permanent magnet direct current (PMDC) machine with integral reconfigurable winding control
US5343105A (en) AC generator for vehicles
US4782257A (en) Dual rotor magnet machine
Osama et al. A new inverter control scheme for induction motor drives requiring wide speed range
US6724115B2 (en) High electrical and mechanical response structure of motor-generator
US4644206A (en) Continuously variable torque converter
JPH02228238A (en) Flux concentrating magnet synchronous motor
US5177423A (en) Winding arrangement in an AC motor
JPH04250903A (en) Driving mechanism for main spindle of machine tool
JPS62285690A (en) Adjustable speed induction motor
US6891301B1 (en) Simplified hybrid-secondary uncluttered machine and method
US20040041490A1 (en) Psc motor having a 4 / 6-pole common winding and having an additional 4-pole winding
JP4635829B2 (en) Permanent magnet motor
EP0378693B1 (en) Coil winding structure of a.c. motor coil
JPH04244771A (en) Machine tool spindle driving system employing switching of winding od synchronous motor
JP2919492B2 (en) Multiple stator induction motor
JPS6311089A (en) Adjust speed induction motor
JPH07212922A (en) Drive unit for electric car
SU1107223A1 (en) Single-phase asynchronous motor