CN102581318A - Multifunctional permanent-magnet synchronous electric spindle - Google Patents

Multifunctional permanent-magnet synchronous electric spindle Download PDF

Info

Publication number
CN102581318A
CN102581318A CN201210027276XA CN201210027276A CN102581318A CN 102581318 A CN102581318 A CN 102581318A CN 201210027276X A CN201210027276X A CN 201210027276XA CN 201210027276 A CN201210027276 A CN 201210027276A CN 102581318 A CN102581318 A CN 102581318A
Authority
CN
China
Prior art keywords
permanent
rotor
main shaft
magnet
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210027276XA
Other languages
Chinese (zh)
Inventor
乔晓利
周俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201210027276XA priority Critical patent/CN102581318A/en
Publication of CN102581318A publication Critical patent/CN102581318A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

The invention discloses a multifunctional permanent-magnet synchronous electric spindle, which comprises a rotor, a permanent magnet and a stator of a permanent-magnet synchronous motor, wherein the rotor and the permanent magnet are structurally integrated with a machine tool spindle, and the stator is arranged in a machine tool shell. A tap is led out of a midpoint of each phase winding of the stator and electrically connected with an electric controller, at least three displacement sensors are evenly distributed around the front end of the rotor and respectively electrically connected with the electric controller, radial vibration displacement of the rotor or a cutter is transferred to the electric controller by the displacement sensors, and the electric controller is used for controlling the strength and the direction of current leading into the taps according to the radial vibration displacement, and accordingly generating controllable radial control force on the rotor to control vibration of the rotor and vibration of the cutter during machining. Without changing the basic structure of a traditional electric spindle, vibration of the electric spindle or vibration of the cutter during machining can be economically and conveniently controlled.

Description

Multifunctional permanent-magnet synchronized model electricity main shaft
Technical field
The present invention relates to the electric main shaft of high-speed machine tool, especially a kind of multifunctional permanent-magnet synchronized model electricity main shaft.
Background technology
High speed machining is one of advanced manufacturing technology of tool development prospect 21 century.High-speed machining not only can improve the working (machining) efficiency of part significantly, reduces process time and cost, but also can improve the machining accuracy and the surface quality of part.The high-speed numeric control lathe is the precondition that realizes High-speed machining, and it is not only the basis and the strategic industry of equipment manufacture, and how much the height of its technical merit and owning amount also is the sign of weighing a national manufacturing industry level height.The electricity main shaft is the core component of high-speed machine tool, and its performance quality has determined the machining accuracy and the quality of whole lathe to a great extent.
The electricity main shaft is that drive motor is integrated on the machine tool chief axis, and the function of drive motor and machine tool chief axis is combined together.Generally be that the motor stator that has coolant jacket is assemblied in the housing of main axle unit, the rotary part of motor rotor and machine tool chief axis is made of one, and process tool is installed in the end.Compare with the machine tool chief axis of traditional separate type; The electricity main shaft is owing to saved middle speed change and transmission device directly drives cutter work; Have that compact conformation, efficient are high, response is fast, in light weight, inertia is little, noise is low, precision is high, be prone to realize stepless speed regulation, adopt closed-loop control not only can satisfy the requirement of low speed high torque but also have in addition and be easy to realize high speed, dynamic property and stable characteristics such as better.At present; High-speed electric main shaft on the market is main with induction conductivity mainly; But volume is little, in light weight, loss is little, the power factor advantages of higher because permanent-magnet synchronous type motor has, thereby makes the permanent-magnet type synchronous motor aspect high-speed electric main shaft, obtain extensive use.
Yet; Because the electro-magnetic exciting force that magnetic field produced in caused flutter and the electric main shaft permanent-magnet synchronous type motor air gap in the mechanical exciting force that mass unbalance produced of each parts, the High-speed machining process on the electric main shaft, thereby cause the vibration of electric main shaft.The mass unbalance of each parts is that, reasons such as material inhomogeneous, processing technology and process tool asymmetric owing to motor rotor structure cause on the electricity main shaft; The center of gravity of electric spindle rotor is not overlapped with the geometric center of motor; The uneven exciting force that the electricity main shaft produces when rotated; Thereby cause that the rotor center axis of inertia does not overlap with axis of rotation, produce vibration.Any electric main shaft all exists certain quality uneven, though through electric main shaft is carried out dynamic balancing, can reduce the uneven level of rotor, can't eliminate fully.The electro-magnetic exciting force that electricity main shaft permanent-magnet synchronous type motor air gap magnetic field produces is to be produced by asymmetrical magnetic field in the permanent-magnet synchronous type motor air gap.Asymmetrical magnetic field is to be caused by the harmonic component in the motor stator currents on the one hand in the permanent-magnet synchronous type motor air gap, is because motor rotor or the asymmetric of stator structure cause on the other hand.The electromagnetic excitation power that permanent-magnet synchronous type motor air gap magnetic field is produced applies extra magnetic pumping to rotor, causes the vibration of electric main shaft permanent-magnet synchronous type motor rotor.
For electric main shaft and the vibration that in process, produced thereof are controlled; Prior art is on electric main shaft, to add dynamic poise device or power actuator, and dynamic poise device and power actuator mainly contain multiple modes such as liquid-spraying type, mechanical type, electromagnetic type, motor-driven mechanical type, mechanical type damper, ER fluid dynamic vibration absorber, electromagnetic type damper, piezo-electric type actuator and built-in power actuator.Though some installs commercialization; Like the SBS system of the Schmitt Industries company of the electric main shaft with on-line automatic bascule of the Fischer company of Switzerland, the U.S., TABS system, the online balance sysmte of baladyne company and the Italian Marposs E of the company series of products etc. of Kennametal Hertel company; And on the electric main shaft of some lathes, obtained successful application; But these solutions all need be directly installed on the electric main shaft, because the physical dimension of itself is bigger, cost an arm and a leg; Adjustment process is very complicated, just on the low speed main shaft of large-scale grinding machine, uses at present.If can not change the basic structure of the bearing and the permanent-magnet synchronous type motor stator rotor of traditional electrical main shaft; Can produce the device of certain control as requested and on the body construction of electric main shaft, design a cover, so just can economy, realize electric main shaft and the vibration that in process, produced thereof are controlled easily.
Summary of the invention
The objective of the invention is to: a kind of multifunctional permanent-magnet synchronized model electricity main shaft is provided; Under the prerequisite of not changing traditional electrical main shaft basic structure; Through simple adjustment, just can realize economical, easily the vibration of the cutter that causes in electric main shaft or the process is controlled to electric main shaft permanent-magnet synchronous type motor winding.
For realizing above-mentioned purpose, the present invention can take following technical proposals:
A kind of multifunctional permanent-magnet synchronized model electricity of the present invention main shaft; The rotor and the permanent magnet that comprise the permanent-magnet synchronous type motor that is structure as a whole with machine tool chief axis; With the stator that is arranged on the permanent-magnet synchronous type motor in the lathe housing; Front-end of spindle portion is equipped with process tool; All draw a tap from the mid point of the every phase winding of said stator, each tap is electrically connected with an electric controller respectively, and the surrounding rotor leading section also is evenly equipped with at least three displacement transducers in the lathe housing; Each said displacement transducer is electrically connected with said electric controller respectively: each said displacement transducer is used for the radial vibration displacement of detection rotor or cutter, and this radial vibration displacement is passed to electric controller; Said electric controller is according to the radial vibration displacement, and control feeds the size and Orientation of each tap electric current, on said rotor, producing controlled radially control, with the vibration of the cutter that causes in the vibration of controlling said rotor and the process.
Said permanent-magnet synchronous type motor is a single-phase permanent synchronized model motor, or two-phase permanent magnet synchronized model motor, or three-phase permanent synchronized model motor, or multi-phase permanent synchronized model motor.
Described electric main shaft is a surface-type or built-in, or the Lundell structure.
Described bearing is a rolling bearing, or sliding bearing, or magnetic bearing.
Compared with prior art the invention has the beneficial effects as follows: owing to adopt technique scheme; All draw a tap from the mid point of the every phase winding of said stator; Each tap is electrically connected with an electric controller respectively; The surrounding rotor leading section also is evenly equipped with at least three displacement transducers in the lathe housing; Each said displacement transducer is electrically connected with said electric controller respectively: each said displacement transducer is used for the radial vibration displacement of detection rotor or cutter, and this radial vibration displacement is passed to electric controller; Said electric controller is according to the radial vibration displacement; Control feeds the size and Orientation of each tap electric current; On said rotor, to produce controlled radially control; With the vibration of the cutter that causes in the vibration of controlling said rotor and the process, this structure, can be simply, economical, realize the vibration of the cutter that causes in electric main shaft or the process is controlled easily.
Description of drawings
Fig. 1 produces the radially schematic diagram of control of
Figure 201210027276X100002DEST_PATH_IMAGE001
direction on the rotor of the present invention;
Fig. 2 produces the radially schematic diagram of control of
Figure 142905DEST_PATH_IMAGE002
direction on the rotor of the present invention;
Fig. 3 is a stator winding wiring diagram of the present invention;
Fig. 4 is the distributed architecture sketch map of stator winding of the present invention.
The specific embodiment
Shown in Fig. 1-4; Multifunctional permanent-magnet synchronized model electricity main shaft of the present invention; Comprise the rotor 5 of the three-phase permanent synchronized model motor that is structure as a whole with machine tool chief axis and be arranged on the stator 6 of the permanent-magnet synchronous type motor in the lathe housing, rotor leading section 8 is equipped with process tool; Surrounding rotor leading section 8 is evenly equipped with three displacement transducers 9 in the lathe housing; Each said displacement transducer 9 is electrically connected with electric controller 7 respectively, and each said displacement transducer is used to detect the radial vibration displacement of main shaft or knife end, and this radial vibration displacement is passed to electric controller; Said electric controller 7 is according to the radial vibration displacement, and control feeds the size and Orientation of each tap electric current, on said rotor 5, to produce controlled radially control, to control the vibration of said rotor 5 ((electric main shaft)); Fig. 3 is a stator winding wiring diagram of the present invention;
Figure 201210027276X100002DEST_PATH_IMAGE003
phase winding is divided into two sub-windings of and
Figure 201210027276X100002DEST_PATH_IMAGE005
two equal turn numbers; These two sub-windings in series connect; Draw a tap from the mid point of sub-winding
Figure 22317DEST_PATH_IMAGE004
and
Figure 605745DEST_PATH_IMAGE005
, this tap is electrically connected with said electric controller; also takes the same structure with
Figure 201210027276X100002DEST_PATH_IMAGE007
winding; Draw a tap from the mid point of sub-winding
Figure 276952DEST_PATH_IMAGE008
and
Figure 201210027276X100002DEST_PATH_IMAGE009
, this tap is electrically connected with said electric controller; Draw a tap from the mid point of sub-winding
Figure 524394DEST_PATH_IMAGE010
and
Figure 201210027276X100002DEST_PATH_IMAGE011
, this tap is electrically connected with said electric controller.
Radially the schematic diagram of control is as shown in Figure 1 to produce
Figure 532801DEST_PATH_IMAGE001
direction on the rotor of the present invention; Narration for ease; Air gap is divided into 1,2,3,4 four zone, and Fig. 2 is similar.In order to say something; Only provided the current conditions of
Figure 586208DEST_PATH_IMAGE012
phase winding among the figure; If only in the A phase winding, feed torque current
Figure 201210027276X100002DEST_PATH_IMAGE013
(torque current of B, C phase winding is respectively ,
Figure DEST_PATH_IMAGE015
); Air gap flux density in the zone 1,2,3 and 4 is identical, so the Maxwell that receives of rotor 5 (electric main shaft) to make a concerted effort be zero.After feeding electric current
Figure 301057DEST_PATH_IMAGE016
when from the mid-point tap of A phase winding toward winding (B, C phase winding the feeding electric current of mid-point tap be respectively ,
Figure 531181DEST_PATH_IMAGE018
); Because the magnetic linkage in the zone 1 is constant; And the magnetic linkage in the zone 3 is in the opposite direction; The close just minimizing of synthetic magnetic in zone 3 like this, at this moment electric main shaft will receive the make a concerted effort effect of F of Maxwell on
Figure 388279DEST_PATH_IMAGE001
direction in the radial direction.Radially the schematic diagram of control is as shown in Figure 2 for generation- direction on the rotor 5 of the present invention; After feeding negative-phase sequence curent when from the mid-point tap of A phase winding toward winding, because the magnetic linkage in the zone 3 is constant; And the magnetic linkage in the zone 1 is in the opposite direction; The synthetic close minimizing of magnetic in zone 1; At this moment electric main shaft will receive the make a concerted effort effect of F of Maxwell on
Figure 671810DEST_PATH_IMAGE002
direction in the radial direction, and will be as shown in Figure 2.
Figure DEST_PATH_IMAGE019
direction and control over the generation principle orientation similar.As long as control feeds the size and Orientation of each tap electric current, just can go up and produce controllable radial power like this, control the vibration of the cutter that causes in rotor 5 (electric main shaft) or the process at rotor 5 (electric main shaft).
As preferably, described electric main shaft is built-in.As preferably, said displacement transducer 9 is contactless vibrating sensor, also is provided with the acceleration transducer that is electrically connected with electric controller 7 and measures electric spindle vibration acceleration; Also be provided with electric current and voltage that the electric current that is electrically connected with electric controller 7 and voltage sensor are measured electric main shaft; Change the rotating speed of electric main shaft through the high frequency frequency converter; The size and Orientation that feeds electric current in the tap through control to change the size that acts on rotor 5 radial loads in real time, thereby reaches the purpose of electric main shaft of control and the vibration of process tool place.
Displacement transducer 9 is set up in other position on electric main shaft, just can control the vibration of other position on the electric main shaft.
Fig. 4 has provided the distributed architecture sketch map of concrete stator winding.Two sub-windings in series of every phase winding connect.

Claims (4)

1. multifunctional permanent-magnet synchronized model electricity main shaft; The rotor and the permanent magnet that comprise the permanent-magnet synchronous type motor that is structure as a whole with machine tool chief axis; With the stator that is arranged on the permanent-magnet synchronous type motor in the lathe housing; Front-end of spindle portion is equipped with process tool, it is characterized in that: all draw a tap from the mid point of the every phase winding of said stator, each tap is electrically connected with an electric controller respectively; The surrounding rotor leading section also is evenly equipped with at least three displacement transducers in the lathe housing, and each said displacement transducer is electrically connected with said electric controller respectively:
Each said displacement transducer is used for the radial vibration displacement of detection rotor or cutter, and this radial vibration displacement is passed to electric controller;
Said electric controller is according to the radial vibration displacement, and control feeds the size and Orientation of each tap electric current, on said rotor, producing controlled radially control, with the vibration of the cutter that causes in the vibration of controlling said rotor and the process.
2. multifunctional permanent-magnet synchronized model electricity main shaft according to claim 1; It is characterized in that: said permanent-magnet synchronous type motor is a single-phase permanent synchronized model motor; Or two-phase permanent magnet synchronized model motor, or three-phase permanent synchronized model motor, or multi-phase permanent synchronized model motor.
3. multifunctional permanent-magnet synchronized model electricity main shaft according to claim 2, it is characterized in that: described electric main shaft is a surface-type or built-in, or the Lundell structure.
4. multifunctional permanent-magnet synchronized model electricity main shaft according to claim 3, it is characterized in that: described bearing is a rolling bearing, or sliding bearing, or magnetic bearing.
CN201210027276XA 2012-02-08 2012-02-08 Multifunctional permanent-magnet synchronous electric spindle Pending CN102581318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210027276XA CN102581318A (en) 2012-02-08 2012-02-08 Multifunctional permanent-magnet synchronous electric spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210027276XA CN102581318A (en) 2012-02-08 2012-02-08 Multifunctional permanent-magnet synchronous electric spindle

Publications (1)

Publication Number Publication Date
CN102581318A true CN102581318A (en) 2012-07-18

Family

ID=46470860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210027276XA Pending CN102581318A (en) 2012-02-08 2012-02-08 Multifunctional permanent-magnet synchronous electric spindle

Country Status (1)

Country Link
CN (1) CN102581318A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037496A (en) * 1976-09-01 1977-07-26 The United States Of America As Represented By The United States Energy Research And Development Administration Combination spindle-drive system for high precision machining
EP0451287A1 (en) * 1989-11-02 1991-10-16 Fanuc Ltd. Main shaft motor control method
JPH04250903A (en) * 1990-12-28 1992-09-07 Fanuc Ltd Driving mechanism for main spindle of machine tool
CN202438695U (en) * 2012-02-08 2012-09-19 绍兴文理学院 Multifunctional permanent-magnetic synchronization-typed electric main shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037496A (en) * 1976-09-01 1977-07-26 The United States Of America As Represented By The United States Energy Research And Development Administration Combination spindle-drive system for high precision machining
EP0451287A1 (en) * 1989-11-02 1991-10-16 Fanuc Ltd. Main shaft motor control method
JPH04250903A (en) * 1990-12-28 1992-09-07 Fanuc Ltd Driving mechanism for main spindle of machine tool
CN202438695U (en) * 2012-02-08 2012-09-19 绍兴文理学院 Multifunctional permanent-magnetic synchronization-typed electric main shaft

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
乔晓利 等: "基于内置力执行器的铣削颤振的主动控制", 《机械工程学报》 *
周延祐 等: "电主轴技术讲座第二讲电主轴的基本参数与结构(一)", 《制造技术与机床》 *
周延祐 等: "电主轴技术讲座第二讲电主轴的基本参数与结构(二)", 《制造技术与机床》 *
边忠国 等: "位移传感器在磁悬浮电主轴中安装结构的改进", 《制造技术与机床》 *
邹继斌 等: "爪极式单相永磁步进电机特性的数值计算与分析", 《电工技术学报》 *
郝清亮 等: "中小型表面式永磁电机的制造工艺", 《电机与控制应用》 *

Similar Documents

Publication Publication Date Title
CN102104303B (en) Disc-type low-speed large-torque composite motor based on magnetic wheel gear
CN102109416B (en) Non-contact electromagnetic loading device for high speed electric spindle
CN104993637B (en) Magnetic suspension induction machine drive system of electric motor vehicle
CN108134537B (en) A kind of built-in piezo-electric type on-line dynamic balancing executive device
CN202004600U (en) Magnetic gear based disc type composite motor with low speed and large torque
CN105656269B (en) A kind of bearing-free permanent magnet synchronous generator
CN103016525A (en) Constant current biased radial-axial magnetic bearing
CN102064656B (en) Rotor slippage complementary exciting permanent-magnetic brushless variable speed motor
CN101951047A (en) Disk permanent magnet composite brushless motor
CN101806323A (en) Five degree-of-freedom permanent magnet biased magnetic bearing
CN104682621B (en) Axial magnetic field slip synchronization-type double-direct wind power generator
CN100513025C (en) Magnet motive numerical control machine electricity main axis system without bearing and implement method
CN202444390U (en) Disc type low-speed large-torque permanent magnetism vernier motor
CN201307808Y (en) High-speed electric main shaft supported by alternating current hybrid magnetic bearing
CN107263215A (en) A kind of eccentricity compensation system for electrical spindle for machine tool
CN102303709B (en) Large-torque magnetic suspension flywheel
CN202438695U (en) Multifunctional permanent-magnetic synchronization-typed electric main shaft
CN101546948A (en) Switched reluctance motor capable of actively controlling rotor vibration
CN202438694U (en) Multifunctional sensing type electric main shaft
CN201821244U (en) Hub-type permanent magnet brushless speed regulating motor for electric vehicle
CN102064657A (en) Permanent-magnet variable-speed hub motor with complementing excitation rotor
CN102554282A (en) Multifunctional inductive electric spindle
CN207753635U (en) A kind of built-in piezo-electric type on-line dynamic balancing execution structure
CN205533310U (en) Vertical fan that directly allies oneself with
CN202883497U (en) Centrifugal fan with balancing function and used in generator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120718