JPH04244771A - Machine tool spindle driving system employing switching of winding od synchronous motor - Google Patents

Machine tool spindle driving system employing switching of winding od synchronous motor

Info

Publication number
JPH04244771A
JPH04244771A JP2660691A JP2660691A JPH04244771A JP H04244771 A JPH04244771 A JP H04244771A JP 2660691 A JP2660691 A JP 2660691A JP 2660691 A JP2660691 A JP 2660691A JP H04244771 A JPH04244771 A JP H04244771A
Authority
JP
Japan
Prior art keywords
stator
windings
winding
synchronous motor
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2660691A
Other languages
Japanese (ja)
Inventor
Atsuo Nakamura
厚生 中村
Yukio Katsusawa
幸男 勝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2660691A priority Critical patent/JPH04244771A/en
Publication of JPH04244771A publication Critical patent/JPH04244771A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize spindle driving system for machine tool in which the rotor of a motor is not heated and high speed rotation and low speed heavy cutting are realized without requiring a reduction mechanism. CONSTITUTION:High speed rotation and low speed heavy cutting are realized by driving a spindle through a permanent magnet synchronous motor and switching the ampere turn of a stator winding (switching the excitation between U1-W1, U2-W2 or U3-W3). Since secondary current does not flow through a rotor no copper loss is produced and thereby the rotor is not heated. Consequently, the spindle coupled with the rotor shaft and the rotor shaft are protected against thermal expansion resulting in enhancement of machining accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、工作機械の主軸駆動方
式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spindle drive system for machine tools.

【0002】0002

【従来の技術】工作機械の主軸を駆動するには、従来、
誘導電動機が使用されている。従来の工作機械の主軸駆
動の誘導電動機は、基底回転数(1500rpm )に
おける出力トルクが低いため、プーリ等の減速機構で電
動機の出力を減速して主軸を駆動している。工作機械に
おいては、切削時と非切削時では主軸にかかる負荷が大
きく変動し、低速回転で重切削を行なう。特に、径の大
きなワークを旋盤加工するとき、ワークの周速を設定切
削速度にするには主軸を低速で駆動し、かつ、高トルク
を発生させねばならない。そのため、減速機構で電動機
の速度を減速し主軸を低速高トルクで駆動するようにし
ている。
[Prior Art] Conventionally, in order to drive the main axis of a machine tool,
An induction motor is used. Conventional induction motors that drive the main shaft of machine tools have a low output torque at the base rotation speed (1500 rpm), so a reduction mechanism such as a pulley is used to reduce the output of the motor to drive the main shaft. In machine tools, the load on the spindle varies greatly between cutting and non-cutting, and heavy cutting is performed at low rotation speeds. In particular, when machining a workpiece with a large diameter using a lathe, the main shaft must be driven at a low speed and high torque must be generated in order to bring the circumferential speed of the workpiece to the set cutting speed. Therefore, a reduction mechanism is used to reduce the speed of the electric motor to drive the main shaft at low speed and high torque.

【0003】電動機の出力を減速機構を用いて減速し主
軸を駆動する場合、振動や騒音が発生する。特に、プー
リ及びベルトを用いた減速機構であれば、ベルトがすべ
り主軸に速度差が生じ、うねりが生じるという問題があ
り、また、タイミングベルトを用いれば、騒音が発生す
るという問題がある。
[0003] When the output of the electric motor is reduced using a reduction mechanism to drive the main shaft, vibrations and noise are generated. In particular, if a speed reduction mechanism uses pulleys and a belt, there is a problem in that the belt slides and a speed difference occurs on the main shaft, causing waviness, and if a timing belt is used, there is a problem in that noise is generated.

【0004】これら振動や騒音を低減するために、減速
機構を用いず、主軸駆動電動機のトルクを電気的に増加
させ、直接主軸を駆動する方式が考えられる。この場合
、主軸を駆動する誘導電動機の1次巻線の巻数を切換え
て基底回転数を変更し、スベリを増加させることによっ
て同一電流でもロータ側の導体に流れる2次電流を増加
させ、出力トルクを増大させる方法が採られている。 すなわち、低速重切削を行なう場合、誘導電動機の1次
巻線の巻数を多くするように切換、同じ1次電流でロー
タ側の2次電流を増加させ、出力トルクを増大させるよ
うにしている。
In order to reduce these vibrations and noises, a method has been considered in which the torque of the main shaft drive motor is electrically increased to directly drive the main shaft without using a speed reduction mechanism. In this case, the base rotation speed is changed by changing the number of turns of the primary winding of the induction motor that drives the main shaft, and by increasing the slippage, the secondary current flowing through the conductor on the rotor side is increased even with the same current, and the output torque is increased. A method is being adopted to increase the That is, when performing low-speed heavy cutting, the number of turns of the primary winding of the induction motor is increased, and the secondary current on the rotor side is increased with the same primary current, thereby increasing the output torque.

【0005】[0005]

【発明が解決しようとする課題】誘導電動機の1次巻線
の巻数を多くしロータ側の2次電流を増加させると、ロ
ータの銅損は電流の2乗で増加するから、その分ロータ
及びモータ軸の温度上昇の原因になる。また、ステータ
もその巻線数の増加により巻線抵抗が増え、同じ1次電
流でも銅損は抵抗が増加した分だけ増え電動機の温度上
昇の原因になる。ステータ巻線は静止しているため、液
冷等の方法で冷却が可能であるが、ロータは回転してい
るため同様な方法が採用できず、低コストで効率的な冷
却方法がない。
[Problem to be Solved by the Invention] When the number of turns in the primary winding of an induction motor is increased to increase the secondary current on the rotor side, the copper loss in the rotor increases as the square of the current. This will cause the temperature of the motor shaft to rise. In addition, the winding resistance of the stator also increases due to the increase in the number of windings, and even if the primary current is the same, copper loss increases by the increased resistance, causing a rise in the temperature of the motor. Since the stator windings are stationary, they can be cooled using methods such as liquid cooling, but since the rotor is rotating, similar methods cannot be used, and there is no low-cost and efficient cooling method.

【0006】ロータの発熱は、モータ軸に伝導し、軸受
内輪の温度を高め軸受スキマを減少させたり、グリース
の劣化を早める等の悪影響がある。特に、主軸にモータ
軸を直接固定させる「ビルトインモータ」タイプでは、
ロータの発熱が軸受の信頼性及び主軸の熱膨脹(特に軸
方向変位)の原因となり、加工した製品に寸法誤差を生
じる原因となって、加工精度の低下につながる。
The heat generated by the rotor is transmitted to the motor shaft, which has negative effects such as increasing the temperature of the inner ring of the bearing, reducing the bearing clearance, and accelerating the deterioration of the grease. In particular, the "built-in motor" type, in which the motor shaft is directly fixed to the main shaft,
The heat generated by the rotor reduces the reliability of the bearing and causes thermal expansion (particularly axial displacement) of the spindle, causing dimensional errors in machined products, leading to a decrease in processing accuracy.

【0007】そこで本発明の目的は、電動機のロータ発
熱がなく、しかも、減速機構を設けることなく高速回転
,低速重切削が可能な工作機械の主軸駆動方式を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a main shaft drive system for a machine tool that does not generate heat from the rotor of an electric motor and is capable of high-speed rotation and low-speed heavy cutting without the need for a reduction mechanism.

【0008】[0008]

【課題を解決するための手段】本発明は、永久磁石で磁
界を作る同期電動機で工作機械の主軸を駆動し、該同期
電動機のステータの各相巻線を複数に分割し、分割され
た各相巻線の接続若しくは一部の巻線のみに電流を流す
ように同期電動機のステータの各相巻線接続を切換える
切換スイッチを設け、低速時には上記ステータ巻線のア
ンペアターンを多くし、高速時にはステータ巻線のアン
ペアターンを少なくするように切換えて、低速時に高ト
ルクを発生させるとともに高速回転をも得られるように
することによって上記課題を解決した。
[Means for Solving the Problems] The present invention drives the main shaft of a machine tool with a synchronous motor that generates a magnetic field with a permanent magnet, divides each phase winding of the stator of the synchronous motor into a plurality of parts, and each of the divided A changeover switch is provided to change the connection of each phase winding of the stator of the synchronous motor so that current flows only through the connection of the phase windings or only some of the windings.At low speeds, the ampere turns of the stator windings are increased, and at high speeds, the ampere turns are increased. The above problem was solved by switching the stator winding to reduce the ampere turns to generate high torque at low speeds and to achieve high speed rotation.

【0009】[0009]

【作用】励磁電流が一定でも、ステータの各相巻線数を
増加すれば、その分基底回転数を下げることができ、低
速でも高トルクを発生させることができる。また、励磁
電流を増加すれば、発生トルクを増大させることができ
る。すなわち、アンペアターンを増大させることによっ
て低速時においても高トルクを発生させることができる
。また、アンペアターンを減少させることによって、高
速回転を行なわせることができる。そのため、主軸を減
速機構を用いて駆動しなくても高速回転,低速重切削が
できる工作機械を得ることができる。一方、永久磁石で
磁界を作る同期電動機ではロータ側に2次電流が流れな
いので、ロータ側の発熱を低く押さえることができ、モ
ータ軸の熱膨張を小さくすることができ、減速機構なし
に主軸を直接駆動しても加工精度を低下させることはな
い。
[Operation] Even if the excitation current is constant, if the number of windings in each phase of the stator is increased, the base rotation speed can be lowered accordingly, and high torque can be generated even at low speeds. Furthermore, by increasing the excitation current, the generated torque can be increased. That is, by increasing the ampere turns, high torque can be generated even at low speeds. Also, by reducing the ampere turns, high speed rotation can be achieved. Therefore, it is possible to obtain a machine tool that can perform high-speed rotation and low-speed heavy cutting without driving the main shaft using a reduction mechanism. On the other hand, in a synchronous motor that uses a permanent magnet to create a magnetic field, no secondary current flows through the rotor, so heat generation on the rotor side can be kept low, thermal expansion of the motor shaft can be reduced, and the main shaft can be moved without a speed reduction mechanism. Driving directly does not reduce machining accuracy.

【0010】0010

【実施例】図1は、本発明の工作機械主軸駆動方式に使
用する永久磁石同期電動機の一実施例の断面図と、ステ
ータ巻線通電切換回路図である。図1中、1はモータハ
ウジング、2は該モータハウジング1内に配設された液
冷管路である。モータハウジング内には軸受12により
、モータ軸3が回転自在に軸着されている。モータ軸3
にはロータ6が固着され、該ロータ6の回りにステータ
4が配置され、ステータ4のステータコア5、ロータ6
のロータコア7は珪素鋼板等が積層接着されて構成され
ている。また、モータ軸3の一端にはモータ軸3の回転
位置,速度等を検出するための検出器の回転板11が固
定され、検出部10でモータ軸3の回転位置,速度等を
検出するようになっている。ロータ6は図2に示すよう
に、ロータコア7の外周に永久磁石8が円周方向に交互
に極性が変わるように接着され(図2の場合には4極配
置されている)、該永久磁石8の外周には非磁性体(ガ
ラスバインダ,ステンレステープ等)で構成された永久
磁石押さえ用チューブが配置されている。また、9はス
テータコア5に巻回されたステータ巻線のコイルエンド
であり、後述する切換スイッチを介してU,V,W相の
入力端子に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of an embodiment of a permanent magnet synchronous motor used in the machine tool main shaft drive system of the present invention, and a stator winding energization switching circuit diagram. In FIG. 1, 1 is a motor housing, and 2 is a liquid cooling pipe line disposed within the motor housing 1. In FIG. A motor shaft 3 is rotatably mounted within the motor housing by a bearing 12 . motor shaft 3
A rotor 6 is fixed to the rotor 6, a stator 4 is arranged around the rotor 6, a stator core 5 of the stator 4, and a rotor 6.
The rotor core 7 is constructed by laminating and bonding silicon steel plates and the like. Further, a rotary plate 11 of a detector for detecting the rotational position, speed, etc. of the motor shaft 3 is fixed to one end of the motor shaft 3, and the detection unit 10 is configured to detect the rotational position, speed, etc. of the motor shaft 3. It has become. As shown in FIG. 2, in the rotor 6, permanent magnets 8 are bonded to the outer periphery of a rotor core 7 so that the polarity changes alternately in the circumferential direction (in the case of FIG. 2, four poles are arranged). A permanent magnet holding tube made of a non-magnetic material (glass binder, stainless steel tape, etc.) is arranged on the outer periphery of the magnet 8. Further, 9 is a coil end of a stator winding wound around the stator core 5, and is connected to input terminals of U, V, and W phases via a changeover switch to be described later.

【0011】上述した同期電動機の構成は、従来の永久
磁石同期電動機の構成と同一であり、相違する点は、ス
テータ巻線に通電する方法が異なるのみである。
The configuration of the above-described synchronous motor is the same as that of a conventional permanent magnet synchronous motor, and the only difference is the method of energizing the stator windings.

【0012】図3はステータ巻線と各巻線への通電位置
を説明する説明図で、U,V,W各相のステータ巻線は
本実施例においては3つに分割され、入力端子U1,V
1,W1に電力が供給されるとすべての巻線UC1〜U
C3,VC1〜VC3,WC1〜WC3に電流が流れ、
入力端子U2,V2,W2に電力が供給されると各相分
割された2つの巻線UC2,UC3、VC2,VC3、
WC2,WC3に電流が流れ、入力端子U3,V3,W
3に電力が供給されると巻線UC3、VC3、WC3に
のみ電流が流れるように構成され、ステータ巻線に通電
し有効に作動する有効巻線を切換えて巻線数を切換えれ
るように構成されている。このステータ巻線の有効巻線
数の切換は、図1に示すように、高速で切換ができるよ
うにトライアック等の無接点スイッチで構成された切換
スイッチS1,S2,S3で行なうようになっている。 切換スイッチS1をオンにすると入力端子U1,V1,
W1に各相それぞれの電圧が印加され、前述したように
各相のステータ巻線全てに通電され、電動機はステータ
巻線数の多い状態で駆動される。また切換スイッチS2
がオンにされると入力端子U2,V2,W2から各相分
割された2つの巻線UC2,UC3、VC2,VC3、
WC2,WC3にのみ通電され、ステータ巻線数が少な
い状態で駆動されることになる。更に切換スイッチS3
をオンにすると入力端子U3,V3,W3から巻線UC
3,VC3,WC3のみに通電され、ステータ巻線数は
更に少なくなった状態で電動機は駆動されることになる
FIG. 3 is an explanatory diagram illustrating the stator windings and the current supply positions to each winding. In this embodiment, the stator windings for each phase of U, V, and W are divided into three parts, and the input terminals U1, V
1. When power is supplied to W1, all windings UC1 to U
Current flows through C3, VC1 to VC3, WC1 to WC3,
When power is supplied to input terminals U2, V2, W2, two windings UC2, UC3, VC2, VC3, divided into each phase,
Current flows through WC2 and WC3, and input terminals U3, V3, and W
When power is supplied to windings UC3, VC3, and WC3, current flows only through windings UC3, VC3, and WC3, and the number of windings can be changed by energizing the stator windings and switching the effective windings that operate effectively. has been done. As shown in Fig. 1, the effective number of windings of the stator winding is switched by changeover switches S1, S2, and S3, which are composed of non-contact switches such as triacs, so that switching can be performed at high speed. There is. When the changeover switch S1 is turned on, the input terminals U1, V1,
A voltage for each phase is applied to W1, and as described above, all the stator windings of each phase are energized, and the motor is driven with a large number of stator windings. Also, selector switch S2
When turned on, the two windings UC2, UC3, VC2, VC3, which are divided into each phase from the input terminals U2, V2, W2,
Only WC2 and WC3 are energized, and the stator is driven with a small number of windings. Furthermore, selector switch S3
When turned on, winding UC is connected from input terminals U3, V3, W3.
3, only VC3 and WC3 are energized, and the motor is driven with the number of stator windings further reduced.

【0013】図4はステータ巻線に流す電流を一定にし
、ステータ巻線数を変えたときの出力特性を示す図で、
図5はそのときのトルク特性を表す図である。切換スイ
ッチS1をオンにしたときのステータ巻線数、すなわち
全巻線数をZ1とし、切換スイッチS2をオンにしたと
きの巻線数を全巻線数Z1の1/2のZ2とし、切換ス
イッチS3をオンにしたときの巻線数Z3をZ1/4と
した例を示している。
FIG. 4 is a diagram showing the output characteristics when the current flowing through the stator windings is kept constant and the number of stator windings is changed.
FIG. 5 is a diagram showing the torque characteristics at that time. The number of stator windings when the changeover switch S1 is turned on, that is, the total number of windings, is set to Z1, the number of windings when the changeover switch S2 is turned on is set to Z2, which is 1/2 of the total number of windings Z1, and the changeover switch S3. An example is shown in which the number of windings Z3 when turning on is Z1/4.

【0014】電動機の出力Pは基底回転数までは総磁束
量,ステータ巻線数Z,励磁周波数に比例し、総磁束量
は一定であるから、切換スイッチS1をオンにしステー
タ巻線数をZ1にすると出力Pは回転数Nに比例して急
激に立ち上がり基底回転数N1に達し、このときの出力
トルクTは図5に示すように大きなトルクT1を発生す
る、すなわち、低速領域で大きなトルクを発生すること
になる。また、切換スイッチS2をオンにしステータ巻
線の有効巻線数をZ2にすると、基底回転数N2は上昇
し、出力トルクT2は低下するが、基底回転数が上昇し
た分高速回転を可能にする。更に、切換スイッチS3を
オンにしステータ巻線の有効巻線数をZ3にし少なくす
るとその分出力Pの立ち上がりは緩やかになり、基底回
転数N3は大きくなるとともに電動機の出力トルクT3
は図5に示すように小さくなるが、高速回転を可能にす
る。
The output P of the motor is proportional to the total magnetic flux, the number of stator windings Z, and the excitation frequency up to the base rotation speed, and the total magnetic flux is constant, so the changeover switch S1 is turned on and the number of stator windings is changed to Z1. , the output P rises rapidly in proportion to the rotational speed N and reaches the base rotational speed N1, and the output torque T at this time generates a large torque T1 as shown in FIG. will occur. Furthermore, when the changeover switch S2 is turned on and the effective number of turns of the stator winding is set to Z2, the base rotation speed N2 increases and the output torque T2 decreases, but high-speed rotation is enabled by the increase in the base rotation speed. . Furthermore, when the changeover switch S3 is turned on and the effective number of turns of the stator winding is reduced to Z3, the rise of the output P becomes gradual, the base rotation speed N3 increases, and the output torque T3 of the motor increases.
Although it becomes small as shown in FIG. 5, it enables high-speed rotation.

【0015】このようにステータ巻線数を多段に切換え
ることによって高速回転を可能にし、低速高トルクも発
生できるようになり、この電動機を工作機械の主軸駆動
に用いれば、高速回転及び低速重切削を可能にする。し
かも、ロータ側には、2次電流が流れず、銅損が生じな
いため、銅損によるロータの発熱はなく、モータ軸を主
軸に直接接続しても、熱の発生が少ないので、モータ軸
の熱膨張は少なく軸受スキマを減少させることもなく、
またグリースの劣化を早めることもなくなる。さらに、
モータ軸3をそのまま主軸にに使用する「ビルトインモ
ータ」タイプとしても、モータ軸の熱膨張が少ないので
、加工精度は向上する。
By switching the number of stator windings in multiple stages in this way, high-speed rotation and low-speed high torque can also be generated.If this electric motor is used to drive the main shaft of a machine tool, high-speed rotation and low-speed heavy cutting can be achieved. enable. Moreover, since no secondary current flows to the rotor side and no copper loss occurs, the rotor does not generate heat due to copper loss.Even if the motor shaft is connected directly to the main shaft, little heat is generated, so the motor shaft has little thermal expansion and does not reduce bearing clearance.
Also, the deterioration of the grease will not be accelerated. moreover,
Even in the case of a "built-in motor" type in which the motor shaft 3 is used as the main shaft, the machining accuracy is improved because the thermal expansion of the motor shaft is small.

【0016】上記実施例では、ステータ巻線数を多段に
切換えることによって高速回転、低速重切削を可能にし
たが、ステータ巻線数を変えることなく、ステータ各相
巻線の接続方法を切換えることによって高速回転、低速
高トルク(低速重切削)を可能にすることもできる。
In the above embodiment, high-speed rotation and low-speed heavy cutting were made possible by changing the number of stator windings into multiple stages, but it is possible to change the connection method of each stator phase winding without changing the number of stator windings. This enables high-speed rotation and low-speed high torque (low-speed heavy cutting).

【0017】図6は本発明の第2の実施例のステータ各
相巻線の接続方法を切換える方法の1相(U相)分の切
換回路図で他の相(V,W)も同様な回路構成になって
いる。切換スイッチS11をオンにすると各相の分割さ
れた各ステータ巻線は図7に示すように並列に接続され
、また切換スイッチS12をオンにすると、図8に示す
ように巻線の一部が並列に接続され、その並列回路に他
の巻線が直列に接続されたものとなる。さらに、切換ス
イッチS13をオンにすると図9に示すように巻線は直
列に接続されることになる。
FIG. 6 is a switching circuit diagram for one phase (U phase) of the method of switching the connection method of each phase winding of the stator according to the second embodiment of the present invention, and the other phases (V, W) are similarly connected. It has a circuit configuration. When the changeover switch S11 is turned on, the divided stator windings of each phase are connected in parallel as shown in FIG. 7, and when the changeover switch S12 is turned on, some of the windings are connected in parallel as shown in FIG. They are connected in parallel, and other windings are connected in series to the parallel circuit. Furthermore, when the changeover switch S13 is turned on, the windings are connected in series as shown in FIG.

【0018】同一電圧を巻線に印加したとき、切換スイ
ッチS11をオンにし図7の巻線接続をとると、巻線に
流れる電流は多くなるのでアンペアターンが増加し、基
底回転数を下げ、低速高トルクを発生する。また、切換
スイッチS12をオンにし図8の接続とすると、電流が
減少し中速中トルク発生となる。さらに、切換スイッチ
S13をオンにすると電流はさらに少なくなり、高速低
トルクを発生することになる。
When the same voltage is applied to the windings, when the changeover switch S11 is turned on and the winding connections shown in FIG. Generates low speed and high torque. Furthermore, when the changeover switch S12 is turned on and the connection shown in FIG. 8 is made, the current decreases and medium-speed medium-torque is generated. Further, when the changeover switch S13 is turned on, the current is further reduced, and high speed and low torque is generated.

【0019】以上のようにステータの各相の巻線接続を
切換えることによっても高速回転、低速高トルク(低速
重切削)を可能にすることができる。
As described above, high speed rotation and low speed high torque (low speed heavy cutting) can also be achieved by switching the winding connections of each phase of the stator.

【0020】なお、上記実施例では、ステータ巻線をス
ター結線で構成した例を示したが、デルタ結線で行なう
場合も同様な構成で本発明を実施することができる。
[0020] In the above embodiment, an example was shown in which the stator winding was configured with a star connection, but the present invention can be practiced with a similar configuration in the case of a delta connection.

【0021】[0021]

【発明の効果】本発明においては、主軸を駆動する電動
機に永久磁石で磁界を作る同期電動機を使用し、ステー
タ巻線のアンペアターンを切換えることによって高速回
転,低速高トルクを発生させることができるので、減速
機構を使用せずに直接主軸を該電動機で駆動することで
、高速回転、低速重切削を可能にすることができる。 さらに、ロータ側に2次電流が流れないことにより、ロ
ータが銅損による発熱で温度上昇することがなく、モー
タ軸の熱膨張を少なくすることができることから、モー
タ軸の軸受の軸受スキマを減少させることも、またグリ
ースの劣化を抑えることもできる。また、主軸に直接固
定される「ビルトインモータ」として使用する場合でも
、ロータの銅損による発熱がないので、主軸の軸方向の
熱膨張が少なく、かつ軸受の信頼性が向上するので加工
の寸法精度が向上し、加工精度をあげることができる。
[Effects of the Invention] In the present invention, a synchronous motor that creates a magnetic field with a permanent magnet is used as the motor that drives the main shaft, and high-speed rotation and low-speed high torque can be generated by switching the ampere turns of the stator winding. Therefore, by directly driving the spindle with the electric motor without using a speed reduction mechanism, high-speed rotation and low-speed heavy cutting can be achieved. Furthermore, since no secondary current flows to the rotor side, the temperature of the rotor does not rise due to heat generation due to copper loss, and thermal expansion of the motor shaft can be reduced, reducing the bearing clearance of the motor shaft bearing. It is also possible to suppress the deterioration of the grease. In addition, even when used as a "built-in motor" that is directly fixed to the spindle, there is no heat generation due to copper loss in the rotor, so thermal expansion in the axial direction of the spindle is small, and the reliability of the bearing is improved. Accuracy is improved and processing precision can be increased.

【0022】さらに、主軸を駆動する電動機に従来のよ
うに誘導電動機を用いると位置決め制御が難しく、主軸
の回転位置を決めるC軸制御が難しくなるが、同期電動
機であると位置決め制御が簡単になり、C軸制御が容易
にできるようになる。また、工作機械を数値制御装置で
制御する場合でも、従来のように主軸を誘導電動機で駆
動する場合においては、主軸駆動用の特別な回路を必要
とし、送り軸等の他の制御軸とはことなる制御方式を採
用しなければならなかったが、本発明のように、主軸を
他の送り軸と同様に、同期電動機で駆動するようにする
と、主軸の制御も他の送り軸の制御と同様に制御するこ
とができ、主軸制御に特別な回路を必要とせず、制御が
非常に簡単となる。
Furthermore, if an induction motor is used as the motor for driving the main shaft as in the past, positioning control becomes difficult and C-axis control, which determines the rotational position of the main shaft, becomes difficult, but a synchronous motor simplifies positioning control. , C-axis control can be easily performed. Furthermore, even when controlling a machine tool with a numerical control device, if the main spindle is driven by an induction motor as in the past, a special circuit for driving the main spindle is required, and other control axes such as the feed axis are A different control method had to be adopted, but if the main shaft is driven by a synchronous motor like the other feed axes as in the present invention, the control of the main shaft can be controlled with the control of other feed axes. It can be controlled in the same way, no special circuit is required for spindle control, and control is extremely simple.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の永久磁石同期電動機の断面
図とステータ巻線通電切換回路図である。
FIG. 1 is a sectional view of a permanent magnet synchronous motor according to an embodiment of the present invention and a stator winding energization switching circuit diagram.

【図2】同実施例におけるロータの構造を示す図である
FIG. 2 is a diagram showing the structure of a rotor in the same embodiment.

【図3】同実施例におけるステータ巻線と各巻線への通
電位置を説明する説明図である。
FIG. 3 is an explanatory diagram illustrating stator windings and energization positions to each winding in the same embodiment.

【図4】同実施例における出力特性を示す図である。FIG. 4 is a diagram showing output characteristics in the same example.

【図5】同実施例におけるトルク特性を示す図である。FIG. 5 is a diagram showing torque characteristics in the same example.

【図6】本発明の第2の実施例におけるステータ各相巻
線の接続方法を切換える方法の1相(U相)分の切換回
路図である。
FIG. 6 is a switching circuit diagram for one phase (U phase) of a method of switching the connection method of each stator phase winding in a second embodiment of the present invention.

【図7】同第2実施例における切換スイッチS11をオ
ンにしたときの巻線接続状態を示す図である。
FIG. 7 is a diagram showing the winding connection state when the changeover switch S11 is turned on in the second embodiment.

【図8】同第2実施例における切換スイッチS12をオ
ンにしたときの巻線接続状態を示す図である。
FIG. 8 is a diagram showing the winding connection state when the changeover switch S12 is turned on in the second embodiment.

【図9】同第2実施例における切換スイッチS13をオ
ンにしたときの巻線接続状態を示す図である。
FIG. 9 is a diagram showing the winding connection state when the changeover switch S13 is turned on in the second embodiment.

【符号の説明】[Explanation of symbols]

1  モータハウジング 2  液冷管路 3  モータ軸 4  ステータ 6  ロータ 8  永久磁石 1 Motor housing 2 Liquid cooling pipe 3 Motor shaft 4 Stator 6 Rotor 8 Permanent magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  永久磁石で磁界を作る同期電動機で工
作機械の主軸を駆動し、上記同期電動機のステータの各
相巻線接続を切換える切換スイッチを設け、低速時には
上記ステータ巻線のアンペアターンを多くし、高速時に
はステータ巻線のアンペアターンを少なくするように切
換えて、低速高トルクを発生させると共に高速回転をも
得られるようにした同期電動機の巻線切換による工作機
械主軸駆動方式。
Claim 1: A main shaft of a machine tool is driven by a synchronous motor that generates a magnetic field using a permanent magnet, and a changeover switch is provided to switch the connection of each phase winding of the stator of the synchronous motor, and at low speeds, the ampere turns of the stator winding are switched off. A machine tool spindle drive system that uses a synchronous motor winding switch to increase the ampere turns of the stator winding at high speeds, and to reduce the ampere turns of the stator windings at high speeds, generating high torque at low speeds and achieving high speed rotation.
【請求項2】  上記切換スイッチによってステータの
各相有効巻線数を切換えることによってアンペアターン
を変更するようにした請求項1記載の同期電動機の巻線
切換による工作機械主軸駆動方式。
2. A machine tool spindle drive system by switching windings of a synchronous motor according to claim 1, wherein the ampere turns are changed by switching the number of effective windings of each phase of the stator using the changeover switch.
【請求項3】  ステータの各相巻線を複数に分割し、
上記切換スイッチによって分割された各巻線を直列,並
列もしくは一部並列に切換えることによってアンペアタ
ーンを変更するようにした請求項1記載の同期電動機の
巻線切換による工作機械主軸駆動方式。
[Claim 3] Each phase winding of the stator is divided into a plurality of parts,
2. The machine tool spindle drive system by switching the windings of a synchronous motor according to claim 1, wherein the ampere turns are changed by switching each of the divided windings to series, parallel, or partially parallel using the changeover switch.
JP2660691A 1991-01-29 1991-01-29 Machine tool spindle driving system employing switching of winding od synchronous motor Pending JPH04244771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2660691A JPH04244771A (en) 1991-01-29 1991-01-29 Machine tool spindle driving system employing switching of winding od synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2660691A JPH04244771A (en) 1991-01-29 1991-01-29 Machine tool spindle driving system employing switching of winding od synchronous motor

Publications (1)

Publication Number Publication Date
JPH04244771A true JPH04244771A (en) 1992-09-01

Family

ID=12198165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2660691A Pending JPH04244771A (en) 1991-01-29 1991-01-29 Machine tool spindle driving system employing switching of winding od synchronous motor

Country Status (1)

Country Link
JP (1) JPH04244771A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053951A1 (en) * 1997-05-30 1998-12-03 Fanuc Ltd Synchronous motor for driving main spindle
JP2010016950A (en) * 2008-07-02 2010-01-21 Ihi Corp Torque motor and servo valve
JP2010014225A (en) * 2008-07-04 2010-01-21 Kitamura Mach Co Ltd Gear head and gear change method
JP2012090447A (en) * 2010-10-20 2012-05-10 Denso Corp Motor
JP2012131004A (en) * 2010-12-23 2012-07-12 Hitachi Koki Co Ltd Electric power tool
JP2017002727A (en) * 2015-06-04 2017-01-05 スズキ株式会社 Engine start-up control system
JP2017175852A (en) * 2016-03-25 2017-09-28 株式会社デンソー Rotary electric machine driving system
EP3331150A4 (en) * 2015-07-31 2019-05-15 Koki Holdings Co., Ltd. Electric tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172523A (en) * 1984-02-17 1985-09-06 Tokai Rubber Ind Ltd Vibration insulating rubber with fittings and manufacture thereof
JPS6110993A (en) * 1984-06-25 1986-01-18 Matsushita Electric Ind Co Ltd Electronic rectification type motor for washing machine
JPS6186639A (en) * 1984-10-05 1986-05-02 Hitachi Ltd Pattern inspecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172523A (en) * 1984-02-17 1985-09-06 Tokai Rubber Ind Ltd Vibration insulating rubber with fittings and manufacture thereof
JPS6110993A (en) * 1984-06-25 1986-01-18 Matsushita Electric Ind Co Ltd Electronic rectification type motor for washing machine
JPS6186639A (en) * 1984-10-05 1986-05-02 Hitachi Ltd Pattern inspecting method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053951A1 (en) * 1997-05-30 1998-12-03 Fanuc Ltd Synchronous motor for driving main spindle
JP2010016950A (en) * 2008-07-02 2010-01-21 Ihi Corp Torque motor and servo valve
JP2010014225A (en) * 2008-07-04 2010-01-21 Kitamura Mach Co Ltd Gear head and gear change method
JP2012090447A (en) * 2010-10-20 2012-05-10 Denso Corp Motor
US8704472B2 (en) 2010-10-20 2014-04-22 Denso Corporation Brushless electric motor provided with rotor having intermediate magnetic pole
JP2012131004A (en) * 2010-12-23 2012-07-12 Hitachi Koki Co Ltd Electric power tool
US20130264987A1 (en) * 2010-12-23 2013-10-10 Hitachi Koki Co., Ltd. Electric power tool
JP2017002727A (en) * 2015-06-04 2017-01-05 スズキ株式会社 Engine start-up control system
EP3331150A4 (en) * 2015-07-31 2019-05-15 Koki Holdings Co., Ltd. Electric tool
US10411620B2 (en) 2015-07-31 2019-09-10 Koki Holdings Co., Ltd. Power tool
JP2017175852A (en) * 2016-03-25 2017-09-28 株式会社デンソー Rotary electric machine driving system

Similar Documents

Publication Publication Date Title
US7999432B2 (en) Field controllable rotating electric machine system with magnetic excitation part
EP0441970B1 (en) Reluctance type motor
US4450396A (en) Electrically controlled synchronous machine
US4795936A (en) Driven rotary shaft system using permanent magnets
US5814914A (en) Electric motor or generator
JP4132008B2 (en) Electric motor or generator
US6841911B2 (en) Machine tool
US3297926A (en) Vehicle propulsion and control system
US20090045691A1 (en) Field controllable rotating electric machine system with magnetic excitation part
EP0444198B1 (en) Reluctance type motor
US5525851A (en) Apparatus for producing high-speed rotation
JPH04244771A (en) Machine tool spindle driving system employing switching of winding od synchronous motor
JP4635829B2 (en) Permanent magnet motor
US6194804B1 (en) Switched reluctance motor having substantially continuous torque and reduced torque ripple
EP0348984A1 (en) Binary brushless alternator and motor
EP1012948A2 (en) A high performance electric motor
JPH04250903A (en) Driving mechanism for main spindle of machine tool
CN117318432B (en) Dynamic magnetic type permanent magnet motor and control method
US20230110654A1 (en) Axial closed-loop flux motor or generator
JP3615146B2 (en) Permanent magnet generator / motor flux controller
Lyu et al. Design methodology of a multiplicity switched reluctance motor for a high performance direct-drive rotary table
JPH04289058A (en) Rotation indexing table for machine tool
JPH09168265A (en) Synchronous/induction hybrid electric machine and synchronous electric machine
WO2020121509A1 (en) Linear electric motor
JPH01164290A (en) Two-phase reluctance type motor