JPH04250418A - Liquid crystal optical element and its manufacture - Google Patents

Liquid crystal optical element and its manufacture

Info

Publication number
JPH04250418A
JPH04250418A JP818791A JP818791A JPH04250418A JP H04250418 A JPH04250418 A JP H04250418A JP 818791 A JP818791 A JP 818791A JP 818791 A JP818791 A JP 818791A JP H04250418 A JPH04250418 A JP H04250418A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical element
light
solid material
transparent solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP818791A
Other languages
Japanese (ja)
Other versions
JP3049779B2 (en
Inventor
Hideya Murai
秀哉 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3008187A priority Critical patent/JP3049779B2/en
Publication of JPH04250418A publication Critical patent/JPH04250418A/en
Application granted granted Critical
Publication of JP3049779B2 publication Critical patent/JP3049779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To offer the liquid crystal optical element which can easily and optionally set the state of scattered light. CONSTITUTION:The liquid crystal optical element is formed by providing a liquid crystal material 11 in contact with the uneven surface of an uneven transparent solid material 12. For example, when respective materials are so selected that the refractive index of the liquid crystal material when a voltage is applied is equal to the refractive index of the transparent sold material, light travels straight in the voltage applied state and is scattered in a voltage unapplied state. The scattering state of the light can easily be controlled according to the unevenness of the transparent solid material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、透明−散乱方式あるい
は屈折方式により透過光(または反射光)を操作する液
晶光学素子に関するものであって、文字、図形等を表示
する表示装置、入射光の透過−遮断を制御する光シャッ
タ、光バルブおよび光路を切り換える光回路部品として
利用される。
[Field of Industrial Application] The present invention relates to a liquid crystal optical element that manipulates transmitted light (or reflected light) using a transparent-scattering method or a refraction method, and relates to a display device that displays characters, figures, etc., and an incident light It is used as an optical shutter to control transmission/blocking of light, a light valve, and an optical circuit component to switch the optical path.

【0002】0002

【従来の技術】液晶表示素子は、従来ネマチック液晶を
使用したTN型や、STN型のものが実用化されている
。これらは偏光板を要するため、明るさ、コントラスト
において制限を受ける。
2. Description of the Related Art Conventionally, liquid crystal display elements of TN type and STN type using nematic liquid crystal have been put into practical use. Since these require a polarizing plate, they are limited in brightness and contrast.

【0003】一方、特表昭58−501631号に開示
された、液晶材料をカプセル化し、高分子中に分散する
方法では、偏光板を要しないため、光の減衰が少ない利
点を有している。この開示技術においては、カプセル内
の液晶の屈折率が電界の有無によって変化することを利
用し、電圧印加下の液晶の屈折率を高分子の屈折率と等
しく設定することによって、電圧印加下では透明な電圧
を除いた時には、光を散乱し、不透明となる光学素子が
得られている。液晶の屈折率の変化を利用した同様な素
子として、液晶をエポキシ樹脂中に分散したもの(特表
昭61−502128号)、紫外線硬化樹脂中に分散し
たもの(特開昭62−2231号)等が知られている。
On the other hand, the method disclosed in Japanese Patent Publication No. 58-501631, in which liquid crystal material is encapsulated and dispersed in a polymer, does not require a polarizing plate and has the advantage of less attenuation of light. . This disclosed technology takes advantage of the fact that the refractive index of the liquid crystal in the capsule changes depending on the presence or absence of an electric field, and by setting the refractive index of the liquid crystal under voltage application to be equal to the refractive index of the polymer, When the transparent voltage is removed, an optical element is obtained that scatters light and becomes opaque. Similar elements that utilize changes in the refractive index of liquid crystals include those in which liquid crystals are dispersed in epoxy resin (Japanese Patent Application Publication No. 61-502128) and those in which liquid crystals are dispersed in ultraviolet curing resin (Japanese Patent Application Laid-open No. 62-2231). etc. are known.

【0004】0004

【発明が解決しようとする課題】上述した従来の液晶光
学素子は以下の方法によって製造することができる。■
カプセル化した液晶を高分子中に分散する方法。■液晶
材料と樹脂およびそれらの共通溶媒を均一に混合し、溶
媒を除去することによって生じる相分離によって製造す
る方法。■液晶材料とモノマーを均一に混合し、モノマ
ーを重合させることによって生じる相分離によって製造
する方法。しかし、これらの製造方法では、透明性固体
材料中に分散する液晶材料の形状、位置の制御は難しく
、また、形状、位置を高度に制御した材料を得ることは
不可能である。ところで、液晶光学素子の散乱状態は、
液晶の分散状態によって決まる。しかし、従来の液晶光
学素子では、液晶−透明性固体材料の界面(分散状態)
を高度に制御することは不可能であるため、透過光の散
乱を制御することができないという課題があった。 また、従来の液晶光学素子においては、光が散乱した状
態においても中央部の光量を最大とし、散乱光強度が散
乱光角度のみに依存する単調減少タイプのものしか得ら
れないし、たとえば特定の方向の散乱を強めることがで
きないという課題を有している。
The conventional liquid crystal optical element described above can be manufactured by the following method. ■
A method of dispersing encapsulated liquid crystals in polymers. ■Production method by homogeneously mixing liquid crystal material, resin, and their common solvent, and then removing the solvent to produce phase separation. ■A method of manufacturing by uniformly mixing liquid crystal materials and monomers and using phase separation caused by polymerization of the monomers. However, with these manufacturing methods, it is difficult to control the shape and position of the liquid crystal material dispersed in the transparent solid material, and it is impossible to obtain a material whose shape and position are highly controlled. By the way, the scattering state of a liquid crystal optical element is
Determined by the dispersion state of liquid crystal. However, in conventional liquid crystal optical elements, the interface between liquid crystal and transparent solid material (dispersed state)
Since it is impossible to highly control the scattering of transmitted light, there is a problem in that it is not possible to control the scattering of transmitted light. In addition, in conventional liquid crystal optical elements, even when light is scattered, the amount of light is maximized at the center, and only a monotonically decreasing type in which the scattered light intensity depends only on the scattered light angle can be obtained. The problem is that it is not possible to enhance the scattering of

【0005】本発明の目的は、散乱光の状態を任意にか
つ容易に設定できる液晶光学素子を提供することにある
An object of the present invention is to provide a liquid crystal optical element in which the state of scattered light can be arbitrarily and easily set.

【0006】[0006]

【課題を解決するための手段】本発明は、凹凸を有する
透明性固体材料と、その凹凸に接して設けられた液晶材
料とからなる液晶光学素子を提供するものである。本発
明においては、液晶材料と透明性固体材料との界面の制
御を、固体材料の表面の制御(機械的加工等)によって
行うため、公知の方法に比較し、界面の制御を高精度に
、また容易に行うことができる利点を有する。
SUMMARY OF THE INVENTION The present invention provides a liquid crystal optical element comprising a transparent solid material having irregularities and a liquid crystal material provided in contact with the irregularities. In the present invention, since the interface between the liquid crystal material and the transparent solid material is controlled by controlling the surface of the solid material (mechanical processing, etc.), the interface can be controlled with high precision compared to known methods. It also has the advantage of being easy to perform.

【0007】本発明の液晶光学素子を構成する透明性固
体材料は、その凹凸部において液晶材料と接し、凹凸を
有する界面を形成する。液晶材料は、液晶分子の配向状
態および相状態(液晶相と等方相)の変化によって屈折
率が変化する。適当な屈折率を有する透明性固体材料を
用いることによって、液晶材料と透明性固体材料におけ
る光の散乱、屈折を変化させることができる。たとえば
、電圧印加下での液晶材料の屈折率と透明性固体材料の
屈折率を一致させた場合には、電圧印加状態で光が直進
し、電圧を切った状態で、光が散乱あるいは屈折する光
学素子が得られる。このような透明性固体材料と液晶材
料の組み合わせとしては、下表のようなものがある。
The transparent solid material constituting the liquid crystal optical element of the present invention comes into contact with the liquid crystal material at its uneven portions, forming an interface having unevenness. The refractive index of a liquid crystal material changes depending on changes in the alignment state and phase state (liquid crystal phase and isotropic phase) of liquid crystal molecules. By using a transparent solid material with an appropriate refractive index, it is possible to change the scattering and refraction of light in the liquid crystal material and the transparent solid material. For example, if the refractive index of a liquid crystal material under voltage application and the refractive index of a transparent solid material match, light will travel straight when voltage is applied, and will be scattered or refracted when voltage is turned off. An optical element is obtained. Examples of such combinations of transparent solid materials and liquid crystal materials are shown in the table below.

【0008】[0008]

【表1】[Table 1]

【0009】[0009]

【0010】本発明で使用される透明性固体材料は、完
全な透明性を必須とするものではないが、光線が透明性
固体材料中を通過するときに、著しい減衰を生じない程
度の透明性を有することが望ましい。また透明性固体材
料に無色である必要はなく必要に応じて有色の固体材料
を用いることもできる。透明性固体材料の固体性につい
ては、柔軟性、弾性、可ぎょう性を有するものであって
もよいし、堅固なものであってもよい。透明性固体材料
が堅固な場合には液晶光学素子の基板をかねることがで
きる。透明性固体材料の形状は特に制限されるものでは
なく、光の散乱、屈折を効率よく行いうるものであれば
どのような形状のものでも可能であるが、透明性固体材
料が液晶材料と層構造を形成する場合には、薄膜状(フ
ィルム状)や板状であるものが望ましい。とくに駆動電
圧を下げるためには、20μm以下が望ましい。
[0010] The transparent solid material used in the present invention does not necessarily have to be completely transparent, but must be transparent enough that light rays are not significantly attenuated when passing through the transparent solid material. It is desirable to have Further, the transparent solid material does not need to be colorless, and a colored solid material can be used if necessary. Regarding the solidity of the transparent solid material, it may be flexible, elastic, and malleable, or it may be solid. If the transparent solid material is strong, it can also serve as a substrate for a liquid crystal optical element. The shape of the transparent solid material is not particularly limited, and it can be of any shape as long as it can efficiently scatter and refract light. When forming a structure, it is desirable to have a thin film shape or a plate shape. In particular, in order to lower the driving voltage, the thickness is preferably 20 μm or less.

【0011】前述した特性を有する透過性固体材料であ
れば、特に限定されるものではないが透明性、加工性等
より高分子材料(ポリマー、プラスチック)あるいはガ
ラスなどが望ましい。
[0011] As long as the transparent solid material has the above-mentioned characteristics, it is not particularly limited, but polymeric materials (polymer, plastic) or glass are preferable due to transparency, workability, etc.

【0012】透明性固体材料の凹凸が、光の波長に比し
て小さすぎる場合には、光散乱や屈折の効果が期待でき
ないが、それ以外は、目的に応じて適当な大きさ、形状
の凹凸を選択することができる。特に透明性固体材料の
凹凸を光学的手法、機械的手法によって作製する場合に
は、その凹凸の制御は、きわめて容易であり、精度が高
い。透明性固体材料が薄膜状あるいは板上である場合に
は、凹凸は片面のみに作製することはもちろん、光制御
の効率を上げるために両面に付けることもできる。
If the unevenness of the transparent solid material is too small compared to the wavelength of light, no light scattering or refraction effect can be expected; You can choose the unevenness. In particular, when the unevenness of a transparent solid material is produced by an optical method or a mechanical method, the control of the unevenness is extremely easy and highly accurate. When the transparent solid material is in the form of a thin film or a plate, unevenness can be formed not only on one side, but also on both sides in order to improve the efficiency of light control.

【0013】透明性固体の凹凸の製造方法はなんら限定
されるものではないが、たとえば、切削、プレス等の機
械的方法、レーザ光線等による加工、フォトレジストに
用いられるような光反応を利用する方法、溶剤による溶
出等の化学的方法あるいは凹凸を有する部分をレプリカ
等の方法で写し取る方法等がある。いずれの方法にせよ
液晶材料を透明性固体材料との界面を、固体材料の表面
形状の制御によって行うことができるため、高精度にま
た容易に制御することができる。特に、レプリカ等で写
し取る方法は、大量生産に適している。この方法には、
透明性、固体材料の溶液を凹凸を有する型に塗布し、溶
媒を揮発させたり、透明性固体材料の前駆体(モノマー
)を凹凸を有する型に塗布し、UV照射や熱によって重
合させたりする方法がある。
[0013] The method of manufacturing the unevenness of the transparent solid is not limited in any way, but includes, for example, mechanical methods such as cutting and pressing, processing using laser beams, and photoreactions such as those used in photoresists. There are various methods, such as a chemical method such as elution with a solvent, and a method of copying the uneven portion using a method such as a replica method. In either method, since the interface between the liquid crystal material and the transparent solid material can be controlled by controlling the surface shape of the solid material, it can be easily controlled with high precision. In particular, a method of copying using a replica or the like is suitable for mass production. This method includes
A solution of a transparent solid material is applied to a mold with irregularities and the solvent is evaporated, or a precursor (monomer) of a transparent solid material is applied to a mold with irregularities and polymerized by UV irradiation or heat. There is a way.

【0014】液晶材料は、単一の液晶性化合物に制限さ
れるものではなく、2種以上の液晶性化合物や液晶性化
合物以外の物質を含んだ混合物であってもよい。液晶材
料としては、ネマチック液晶、スチクチック液晶、コレ
ステリック液晶のどれを用いてもよく、また誘電率異方
性が正であっても負であってもよい。液晶材料の屈折率
の変化で、光線が変化するため、液晶材料の2つの屈折
率(常光線屈折率と異常光線屈折率)の差、もしくは液
晶性と等方相との屈折率の差が大きいものが望ましいが
、特にこれによって制限されるものではない。
The liquid crystal material is not limited to a single liquid crystal compound, but may be a mixture containing two or more types of liquid crystal compounds or substances other than liquid crystal compounds. As the liquid crystal material, any one of nematic liquid crystal, stictic liquid crystal, and cholesteric liquid crystal may be used, and the dielectric anisotropy may be positive or negative. Since the light ray changes due to a change in the refractive index of the liquid crystal material, the difference between the two refractive indexes of the liquid crystal material (ordinary ray refractive index and extraordinary ray refractive index), or the difference between the refractive index between the liquid crystalline and isotropic phases. A large one is desirable, but this is not a particular limitation.

【0015】液晶材料と透明性固体材料が層構造を有す
る液晶光学素子の場合に、それぞれの材料が各一層であ
る必要はなく、光学素子の特性を制限するために、それ
らの材料を複数層積ねることもできる。
In the case of a liquid crystal optical element in which a liquid crystal material and a transparent solid material have a layered structure, it is not necessary that each material has a single layer, but in order to limit the characteristics of the optical element, these materials may be used in multiple layers. You can also stack them.

【0016】本発明において液晶材料と透明性固体材料
から成る光制御部は、それらがバラバラにならないよう
保持される必要がある。透明性固体材料自身がこの働き
を兼ねる場合もあるが、他の材料によって形成されるこ
ともできる。光制御部が、薄膜状あるいは板状である場
合には基板がこれに対応する。基板はガラス、金属等の
堅固な材料から作られてもよく、高分子フィルム等の柔
軟性を有する材料から作られてもよい。
[0016] In the present invention, the light control unit made of a liquid crystal material and a transparent solid material must be held so that they do not fall apart. The transparent solid material itself may serve this function, but it can also be made of other materials. When the light control section is in the form of a thin film or a plate, the substrate corresponds to this. The substrate may be made of a rigid material such as glass or metal, or may be made of a flexible material such as a polymeric film.

【0017】本発明の液晶光学素子の駆動は、電圧を印
加する方法、磁場を印加する方法、温度による液晶相−
等方相の転移を利用する方法等があるが、とくに電圧印
加による方法が望ましい。電圧を印加するための電極と
して、透明性が要求される場合にはITO(インジウム
  スズ  オキサイド)等の透明電極を、透明性が要
求されない場合には各種電極を用いることができる。電
極の位置は、基板表面に存在することは必須ではなく、
透明性固体材料の表面、内部に直接設けることも可能で
あり、液晶材料との界面に設けることもできる。
The liquid crystal optical element of the present invention can be driven by applying a voltage, applying a magnetic field, or changing the liquid crystal phase by temperature.
There are methods that utilize isotropic phase transition, but a method using voltage application is particularly desirable. As the electrode for applying voltage, a transparent electrode such as ITO (indium tin oxide) can be used when transparency is required, and various electrodes can be used when transparency is not required. The position of the electrode is not necessarily on the substrate surface;
It can be provided directly on or inside the transparent solid material, or it can be provided at the interface with the liquid crystal material.

【0018】本発明の液晶光学素子を反射型として使用
する場合には反射板を設ける必要がある。反射板は、電
極と別に設けることもできるが、反射板が電極を兼ねる
ように設計することもできる。
When the liquid crystal optical element of the present invention is used as a reflective type, it is necessary to provide a reflective plate. The reflecting plate can be provided separately from the electrode, but it can also be designed so that the reflecting plate also serves as the electrode.

【0019】本発明の液晶光学素子をプロジェクタ用に
用いるためには散乱光が入射口銭の軸(透過光の方向)
方向より5°程度ずれる必要があり、それ以下の確度に
散乱する光は透過光(0°)との分離が難しい。そこで
、透明性固体と液晶の界面が、三角形を連ねた形の凹凸
と形成し三角形の斜面を入射光に対しても36°以上の
傾きとすれば、界面における屈折光の方向を入射光の軸
より5°以上ずらすことができる。ただし、透明性固体
の屈折率は1.5液晶の屈折率を1.7とした。
In order to use the liquid crystal optical element of the present invention for a projector, the scattered light must be aligned with the axis of the incident tip (direction of transmitted light).
It is necessary to deviate from the direction by about 5°, and it is difficult to separate light scattered with less accuracy from transmitted light (0°). Therefore, if the interface between the transparent solid and the liquid crystal is formed with unevenness in the shape of a series of triangles, and the slope of the triangle is tilted at an angle of 36 degrees or more with respect to the incident light, the direction of the refracted light at the interface will be changed from that of the incident light. It can be offset by 5° or more from the axis. However, the refractive index of the transparent solid was 1.5, and the refractive index of the liquid crystal was 1.7.

【0020】本発明の液晶光学素子をプロジェクタ用に
用いるためには、散乱光が入射光線の軸(透過光の方向
)方向より5°程度ずれる必要があり、それ以下の角度
に散乱する光は、透過光(0°)との分離が難しい。 そこで、透明性固体と液晶の界面が、三角形を連ねた形
の凹凸と形成し、三角形の斜面を入射光に対して36°
以上の傾きとすれば、界面における屈折光の方向を入射
光の軸より5°以上ずらすことができる。ただし、透明
性固体の屈折率1.5液晶の屈折率を1.7とした。
In order to use the liquid crystal optical element of the present invention for a projector, it is necessary for the scattered light to deviate from the axis of the incident light beam (direction of transmitted light) by about 5°, and the light scattered at an angle smaller than that is , it is difficult to separate it from transmitted light (0°). Therefore, the interface between the transparent solid and the liquid crystal is formed with unevenness in the shape of a series of triangles, and the slope of the triangle is 36 degrees to the incident light.
With the above inclination, the direction of the refracted light at the interface can be shifted by 5° or more from the axis of the incident light. However, the refractive index of the transparent solid was 1.5, and the refractive index of the liquid crystal was 1.7.

【0021】また、透明性固体と液晶の界面が、矩型で
ある場合には、透明性固体と液晶の光学的距離の差が、
入射光の半波長に等しくなるように矩型の形状を制御す
ることによって透過−非透過型の素子を作ることができ
、これは、プロジェクタ以外にも反射型の表示装置とし
ての利用も考えられる。
Furthermore, when the interface between the transparent solid and the liquid crystal is rectangular, the difference in the optical distance between the transparent solid and the liquid crystal is
By controlling the rectangular shape so that it is equal to half the wavelength of the incident light, it is possible to create a transmissive-non-transmissive element, which could be used not only as a projector but also as a reflective display device. .

【0022】[0022]

【実施例】以下、実施例により、本発明を具体的に説明
する。しかし、本発明は、これらの実施例に限定される
ものではない。 実施例1 ポリメチルメタクリレート(和光純薬製Cat  No
  25290−31:以下PMMAと略す)をクロロ
ホルムに溶解し20wt%のPMMA溶液を得た。これ
を透明電極13付ガラス基板14(55mm×25mm
,ITO部55mm×10mm)上にたらし、溶媒を揮
発させた。ガラス基板上にPMMAの膜12が形成され
た。 膜は透明であり、厚さは約20μmであった。PMMA
膜をサンドペーパー#180を用いて一方向にこすると
、白く不透明となった。この膜を透過型電子顕微鏡(S
EM)で観察すると、こすった方向に、数μmから数1
0μmの無数の溝ができ、凹凸の表面となっていること
が確認された。このPMMA膜上に正の誘電異方性を有
するネマティック液晶材料E7(メルク社製)11をた
らし、その上より他のITO付ガラス基板14を押し付
け固定した(図1参照)。得られた液晶光学素子は白く
半透明であった。ITO電極間に330Hzの矩形交流
波を加え、電圧の変化に伴う入射光線方向の透過率の変
化を測定した。光源には、He−Neレーザー(日本電
気製GLS5320B)の632.8nmの単色光を用
いた。電圧を変化させた後0.5秒たった時の値を透過
率として測定した。透過率は、電圧0Vにおいて8%で
あったが、電圧とともに増加し、50Vで72%まで増
加した低電圧領域における光の散乱状態は、中心に対し
て同心円状に対称ではなく、PMMA膜の溝の向きに垂
直な方向に強くなっていた。光の入射方向に対して5°
傾いた方向への散乱光強度を測定した。溝に垂直な方向
に5°傾いた散乱強度は、電圧0Vでの7%から電圧増
加とともに、0.6%(50V)まで低下した。一方、
溝に平行な方向に5°傾いた散乱強度は、電圧に依存せ
ず、0Vから50Vの範囲で0.3%以下であった。
[Examples] The present invention will be specifically explained below with reference to Examples. However, the present invention is not limited to these examples. Example 1 Polymethyl methacrylate (Wako Pure Chemical Industries, Ltd. Cat No.
25290-31 (hereinafter abbreviated as PMMA) was dissolved in chloroform to obtain a 20 wt % PMMA solution. Glass substrate 14 (55 mm x 25 mm) with transparent electrode 13
, onto an ITO section (55 mm x 10 mm), and the solvent was evaporated. A PMMA film 12 was formed on a glass substrate. The membrane was transparent and approximately 20 μm thick. PMMA
The membrane was rubbed in one direction with #180 sandpaper and became white and opaque. This film was examined under a transmission electron microscope (S
When observed with EM), in the direction of rubbing, from several μm to several 1
It was confirmed that countless grooves of 0 μm were formed, resulting in an uneven surface. A nematic liquid crystal material E7 (manufactured by Merck & Co., Ltd.) 11 having positive dielectric anisotropy was poured onto this PMMA film, and another ITO-attached glass substrate 14 was pressed and fixed thereon (see FIG. 1). The obtained liquid crystal optical element was white and translucent. A 330 Hz rectangular alternating current wave was applied between the ITO electrodes, and changes in transmittance in the direction of incident light due to changes in voltage were measured. As a light source, 632.8 nm monochromatic light from a He-Ne laser (GLS5320B manufactured by NEC Corporation) was used. The value 0.5 seconds after changing the voltage was measured as the transmittance. The transmittance was 8% at a voltage of 0V, but it increased with voltage and increased to 72% at 50V.The light scattering state in the low voltage region was not concentrically symmetrical with respect to the center, but was due to the PMMA film. It became stronger in the direction perpendicular to the direction of the groove. 5° to the direction of light incidence
The intensity of scattered light in the tilted direction was measured. The scattering intensity tilted by 5° in the direction perpendicular to the groove decreased from 7% at a voltage of 0 V to 0.6% (50 V) as the voltage increased. on the other hand,
The scattering intensity tilted by 5° in the direction parallel to the grooves was independent of voltage and was 0.3% or less in the range of 0V to 50V.

【0023】印加電圧を50V一定とし、周波数を0.
1Hzから104Hzまで変化させ、透過率を測定した
。0.1Hzで透過率10%であったが、周波数ととも
に増加し(1Hzで21%、10Hzで48%)100
Hzで70%となり、それ以上の周波数ではほとんど変
化が見られなかった。 比較例1 実施例1と同様に素子を作成した。ただし、PMMA膜
には溝を付けなかった。電圧0Vでの透過率95%、電
圧50Vでの透過率96%であった。また電圧50Vに
おいて、周波数0.1Hzから104 Hzの間で透過
率は95%から96%の範囲内にあった。 比較例2 特表昭61−502128号で公知となっているエポキ
シ樹脂中に液晶が分散した系について同様な測定を行っ
た。エポキシ樹脂系接着剤(セメダインスーパー、エポ
キシ−アミド系)と液晶E7を50wt%ずつ混合した
。混合物をITO付ガラス基板の間にはさみ、厚さ16
μmのスペーサー用フィルムとともにプレスした。エポ
キシ樹脂が硬化するにつれて白色不透明になった。実施
例1と同様に透過率の測定を行った。0Vから5Vで2
8%であったものが50V、92%まで増加した。光線
の入射方向から5°の方向の散乱光は、0Vから50V
で4%から0.3%まで低下したが、基板の向きによる
変化は認められなかった。 実施例2 実施例1と同様に作成したPMMAの20%溶液を曇り
ガラス(松波ガラス工業製スライドグラスのフロスト部
を仕様)上にたらし、溶媒を揮発させた。曇りガラス上
にPMMAの膜が形成され透明になった。PMMA膜を
ガラス板よりはがすと不透明となり、曇りガラスとその
レプリカの凹凸状態をSEMによって観察すると、とも
に1μm程度から数十μm程度の不規則な凹凸の存在が
確認され、曇りガラスからPMMA膜への凹凸の写し取
りが良好であることが確認できた。膜厚は約10μmで
あった。PMMA膜をITO付ガラス基板の間に液晶E
7とともにはさみ固定し、積層構造の光学素子を作製し
た。層の順序は、基板/液晶/PMMA/液晶基板であ
った。
[0023] The applied voltage is kept constant at 50V, and the frequency is set at 0.
The transmittance was measured by changing the frequency from 1 Hz to 104 Hz. The transmittance was 10% at 0.1 Hz, but increased with frequency (21% at 1 Hz, 48% at 10 Hz) 100
It was 70% at Hz, and almost no change was observed at frequencies above that. Comparative Example 1 A device was produced in the same manner as in Example 1. However, no grooves were formed on the PMMA film. The transmittance was 95% at a voltage of 0V and 96% at a voltage of 50V. Further, at a voltage of 50 V, the transmittance was within the range of 95% to 96% at frequencies of 0.1 Hz to 104 Hz. Comparative Example 2 Similar measurements were carried out on a system in which liquid crystals were dispersed in an epoxy resin, which is known from Japanese Patent Publication No. 61-502128. Epoxy resin adhesive (CEMEDINE SUPER, epoxy-amide type) and liquid crystal E7 were mixed in an amount of 50 wt %. The mixture was sandwiched between glass substrates with ITO, and the thickness was 16 mm.
It was pressed together with a μm spacer film. As the epoxy resin cured, it became white and opaque. Transmittance was measured in the same manner as in Example 1. 2 from 0V to 5V
What was 8% increased to 50V and 92%. Scattered light in the direction of 5° from the direction of incidence of the light beam is from 0V to 50V
However, no change was observed depending on the orientation of the substrate. Example 2 A 20% solution of PMMA prepared in the same manner as in Example 1 was poured onto a frosted glass (designed to be the frosted part of a slide glass manufactured by Matsunami Glass Industries), and the solvent was evaporated. A PMMA film was formed on the frosted glass, making it transparent. When the PMMA film is peeled off from the glass plate, it becomes opaque, and when the unevenness of the frosted glass and its replica was observed using SEM, the existence of irregular unevenness ranging from about 1 μm to several tens of μm was confirmed, indicating that the PMMA film was changed from the frosted glass to the PMMA film. It was confirmed that the unevenness was well copied. The film thickness was approximately 10 μm. Liquid crystal E is placed between the PMMA film and the glass substrate with ITO.
7 and fixed with scissors to produce an optical element with a laminated structure. The layer order was substrate/liquid crystal/PMMA/liquid crystal substrate.

【0024】作製した光学素子について、実施例1と同
様、透過率を測定した。透過率の電圧依存性おいては、
10Vまで20%とほとんど一定であったが、10Vよ
り急速に立上がり、50Vで89%となった(図2参照
)。電圧50Vでの周波数依存性では、周波数とともに
透過率が21%(0.1Hz)から88%(102 〜
104 Hz)まで増加した。これらの透過率の変化は
、電圧および周波数の変化の向きによらず、また繰り返
し測定においても安定であった。 比較例3 曇りガラスのかわりに透明な(平面)ガラスを用いた以
外実施例1と同様な方法で素子を作製し、測定した。電
圧を0Vから50Vまで変化させた時、周波数を0.1
Hzから104 Hzまで変化した時の透過率の変化は
それぞれ97〜98%、96〜98%であった。 実施例3 PMMAのかわりにポリスチレン(和光純薬製、分子量
1600−1800)を液晶としてE8(メルク製)を
用いた以外は、実施例2と同様に光学素子を作成し、測
定を行った。電圧とともに透過率は9%(0V)から7
9%(50V)まで増加した。 実施例4,5 PMMA溶液のかわりにポリ塩化ビニル系接着剤(セメ
ダインビニール用)およびエポキシ樹脂系接着剤(セメ
ダインハイスーパー5)以外は実施例1と同様にして素
子の作製および測定を行った。透過率の電圧依存性はそ
れぞれ40%(0V)〜93%(50V)、  41%
(0V)〜77%(50V)であった。 実施例6 実施例2の方法で得られたPMMA膜を裏返し、少量の
クロロホルムを付けた曇りガラスに押し付けることによ
って両面に凹凸を有したPMMA膜を作成した。実施例
2と同様に2枚の基板間に液晶/PMMA/液晶の各層
を挟み固定した。透過率は電圧とともに9%(0V)か
ら81%(50V)まで変化した。 実施例7 実施例1と同様の方法で得られたPMMA膜を2枚用い
て、光学素子を作製し、測定を行った。層の順序は基板
/液晶/PMMA/液晶/PMMA/液晶/基板であっ
た。透過率は10%(0V)から41%(50V)まで
変化した。 実施例8 実施例1と同様の光学素子を作製し、電圧を印加せず、
温度変化に伴う透過率の変化を測定した。液晶材料(E
7)が等方相に変化する約70℃以上で96%であった
透過率は、それ以下の温度では17%であった。測定を
繰り返した時の透過率もこれらの値と等しかった。 実施例9 実施例2と同様に作成したPMMA膜の平らな側(曇り
ガラスの反対側)にスパッタコーティング法でITOか
ら成る透明電極を付けた。ITO付ガラス基板の上に液
晶および上記PMMA膜を重ねた3層構造(基板/液晶
/PMMA)の素子を作成した。実施例1と同様の方法
で透過率を測定すると、電圧無印加で15%であったも
のが、50Vで70%まで変化した。
The transmittance of the produced optical element was measured in the same manner as in Example 1. Regarding the voltage dependence of transmittance,
It remained almost constant at 20% up to 10V, but rose rapidly from 10V to 89% at 50V (see Figure 2). Regarding the frequency dependence at a voltage of 50 V, the transmittance increases from 21% (0.1 Hz) to 88% (102 ~
104 Hz). These changes in transmittance were stable regardless of the direction of change in voltage and frequency, and even in repeated measurements. Comparative Example 3 A device was produced and measured in the same manner as in Example 1 except that transparent (flat) glass was used instead of frosted glass. When the voltage is changed from 0V to 50V, the frequency is 0.1
The changes in transmittance when changing from Hz to 104 Hz were 97-98% and 96-98%, respectively. Example 3 An optical element was prepared and measured in the same manner as in Example 2, except that polystyrene (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 1600-1800) was used instead of PMMA, and E8 (manufactured by Merck) was used as the liquid crystal. The transmittance increases with voltage from 9% (0V) to 7
It increased to 9% (50V). Examples 4 and 5 Elements were prepared and measured in the same manner as in Example 1, except that the PMMA solution was replaced by a polyvinyl chloride adhesive (for Cemedine Vinyl) and an epoxy resin adhesive (Cemedine High Super 5). . The voltage dependence of transmittance is 40% (0V) to 93% (50V) and 41%, respectively.
(0V) to 77% (50V). Example 6 The PMMA film obtained by the method of Example 2 was turned over and pressed against frosted glass coated with a small amount of chloroform, thereby creating a PMMA film having irregularities on both sides. As in Example 2, the liquid crystal/PMMA/liquid crystal layers were sandwiched and fixed between two substrates. The transmittance varied with voltage from 9% (0V) to 81% (50V). Example 7 An optical element was manufactured using two PMMA films obtained in the same manner as in Example 1, and measurements were performed. The layer order was substrate/liquid crystal/PMMA/liquid crystal/PMMA/liquid crystal/substrate. The transmittance varied from 10% (0V) to 41% (50V). Example 8 An optical element similar to that in Example 1 was produced, no voltage was applied,
Changes in transmittance due to temperature changes were measured. Liquid crystal material (E
The transmittance of 7) was 96% at temperatures above about 70° C., where it changes to an isotropic phase, and was 17% at temperatures below that temperature. The transmittance of repeated measurements was also equal to these values. Example 9 A transparent electrode made of ITO was attached to the flat side (opposite the frosted glass) of a PMMA film prepared in the same manner as in Example 2 by sputter coating. An element having a three-layer structure (substrate/liquid crystal/PMMA) was prepared by stacking a liquid crystal and the above PMMA film on a glass substrate with ITO. When the transmittance was measured in the same manner as in Example 1, the transmittance was 15% when no voltage was applied, but it changed to 70% at 50V.

【0025】[0025]

【発明の効果】以上の如く、本発明は、新規な液晶光学
素子を提供するものであり、凹凸を有する透明性固体材
料と液晶材料から液晶光学素子を構成することによって
、固体−液晶界面の凹凸を高積度に、また容易に制御で
きる光学素子を与える。従って、本発明は、表示装置光
シャッタ(光バルブ)、光回路等に広く利用することが
できる。
As described above, the present invention provides a novel liquid crystal optical element, and by constructing the liquid crystal optical element from a transparent solid material having irregularities and a liquid crystal material, the solid-liquid crystal interface can be improved. To provide an optical element whose unevenness can be easily controlled with a high density. Therefore, the present invention can be widely used in display device optical shutters (light valves), optical circuits, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の液晶光学素子の一例の概略断面図であ
る。
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal optical element of the present invention.

【図2】本発明の液晶光学素子の電圧−透過率曲線の一
例を示す図である。
FIG. 2 is a diagram showing an example of a voltage-transmittance curve of a liquid crystal optical element of the present invention.

【符号の説明】[Explanation of symbols]

11  液晶材料 12  透明性固体材料 13  透明電極 14  ガラス基板 11 Liquid crystal material 12 Transparent solid material 13 Transparent electrode 14 Glass substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  凹凸を有する透明性固体材料と、その
凹凸に接して設けられた液晶材料とからなることを特徴
とする液晶光学素子。
1. A liquid crystal optical element comprising a transparent solid material having irregularities and a liquid crystal material provided in contact with the irregularities.
【請求項2】  液晶材料と透明性固体材料が、少なく
とも一方が透明性を有する2枚の基板間に保持された請
求項1記載の液晶光学素子。
2. The liquid crystal optical element according to claim 1, wherein the liquid crystal material and the transparent solid material are held between two substrates, at least one of which is transparent.
【請求項3】  透明性固体材料の溶液又は透明性固体
材料の前駆体を凹凸を有する他の固体材料の凹凸上に塗
布し、固化させることより透明性固体材料表面に前記凹
凸を写し取り、得られた透明性固体材料と液晶材料を積
層する液晶光学素子の製造方法。
3. Coating a solution of a transparent solid material or a precursor of a transparent solid material onto the irregularities of another solid material having irregularities and solidifying the same, thereby copying the irregularities on the surface of the transparent solid material, A method for manufacturing a liquid crystal optical element by laminating the obtained transparent solid material and a liquid crystal material.
JP3008187A 1991-01-28 1991-01-28 Liquid crystal optical element and manufacturing method thereof Expired - Lifetime JP3049779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008187A JP3049779B2 (en) 1991-01-28 1991-01-28 Liquid crystal optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008187A JP3049779B2 (en) 1991-01-28 1991-01-28 Liquid crystal optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04250418A true JPH04250418A (en) 1992-09-07
JP3049779B2 JP3049779B2 (en) 2000-06-05

Family

ID=11686299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008187A Expired - Lifetime JP3049779B2 (en) 1991-01-28 1991-01-28 Liquid crystal optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3049779B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07199168A (en) * 1993-12-28 1995-08-04 Nec Corp Liquid crystal optical element
JPH07199166A (en) * 1993-12-28 1995-08-04 Nec Corp Production of reflection electrode plate
WO2004053578A1 (en) * 2002-12-12 2004-06-24 Sony Corporation Liquid crystal device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07199168A (en) * 1993-12-28 1995-08-04 Nec Corp Liquid crystal optical element
JPH07199166A (en) * 1993-12-28 1995-08-04 Nec Corp Production of reflection electrode plate
WO2004053578A1 (en) * 2002-12-12 2004-06-24 Sony Corporation Liquid crystal device and its manufacturing method
EP1489453A1 (en) * 2002-12-12 2004-12-22 Sony Corporation Liquid crystal device and its manufacturing method
EP1489453A4 (en) * 2002-12-12 2006-12-06 Sony Corp Liquid crystal device and its manufacturing method
US7184119B2 (en) 2002-12-12 2007-02-27 Sony Corporation Liquid crystal device and its manufacturing method

Also Published As

Publication number Publication date
JP3049779B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
EP0359801B1 (en) Acrylate polymer-dispersed liquid crystal material and devices made therefrom
US4938568A (en) Polymer dispersed liquid crystal film devices, and method of forming the same
EP0348480B1 (en) Dispersion of liquid crystal droplets in a photopolymerized matrix, and devices made therefrom
CN104813202B (en) Optical film
EP0488116A2 (en) Polymer dispersed liquid crystal display element and method of fabricating the same
WO2012053479A1 (en) Display panel, and display device
JP2550627B2 (en) Liquid crystal optical element
US20100115764A1 (en) Stressed liquid crystals materials for light modulation
JP6927876B2 (en) Manufacturing method of polymer-containing scattering type liquid crystal element and polymer-containing scattering type liquid crystal element
KR960002689B1 (en) Liquid crystal electro-optic device
US6950171B2 (en) Liquid crystal color switch and method of manufacture
JPH04250418A (en) Liquid crystal optical element and its manufacture
CN100394218C (en) Optical integrator
JPH04273213A (en) Liquid crystal optical element
RU2707424C1 (en) Electrically controlled light polarizer based on light scattering anisotropy
JP3156303B2 (en) Manufacturing method of liquid crystal phase diffraction grating
West et al. Stressed liquid crystals and their application
JPH03276127A (en) Photoresponsive film and production thereof
TW490578B (en) Liquid crystal optical shutter
JPH0561023A (en) Liquid crystal electrooptical element and production thereof
JPH0695090A (en) Liquid crystal display element
JP3087322B2 (en) Liquid crystal optical element and driving method thereof
JPH11237618A (en) Liquid crystal display element
JPH11326911A (en) Reflection type liquid crystal display element and its production
Fan et al. Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

EXPY Cancellation because of completion of term