JP3049779B2 - Liquid crystal optical element and manufacturing method thereof - Google Patents

Liquid crystal optical element and manufacturing method thereof

Info

Publication number
JP3049779B2
JP3049779B2 JP3008187A JP818791A JP3049779B2 JP 3049779 B2 JP3049779 B2 JP 3049779B2 JP 3008187 A JP3008187 A JP 3008187A JP 818791 A JP818791 A JP 818791A JP 3049779 B2 JP3049779 B2 JP 3049779B2
Authority
JP
Japan
Prior art keywords
liquid crystal
solid material
transparent solid
optical element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3008187A
Other languages
Japanese (ja)
Other versions
JPH04250418A (en
Inventor
秀哉 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3008187A priority Critical patent/JP3049779B2/en
Publication of JPH04250418A publication Critical patent/JPH04250418A/en
Application granted granted Critical
Publication of JP3049779B2 publication Critical patent/JP3049779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、透明−散乱方式あるい
は屈折方式により透過光(または反射光)を操作する液
晶光学素子に関するものであって、文字、図形等を表示
する表示装置、入射光の透過−遮断を制御する光シャッ
タ、光バルブおよび光路を切り換える光回路部品として
利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal optical element for controlling transmitted light (or reflected light) by a transparent-scattering method or a refracting method, and relates to a display device for displaying characters, figures, etc., and incident light. It is used as an optical shutter, an optical valve, and an optical circuit component for switching an optical path, which controls transmission and blocking of light.

【0002】[0002]

【従来の技術】液晶表示素子は、従来ネマチック液晶を
使用したTN型や、STN型のものが実用化されてい
る。これらは偏光板を要するため、明るさ、コントラス
トにおいて制限を受ける。
2. Description of the Related Art Conventionally, a TN type or STN type liquid crystal display element using a nematic liquid crystal has been put to practical use. Since these require a polarizing plate, they are limited in brightness and contrast.

【0003】一方、特表昭58−501631号に開示
された、液晶材料をカプセル化し、高分子中に分散する
方法では、偏光板を要しないため、光の減衰が少ない利
点を有している。この開示技術においては、カプセル内
の液晶の屈折率が電界の有無によって変化することを利
用し、電圧印加下の液晶の屈折率を高分子の屈折率と等
しく設定することによって、電圧印加下では透明な電圧
を除いた時には、光を散乱し、不透明となる光学素子が
得られている。液晶の屈折率の変化を利用した同様な素
子として、液晶をエポキシ樹脂中に分散したもの(特表
昭61−502128号)、紫外線硬化樹脂中に分散し
たもの(特開昭62−2231号)等が知られている。
On the other hand, the method disclosed in JP-T-58-501631 in which a liquid crystal material is encapsulated and dispersed in a polymer does not require a polarizing plate, and thus has the advantage of little light attenuation. . In this disclosed technique, by using the fact that the refractive index of the liquid crystal in the capsule changes depending on the presence or absence of an electric field, the refractive index of the liquid crystal under voltage application is set equal to the refractive index of the polymer, so that under voltage application When the transparent voltage is removed, an optical element that scatters light and becomes opaque is obtained. Similar devices utilizing the change in the refractive index of liquid crystal include liquid crystal dispersed in an epoxy resin (Japanese Patent Publication No. Sho 61-502128) and a liquid crystal dispersed in an ultraviolet curable resin (Japanese Patent Application Laid-Open No. 62-2231). Etc. are known.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の液晶光
学素子は以下の方法によって製造することができる。
カプセル化した液晶を高分子中に分散する方法。液晶
材料と樹脂およびそれらの共通溶媒を均一に混合し、溶
媒を除去することによって生じる相分離によって製造す
る方法。液晶材料とモノマーを均一に混合し、モノマ
ーを重合させることによって生じる相分離によって製造
する方法。しかし、これらの製造方法では、透明性固体
材料中に分散する液晶材料の形状、位置の制御は難し
く、また、形状、位置を高度に制御した材料を得ること
は不可能である。ところで、液晶光学素子の散乱状態
は、液晶の分散状態によって決まる。しかし、従来の液
晶光学素子では、液晶−透明性固体材料の界面(分散状
態)を高度に制御することは不可能であるため、透過光
の散乱を制御することができないという課題があった。
また、従来の液晶光学素子においては、光が散乱した状
態においても中央部の光量を最大とし、散乱光強度が散
乱光角度のみに依存する単調減少タイプのものしか得ら
れないし、たとえば特定の方向の散乱を強めることがで
きないという課題を有している。
The above-mentioned conventional liquid crystal optical element can be manufactured by the following method.
A method in which encapsulated liquid crystal is dispersed in a polymer. A method in which a liquid crystal material, a resin, and a common solvent thereof are uniformly mixed, and the liquid crystal material is manufactured by phase separation caused by removing the solvent. A method in which a liquid crystal material and a monomer are uniformly mixed, and the liquid crystal material is produced by phase separation caused by polymerizing the monomer. However, with these manufacturing methods, it is difficult to control the shape and position of the liquid crystal material dispersed in the transparent solid material, and it is impossible to obtain a material whose shape and position are highly controlled. By the way, the scattering state of the liquid crystal optical element is determined by the dispersion state of the liquid crystal. However, in the conventional liquid crystal optical element, since it is impossible to control the interface (dispersion state) between the liquid crystal and the transparent solid material at a high level, there is a problem that scattering of transmitted light cannot be controlled.
Further, in the conventional liquid crystal optical element, even in a state where light is scattered, the amount of light at the central portion is maximized, and only a monotonically decreasing type in which the scattered light intensity depends only on the scattered light angle is obtained. There is a problem that the scattering of light cannot be strengthened.

【0005】本発明の目的は、散乱光の状態を任意にか
つ容易に設定できる液晶光学素子を提供することにあ
る。
[0005] It is an object of the present invention to provide a liquid crystal optical element in which the state of scattered light can be set arbitrarily and easily.

【0006】[0006]

【課題を解決するための手段】本発明は、凹凸を有する
透明性固体材料と、その凹凸に接して設けられた液晶材
料とからなる液晶光学素子を提供するものである。本発
明においては、液晶材料と透明性固体材料との界面の制
御を、固体材料の表面の制御(機械的加工等)によって
行うため、公知の方法に比較し、界面の制御を高精度
に、また容易に行うことができる利点を有する。
SUMMARY OF THE INVENTION The present invention provides a liquid crystal optical element comprising a transparent solid material having irregularities and a liquid crystal material provided in contact with the irregularities. In the present invention, the control of the interface between the liquid crystal material and the transparent solid material is performed by controlling the surface of the solid material (mechanical processing or the like). It also has the advantage that it can be easily performed.

【0007】本発明の液晶光学素子を構成する透明性固
体材料は、その凹凸部において液晶材料と接し、凹凸を
有する界面を形成する。液晶材料は、液晶分子の配向状
態および相状態(液晶相と等方相)の変化によって屈折
率が変化する。適当な屈折率を有する透明性固体材料を
用いることによって、液晶材料と透明性固体材料におけ
る光の散乱、屈折を変化させることができる。たとえ
ば、電圧印加下での液晶材料の屈折率と透明性固体材料
の屈折率を一致させた場合には、電圧印加状態で光が直
進し、電圧を切った状態で、光が散乱あるいは屈折する
光学素子が得られる。このような透明性固体材料と液晶
材料の組み合わせとしては、下表のようなものがある。
[0007] The transparent solid material constituting the liquid crystal optical element of the present invention is in contact with the liquid crystal material at the uneven portions to form an interface having unevenness. The refractive index of a liquid crystal material changes depending on changes in the alignment state and phase state (liquid crystal phase and isotropic phase) of liquid crystal molecules. By using a transparent solid material having an appropriate refractive index, scattering and refraction of light in a liquid crystal material and a transparent solid material can be changed. For example, when the refractive index of a liquid crystal material under voltage application and the refractive index of a transparent solid material are matched, light goes straight in the state of voltage application, and the light is scattered or refracted in the state of voltage cut off. An optical element is obtained. The combination of such a transparent solid material and a liquid crystal material is as shown in the table below.

【0008】[0008]

【表1】[Table 1]

【0009】 [0009]

【0010】本発明で使用される透明性固体材料は、完
全な透明性を必須とするものではないが、光線が透明性
固体材料中を通過するときに、著しい減衰を生じない程
度の透明性を有することが望ましい。また透明性固体材
料に無色である必要はなく必要に応じて有色の固体材料
を用いることもできる。透明性固体材料の固体性につい
ては、柔軟性、弾性、可ぎょう性を有するものであって
もよいし、堅固なものであってもよい。透明性固体材料
が堅固な場合には液晶光学素子の基板をかねることがで
きる。透明性固体材料の形状は特に制限されるものでは
なく、光の散乱、屈折を効率よく行いうるものであれば
どのような形状のものでも可能であるが、透明性固体材
料が液晶材料と層構造を形成する場合には、薄膜状(フ
ィルム状)や板状であるものが望ましい。とくに駆動電
圧を下げるためには、20μm以下が望ましい。
[0010] The transparent solid material used in the present invention does not necessarily require complete transparency, but has such transparency that light rays do not undergo significant attenuation when passing through the transparent solid material. It is desirable to have The transparent solid material does not need to be colorless, and a colored solid material can be used if necessary. Regarding the solidity of the transparent solid material, it may have flexibility, elasticity, and flexibility, or may be solid. When the transparent solid material is rigid, it can serve as a substrate for a liquid crystal optical element. The shape of the transparent solid material is not particularly limited, and any shape can be used as long as it can efficiently scatter and refract light. When a structure is formed, a thin film (film) or plate is desirable. In particular, in order to lower the drive voltage, the thickness is desirably 20 μm or less.

【0011】前述した特性を有する透過性固体材料であ
れば、特に限定されるものではないが透明性、加工性等
より高分子材料(ポリマー、プラスチック)あるいはガ
ラスなどが望ましい。
As long as it is a transparent solid material having the above-mentioned characteristics, it is not particularly limited, but a polymer material (polymer, plastic) or glass is desirable from the viewpoint of transparency, workability, and the like.

【0012】透明性固体材料の凹凸が、光の波長に比し
て小さすぎる場合には、光散乱や屈折の効果が期待でき
ないが、それ以外は、目的に応じて適当な大きさ、形状
の凹凸を選択することができる。特に透明性固体材料の
凹凸を光学的手法、機械的手法によって作製する場合に
は、その凹凸の制御は、きわめて容易であり、精度が高
い。透明性固体材料が薄膜状あるいは板上である場合に
は、凹凸は片面のみに作製することはもちろん、光制御
の効率を上げるために両面に付けることもできる。
If the irregularities of the transparent solid material are too small compared to the wavelength of light, the effect of light scattering and refraction cannot be expected. Unevenness can be selected. In particular, when the unevenness of the transparent solid material is manufactured by an optical method or a mechanical method, the control of the unevenness is extremely easy and the accuracy is high. When the transparent solid material is in the form of a thin film or a plate, the irregularities can be formed on only one side, or can be formed on both sides to increase the efficiency of light control.

【0013】透明性固体の凹凸の製造方法はなんら限定
されるものではないが、たとえば、切削、プレス等の機
械的方法、レーザ光線等による加工、フォトレジストに
用いられるような光反応を利用する方法、溶剤による溶
出等の化学的方法あるいは凹凸を有する部分をレプリカ
等の方法で写し取る方法等がある。いずれの方法にせよ
液晶材料を透明性固体材料との界面を、固体材料の表面
形状の制御によって行うことができるため、高精度にま
た容易に制御することができる。特に、レプリカ等で写
し取る方法は、大量生産に適している。この方法には、
透明性、固体材料の溶液を凹凸を有する型に塗布し、溶
媒を揮発させたり、透明性固体材料の前駆体(モノマ
ー)を凹凸を有する型に塗布し、UV照射や熱によって
重合させたりする方法がある。
The method for producing the irregularities of the transparent solid is not limited at all. For example, mechanical methods such as cutting and pressing, processing by a laser beam or the like, and photoreactions used in photoresists are used. Method, a chemical method such as elution with a solvent, or a method of copying a portion having irregularities by a method such as a replica. In any case, the interface between the liquid crystal material and the transparent solid material can be controlled by controlling the surface shape of the solid material, so that it can be controlled with high precision and ease. In particular, the method of copying with a replica or the like is suitable for mass production. This method includes:
A solution of a transparent, solid material is applied to a mold having irregularities to evaporate a solvent, or a precursor (monomer) of a transparent solid material is applied to a mold having irregularities, and is polymerized by UV irradiation or heat. There is a way.

【0014】液晶材料は、単一の液晶性化合物に制限さ
れるものではなく、2種以上の液晶性化合物や液晶性化
合物以外の物質を含んだ混合物であってもよい。液晶材
料としては、ネマチック液晶、スチクチック液晶、コレ
ステリック液晶のどれを用いてもよく、また誘電率異方
性が正であっても負であってもよい。液晶材料の屈折率
の変化で、光線が変化するため、液晶材料の2つの屈折
率(常光線屈折率と異常光線屈折率)の差、もしくは液
晶性と等方相との屈折率の差が大きいものが望ましい
が、特にこれによって制限されるものではない。
The liquid crystal material is not limited to a single liquid crystal compound, but may be a mixture containing two or more liquid crystal compounds or a substance other than the liquid crystal compound. As the liquid crystal material, any of a nematic liquid crystal, a strictic liquid crystal, and a cholesteric liquid crystal may be used, and the dielectric anisotropy may be positive or negative. Since the light beam changes due to the change in the refractive index of the liquid crystal material, the difference between the two refractive indices of the liquid crystal material (the ordinary light refractive index and the extraordinary light refractive index) or the difference in the refractive index between the liquid crystallinity and the isotropic phase. Larger ones are desirable, but not particularly limited.

【0015】液晶材料と透明性固体材料が層構造を有す
る液晶光学素子の場合に、それぞれの材料が各一層であ
る必要はなく、光学素子の特性を制限するために、それ
らの材料を複数層積ねることもできる。
In the case of a liquid crystal optical element having a layer structure composed of a liquid crystal material and a transparent solid material, each material does not need to be a single layer. You can also stack them.

【0016】本発明において液晶材料と透明性固体材料
から成る光制御部は、それらがバラバラにならないよう
保持される必要がある。透明性固体材料自身がこの働き
を兼ねる場合もあるが、他の材料によって形成されるこ
ともできる。光制御部が、薄膜状あるいは板状である場
合には基板がこれに対応する。基板はガラス、金属等の
堅固な材料から作られてもよく、高分子フィルム等の柔
軟性を有する材料から作られてもよい。
In the present invention, the light control section made of a liquid crystal material and a transparent solid material needs to be held so that they do not fall apart. The transparent solid material itself may also perform this function, but may be formed of other materials. When the light control unit is in the form of a thin film or a plate, the substrate corresponds to this. The substrate may be made of a rigid material such as glass or metal, or may be made of a flexible material such as a polymer film.

【0017】本発明の液晶光学素子の駆動は、電圧を印
加する方法、磁場を印加する方法、温度による液晶相−
等方相の転移を利用する方法等があるが、とくに電圧印
加による方法が望ましい。電圧を印加するための電極と
して、透明性が要求される場合にはITO(インジウム
スズ オキサイド)等の透明電極を、透明性が要求さ
れない場合には各種電極を用いることができる。電極の
位置は、基板表面に存在することは必須ではなく、透明
性固体材料の表面、内部に直接設けることも可能であ
り、液晶材料との界面に設けることもできる。
The liquid crystal optical element of the present invention is driven by applying a voltage, applying a magnetic field, or controlling the liquid crystal phase by temperature.
Although there is a method utilizing a transition of an isotropic phase, etc., a method by applying a voltage is particularly preferable. As an electrode for applying a voltage, a transparent electrode such as ITO (indium tin oxide) can be used when transparency is required, and various electrodes can be used when transparency is not required. The position of the electrode is not necessarily required to be present on the surface of the substrate, but may be provided directly on or inside the transparent solid material, or may be provided at the interface with the liquid crystal material.

【0018】本発明の液晶光学素子を反射型として使用
する場合には反射板を設ける必要がある。反射板は、電
極と別に設けることもできるが、反射板が電極を兼ねる
ように設計することもできる。
When the liquid crystal optical element of the present invention is used as a reflection type, it is necessary to provide a reflection plate. The reflector can be provided separately from the electrodes, but can also be designed so that the reflector also serves as the electrodes.

【0019】本発明の液晶光学素子をプロジェクタ用に
用いるためには散乱光が入射口銭の軸(透過光の方向)
方向より5°程度ずれる必要があり、それ以下の確度に
散乱する光は透過光(0°)との分離が難しい。そこ
で、透明性固体と液晶の界面が、三角形を連ねた形の凹
凸と形成し三角形の斜面を入射光に対しても36°以上
の傾きとすれば、界面における屈折光の方向を入射光の
軸より5°以上ずらすことができる。ただし、透明性固
体の屈折率は1.5液晶の屈折率を1.7とした。
In order to use the liquid crystal optical element of the present invention for a projector, the scattered light is reflected on the axis of the incident coin (the direction of the transmitted light).
It is necessary to deviate from the direction by about 5 °, and it is difficult to separate light scattered to an accuracy less than 5 ° from transmitted light (0 °). Therefore, if the interface between the transparent solid and the liquid crystal is formed as irregularities formed by a series of triangles and the slope of the triangle is inclined at an angle of 36 ° or more with respect to the incident light, the direction of the refracted light at the interface changes the direction of the incident light. It can be shifted more than 5 ° from the axis. However, the refractive index of the transparent solid was 1.5, and the refractive index of the liquid crystal was 1.7.

【0020】本発明の液晶光学素子をプロジェクタ用に
用いるためには、散乱光が入射光線の軸(透過光の方
向)方向より5°程度ずれる必要があり、それ以下の角
度に散乱する光は、透過光(0°)との分離が難しい。
そこで、透明性固体と液晶の界面が、三角形を連ねた形
の凹凸と形成し、三角形の斜面を入射光に対して36°
以上の傾きとすれば、界面における屈折光の方向を入射
光の軸より5°以上ずらすことができる。ただし、透明
性固体の屈折率1.5液晶の屈折率を1.7とした。
In order to use the liquid crystal optical element of the present invention for a projector, the scattered light needs to be shifted by about 5 ° from the direction of the axis of the incident light (the direction of the transmitted light). Is difficult to separate from transmitted light (0 °).
Therefore, the interface between the transparent solid and the liquid crystal is formed as irregularities formed by connecting triangles, and the slopes of the triangles are formed at 36 ° with respect to incident light.
With the above inclination, the direction of the refracted light at the interface can be shifted by 5 ° or more from the axis of the incident light. However, the refractive index of the transparent solid was 1.5, and the refractive index of the liquid crystal was 1.7.

【0021】また、透明性固体と液晶の界面が、矩型で
ある場合には、透明性固体と液晶の光学的距離の差が、
入射光の半波長に等しくなるように矩型の形状を制御す
ることによって透過−非透過型の素子を作ることがで
き、これは、プロジェクタ以外にも反射型の表示装置と
しての利用も考えられる。
When the interface between the transparent solid and the liquid crystal is rectangular, the difference in the optical distance between the transparent solid and the liquid crystal is:
By controlling the rectangular shape so as to be equal to the half wavelength of the incident light, a transmissive-non-transmissive element can be produced, which can be used as a reflective display device besides a projector. .

【0022】[0022]

【実施例】以下、実施例により、本発明を具体的に説明
する。しかし、本発明は、これらの実施例に限定される
ものではない。 実施例1 ポリメチルメタクリレート(和光純薬製Cat No
25290−31:以下PMMAと略す)をクロロホル
ムに溶解し20wt%のPMMA溶液を得た。これを透
明電極13付ガラス基板14(55mm×25mm,I
TO部55mm×10mm)上にたらし、溶媒を揮発さ
せた。ガラス基板上にPMMAの膜12が形成された。
膜は透明であり、厚さは約20μmであった。PMMA
膜をサンドペーパー#180を用いて一方向にこする
と、白く不透明となった。この膜を透過型電子顕微鏡
(SEM)で観察すると、こすった方向に、数μmから
数10μmの無数の溝ができ、凹凸の表面となっている
ことが確認された。このPMMA膜上に正の誘電異方性
を有するネマティック液晶材料E7(メルク社製)11
をたらし、その上より他のITO付ガラス基板14を押
し付け固定した(図1参照)。得られた液晶光学素子は
白く半透明であった。ITO電極間に330Hzの矩形
交流波を加え、電圧の変化に伴う入射光線方向の透過率
の変化を測定した。光源には、He−Neレーザー(日
本電気製GLS5320B)の632.8nmの単色光
を用いた。電圧を変化させた後0.5秒たった時の値を
透過率として測定した。透過率は、電圧0Vにおいて8
%であったが、電圧とともに増加し、50Vで72%ま
で増加した低電圧領域における光の散乱状態は、中心に
対して同心円状に対称ではなく、PMMA膜の溝の向き
に垂直な方向に強くなっていた。光の入射方向に対して
5°傾いた方向への散乱光強度を測定した。溝に垂直な
方向に5°傾いた散乱強度は、電圧0Vでの7%から電
圧増加とともに、0.6%(50V)まで低下した。一
方、溝に平行な方向に5°傾いた散乱強度は、電圧に依
存せず、0Vから50Vの範囲で0.3%以下であっ
た。
The present invention will be described below in detail with reference to examples. However, the invention is not limited to these examples. Example 1 Polymethyl methacrylate (Cat No. manufactured by Wako Pure Chemical Industries, Ltd.)
25290-31: PMMA) was dissolved in chloroform to obtain a 20 wt% PMMA solution. The glass substrate 14 with the transparent electrode 13 (55 mm × 25 mm, I
(TO section 55 mm × 10 mm) to evaporate the solvent. A PMMA film 12 was formed on a glass substrate.
The film was transparent and had a thickness of about 20 μm. PMMA
Rubbing the film in one direction using sandpaper # 180 turned white and opaque. When this film was observed with a transmission electron microscope (SEM), it was confirmed that countless grooves of several μm to several tens of μm were formed in the rubbing direction, and the surface was uneven. A nematic liquid crystal material E7 (manufactured by Merck) 11 having a positive dielectric anisotropy is formed on the PMMA film.
Then, another glass substrate 14 with ITO was pressed and fixed thereon (see FIG. 1). The obtained liquid crystal optical element was white and translucent. A rectangular alternating wave of 330 Hz was applied between the ITO electrodes, and the change in transmittance in the incident light beam direction with the change in voltage was measured. As a light source, 632.8 nm monochromatic light of a He-Ne laser (GLS5320B manufactured by NEC) was used. The value at 0.5 seconds after changing the voltage was measured as the transmittance. The transmittance is 8 at a voltage of 0 V.
%, But increased with the voltage and increased to 72% at 50 V. The light scattering state in the low voltage region is not concentrically symmetric with respect to the center but in a direction perpendicular to the direction of the groove of the PMMA film. I was getting stronger. The scattered light intensity in a direction inclined by 5 ° with respect to the light incident direction was measured. The scattering intensity inclined by 5 ° in the direction perpendicular to the groove decreased from 7% at a voltage of 0 V to 0.6% (50 V) with an increase in the voltage. On the other hand, the scattering intensity inclined by 5 ° in the direction parallel to the groove was 0.3% or less in the range of 0 V to 50 V without depending on the voltage.

【0023】印加電圧を50V一定とし、周波数を0.
1Hzから104Hzまで変化させ、透過率を測定し
た。0.1Hzで透過率10%であったが、周波数とと
もに増加し(1Hzで21%、10Hzで48%)10
0Hzで70%となり、それ以上の周波数ではほとんど
変化が見られなかった。 比較例1 実施例1と同様に素子を作成した。ただし、PMMA膜
には溝を付けなかった。電圧0Vでの透過率95%、電
圧50Vでの透過率96%であった。また電圧50Vに
おいて、周波数0.1Hzから104 Hzの間で透過率
は95%から96%の範囲内にあった。 比較例2 特表昭61−502128号で公知となっているエポキ
シ樹脂中に液晶が分散した系について同様な測定を行っ
た。エポキシ樹脂系接着剤(セメダインスーパー、エポ
キシ−アミド系)と液晶E7を50wt%ずつ混合し
た。混合物をITO付ガラス基板の間にはさみ、厚さ1
6μmのスペーサー用フィルムとともにプレスした。エ
ポキシ樹脂が硬化するにつれて白色不透明になった。実
施例1と同様に透過率の測定を行った。0Vから5Vで
28%であったものが50V、92%まで増加した。光
線の入射方向から5°の方向の散乱光は、0Vから50
Vで4%から0.3%まで低下したが、基板の向きによ
る変化は認められなかった。 実施例2 実施例1と同様に作成したPMMAの20%溶液を曇り
ガラス(松波ガラス工業製スライドグラスのフロスト部
を仕様)上にたらし、溶媒を揮発させた。曇りガラス上
にPMMAの膜が形成され透明になった。PMMA膜を
ガラス板よりはがすと不透明となり、曇りガラスとその
レプリカの凹凸状態をSEMによって観察すると、とも
に1μm程度から数十μm程度の不規則な凹凸の存在が
確認され、曇りガラスからPMMA膜への凹凸の写し取
りが良好であることが確認できた。膜厚は約10μmで
あった。PMMA膜をITO付ガラス基板の間に液晶E
7とともにはさみ固定し、積層構造の光学素子を作製し
た。層の順序は、基板/液晶/PMMA/液晶基板であ
った。
The applied voltage is fixed at 50 V, and the frequency is set to 0.1.
The transmittance was measured while changing from 1 Hz to 10 4 Hz. The transmittance was 0.1% at 0.1 Hz, but increased with frequency (21% at 1 Hz and 48% at 10 Hz).
It became 70% at 0 Hz, and hardly changed at frequencies higher than 0 Hz. Comparative Example 1 An element was prepared in the same manner as in Example 1. However, no groove was formed in the PMMA film. The transmittance at a voltage of 0 V was 95%, and the transmittance at a voltage of 50 V was 96%. At a voltage of 50 V, the transmittance was in the range of 95% to 96% at a frequency of 0.1 Hz to 10 4 Hz. Comparative Example 2 The same measurement was carried out for a system in which liquid crystal was dispersed in an epoxy resin known in Japanese Patent Publication No. Sho 61-502128. An epoxy resin-based adhesive (Cemedine Super, epoxy-amide based) and liquid crystal E7 were mixed at 50 wt% each. The mixture was sandwiched between glass substrates with ITO and had a thickness of 1
It was pressed together with a 6 μm spacer film. As the epoxy resin cured, it became white and opaque. The transmittance was measured in the same manner as in Example 1. What was 28% from 0V to 5V increased to 50V, 92%. The scattered light in the direction of 5 ° from the incident direction of the light beam is 0 V to 50 °.
V decreased from 4% to 0.3%, but no change due to the orientation of the substrate was observed. Example 2 A 20% solution of PMMA prepared in the same manner as in Example 1 was applied to frosted glass (specified by a frosted part of a slide glass manufactured by Matsunami Glass Industry) to evaporate the solvent. A PMMA film was formed on the frosted glass and became transparent. When the PMMA film is peeled off from the glass plate, it becomes opaque, and the unevenness of the frosted glass and its replica is observed by SEM. It was confirmed that the transfer of the irregularities was good. The thickness was about 10 μm. A liquid crystal E is placed between a glass substrate with ITO and a PMMA film.
7 was fixed together with scissors to produce an optical element having a laminated structure. The order of the layers was substrate / liquid crystal / PMMA / liquid crystal substrate.

【0024】作製した光学素子について、実施例1と同
様、透過率を測定した。透過率の電圧依存性おいては、
10Vまで20%とほとんど一定であったが、10Vよ
り急速に立上がり、50Vで89%となった(図2参
照)。電圧50Vでの周波数依存性では、周波数ととも
に透過率が21%(0.1Hz)から88%(102
104 Hz)まで増加した。これらの透過率の変化は、
電圧および周波数の変化の向きによらず、また繰り返し
測定においても安定であった。 比較例3 曇りガラスのかわりに透明な(平面)ガラスを用いた以
外実施例1と同様な方法で素子を作製し、測定した。電
圧を0Vから50Vまで変化させた時、周波数を0.1
Hzから104 Hzまで変化した時の透過率の変化はそ
れぞれ97〜98%、96〜98%であった。 実施例3 PMMAのかわりにポリスチレン(和光純薬製、分子量
1600−1800)を液晶としてE8(メルク製)を
用いた以外は、実施例2と同様に光学素子を作成し、測
定を行った。電圧とともに透過率は9%(0V)から7
9%(50V)まで増加した。 実施例4,5 PMMA溶液のかわりにポリ塩化ビニル系接着剤(セメ
ダインビニール用)およびエポキシ樹脂系接着剤(セメ
ダインハイスーパー5)以外は実施例1と同様にして素
子の作製および測定を行った。透過率の電圧依存性はそ
れぞれ40%(0V)〜93%(50V)、 41%
(0V)〜77%(50V)であった。 実施例6 実施例2の方法で得られたPMMA膜を裏返し、少量の
クロロホルムを付けた曇りガラスに押し付けることによ
って両面に凹凸を有したPMMA膜を作成した。実施例
2と同様に2枚の基板間に液晶/PMMA/液晶の各層
を挟み固定した。透過率は電圧とともに9%(0V)か
ら81%(50V)まで変化した。 実施例7 実施例1と同様の方法で得られたPMMA膜を2枚用い
て、光学素子を作製し、測定を行った。層の順序は基板
/液晶/PMMA/液晶/PMMA/液晶/基板であっ
た。透過率は10%(0V)から41%(50V)まで
変化した。 実施例8 実施例1と同様の光学素子を作製し、電圧を印加せず、
温度変化に伴う透過率の変化を測定した。液晶材料(E
7)が等方相に変化する約70℃以上で96%であった
透過率は、それ以下の温度では17%であった。測定を
繰り返した時の透過率もこれらの値と等しかった。 実施例9 実施例2と同様に作成したPMMA膜の平らな側(曇り
ガラスの反対側)にスパッタコーティング法でITOか
ら成る透明電極を付けた。ITO付ガラス基板の上に液
晶および上記PMMA膜を重ねた3層構造(基板/液晶
/PMMA)の素子を作成した。実施例1と同様の方法
で透過率を測定すると、電圧無印加で15%であったも
のが、50Vで70%まで変化した。
The transmittance of the manufactured optical element was measured in the same manner as in Example 1. In terms of voltage dependence of transmittance,
It was almost constant at 20% up to 10 V, but rose rapidly from 10 V and reached 89% at 50 V (see FIG. 2). In the frequency dependence at a voltage of 50 V, the transmittance is 21% (0.1 Hz) to 88% (10 2 to 10%) as well as the frequency.
10 4 Hz). These changes in transmittance are
It was stable irrespective of the direction of change in voltage and frequency, and also in repeated measurements. Comparative Example 3 An element was prepared and measured in the same manner as in Example 1, except that a transparent (flat) glass was used instead of the frosted glass. When the voltage is changed from 0V to 50V, the frequency is 0.1
The change in transmittance when changing from 10 Hz to 10 4 Hz was 97 to 98% and 96 to 98%, respectively. Example 3 An optical element was prepared and measured in the same manner as in Example 2 except that E8 (manufactured by Merck) was used as a liquid crystal instead of polystyrene (manufactured by Wako Pure Chemical, molecular weight: 1600-1800) instead of PMMA. The transmittance increases from 9% (0 V) to 7 with the voltage.
It increased to 9% (50V). Examples 4 and 5 Devices were prepared and measured in the same manner as in Example 1 except that a polyvinyl chloride adhesive (for Cemedine Vinyl) and an epoxy resin adhesive (Cemedine High Super 5) were used instead of the PMMA solution. . The voltage dependence of transmittance is 40% (0 V) to 93% (50 V) and 41%, respectively.
(0 V) to 77% (50 V). Example 6 A PMMA film having irregularities on both surfaces was formed by turning the PMMA film obtained by the method of Example 2 upside down and pressing it against a frosted glass to which a small amount of chloroform had been applied. As in Example 2, each layer of liquid crystal / PMMA / liquid crystal was sandwiched and fixed between two substrates. The transmittance varied from 9% (0 V) to 81% (50 V) with the voltage. Example 7 An optical element was manufactured using two PMMA films obtained in the same manner as in Example 1, and measurement was performed. The order of the layers was substrate / liquid crystal / PMMA / liquid crystal / PMMA / liquid crystal / substrate. The transmittance varied from 10% (0V) to 41% (50V). Example 8 An optical element similar to that of Example 1 was manufactured, and no voltage was applied.
The change in transmittance with temperature was measured. Liquid crystal material (E
The transmittance which was 96% at about 70 ° C. or higher where 7) changed to an isotropic phase was 17% at a temperature lower than 70 ° C. The transmittance when the measurement was repeated was equal to these values. Example 9 A transparent electrode made of ITO was attached to the flat side (opposite to the frosted glass) of the PMMA film formed in the same manner as in Example 2 by a sputter coating method. An element having a three-layer structure (substrate / liquid crystal / PMMA) in which a liquid crystal and the above-mentioned PMMA film were stacked on a glass substrate with ITO was prepared. When the transmittance was measured in the same manner as in Example 1, the transmittance was changed from 15% when no voltage was applied to 70% at 50V.

【0025】以上の如く、本発明は、新規な液晶光学素
子を提供するものであり、凹凸を有する透明性固体材料
と液晶材料から液晶光学素子を構成することによって、
固体−液晶界面の凹凸を高精度に、又容易に制御できる
光学素子を与える。従って、本発明は、表示装置光シャ
ッタ(光バルブ)、光回路等に広く利用することができ
る。
As described above, the present invention provides a novel liquid crystal optical element, and comprises a liquid crystal optical element composed of a transparent solid material having irregularities and a liquid crystal material.
Provided is an optical element which can control irregularities at a solid-liquid crystal interface with high precision and easily. Therefore, the present invention can be widely applied to display device optical shutters (light valves), optical circuits, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶光学素子の一例の概略断面図であ
る。
FIG. 1 is a schematic sectional view of one example of a liquid crystal optical element of the present invention.

【図2】本発明の液晶光学素子の電圧−透過率曲線の一
例を示す図である。
FIG. 2 is a diagram showing an example of a voltage-transmittance curve of the liquid crystal optical element of the present invention.

【符号の説明】[Explanation of symbols]

11 液晶材料 12 透明性固体材料 13 透明電極 14 ガラス基板 Reference Signs List 11 liquid crystal material 12 transparent solid material 13 transparent electrode 14 glass substrate

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不規則な凹凸を有する透明性固体材料
と、その凹凸に接して設けられた液晶材料からなり、透
明性固体材料と液晶材料の屈折率の差を変化させること
により、これらの界面で光を散乱または屈折させること
を特徴とする液晶光学素子。
1. A transparent solid material having irregular irregularities and a liquid crystal material provided in contact with the irregularities, and the refractive index difference between the transparent solid material and the liquid crystal material is changed. A liquid crystal optical element which scatters or refracts light at an interface.
【請求項2】 液晶材料と透明性固体材料が、少な
くとも一方が透明性を有する2枚の基板間に保持された
請求項1記載の液晶光学素子。
2. The liquid crystal optical element according to claim 1, wherein the liquid crystal material and the transparent solid material are held between two substrates, at least one of which has transparency.
【請求項3】 不規則な凹凸を有する透過光の散乱
を制御するための透明性固体材料と、その凹凸に接して
設けられた液晶材料からなり、透明性固体材料と液晶材
料の屈折率の差を変化させることにより、これらの界面
で光を散乱または屈折させる液晶光学素子の製造方法で
あって、 透明性固体材料の溶液又は透明性固体材料の前駆体を凹
凸を有する他の固体材料の凹凸上に塗布し、固化させる
ことにより透明性固体材料表面に前期凹凸を写し取り、
得られた透明性固体材料と液晶材料を積層する液晶光学
素子の製造方法。
3. Scattering of transmitted light having irregular irregularities
And a liquid crystal material provided in contact with the unevenness of the transparent solid material, and by changing the refractive index difference between the transparent solid material and the liquid crystal material, light is scattered or dispersed at these interfaces. A method for producing a liquid crystal optical element to be refracted, comprising applying a solution of a transparent solid material or a precursor of a transparent solid material onto irregularities of another solid material having irregularities and solidifying the solid surface. To capture the irregularities in the previous period,
A method for manufacturing a liquid crystal optical element in which the obtained transparent solid material and a liquid crystal material are laminated.
JP3008187A 1991-01-28 1991-01-28 Liquid crystal optical element and manufacturing method thereof Expired - Lifetime JP3049779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008187A JP3049779B2 (en) 1991-01-28 1991-01-28 Liquid crystal optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008187A JP3049779B2 (en) 1991-01-28 1991-01-28 Liquid crystal optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04250418A JPH04250418A (en) 1992-09-07
JP3049779B2 true JP3049779B2 (en) 2000-06-05

Family

ID=11686299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008187A Expired - Lifetime JP3049779B2 (en) 1991-01-28 1991-01-28 Liquid crystal optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3049779B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760274B2 (en) * 1993-12-28 1998-05-28 日本電気株式会社 Method for manufacturing reflective electrode plate
JPH07199168A (en) * 1993-12-28 1995-08-04 Nec Corp Liquid crystal optical element
JP2004191715A (en) * 2002-12-12 2004-07-08 Sony Corp Liquid crystal device and its manufacturing method

Also Published As

Publication number Publication date
JPH04250418A (en) 1992-09-07

Similar Documents

Publication Publication Date Title
KR960007252B1 (en) Compound material liquid crystal display device including it and its manufacturing method
JP3060656B2 (en) Liquid crystal display device
US8330709B2 (en) Illuminating device and display unit
CN104813202B (en) Optical film
US5920368A (en) Composite material, display device using the same and process of manufacturing the same
JPH0323423A (en) Edge-section lighting liquid-crystal display unit
JP2810742B2 (en) Light modulation material containing liquid crystal microdroplets dispersed in birefringent polymer matrix
WO2018145494A1 (en) Electric response infrared reflection device and preparation method therefor
JPH1048605A (en) Light control element and its production
KR100447017B1 (en) Optical head, Method of Manufacturing the Same, and Diffraction Element Suitable Therefor
KR960002689B1 (en) Liquid crystal electro-optic device
JP3049779B2 (en) Liquid crystal optical element and manufacturing method thereof
KR101465028B1 (en) Variable focusing liquid cystal lens and manufacturing method thereof
KR102024250B1 (en) Optical Film
JP2014186045A (en) Liquid crystal display device
WO2017027618A1 (en) Display including turning film and diffuser
JPH04273213A (en) Liquid crystal optical element
RU2707424C1 (en) Electrically controlled light polarizer based on light scattering anisotropy
JP3156303B2 (en) Manufacturing method of liquid crystal phase diffraction grating
JP3225932B2 (en) Manufacturing method of liquid crystal display element
JPH0695090A (en) Liquid crystal display element
JP4570058B2 (en) Reflective display device
JPH03276127A (en) Photoresponsive film and production thereof
JP3087322B2 (en) Liquid crystal optical element and driving method thereof
Fan et al. Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

EXPY Cancellation because of completion of term