JPH0424978A - Optical semiconductor element - Google Patents

Optical semiconductor element

Info

Publication number
JPH0424978A
JPH0424978A JP2125023A JP12502390A JPH0424978A JP H0424978 A JPH0424978 A JP H0424978A JP 2125023 A JP2125023 A JP 2125023A JP 12502390 A JP12502390 A JP 12502390A JP H0424978 A JPH0424978 A JP H0424978A
Authority
JP
Japan
Prior art keywords
stem
semiconductor laser
optical semiconductor
photodetector
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2125023A
Other languages
Japanese (ja)
Inventor
Naoyasu Miyagawa
直康 宮川
Makoto Takashima
誠 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2125023A priority Critical patent/JPH0424978A/en
Publication of JPH0424978A publication Critical patent/JPH0424978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a thin type by detecting a retaining substrate for fixing a heat dissipating block, a photodetector, and a connection terminal, by using resin capable of molding a unified body. CONSTITUTION:A heat dissipating block 30 retains a semiconductor laser 1 via a silicon substrate 2, retains a photodetector 3 via an insulating plate 4, and dissipates the heat generated by the semiconductor laser 1. A stem 31 retains a heat dissipating block 30 and a photo detector 9 for monitoring and is used as a stem for leading out connection terminals 8 to the outside. The stem 31 is formed by using resin capable of molding a unified body with the heat dissipating block 30. Since the stem 31 is made of resin, a free shape can be designed. Further, since the heat dissipating block 30 penetrates the stem 31, and the bottom surface of the block 30 is fixed so as to be exposed from the bottom surface of the stem 31, the heat generated by a semiconductor laser 1 can be directly dissipated outward via the heat dissipating block 30.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光ヘツド装置などに使用される、発光素子や受
光素子を内蔵した光半導体素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical semiconductor element that is used in optical head devices and the like and has a built-in light emitting element and a light receiving element.

従来の技術 近年、光デイスク装置の主要部品としての光ヘッドの開
発には目ざましい進歩があるが、記録または再生の基本
性能の向上のほかに光ヘッドの小型化が重要になってき
ている。小型化のための技術には様々な提案があるが、
その中でも光学素子としてホログラム素子を用いること
により、光源と光検出器とを一体に構成した光半導体素
子が最も有力視されている。
BACKGROUND OF THE INVENTION In recent years, remarkable progress has been made in the development of optical heads as main components of optical disk devices, and in addition to improving the basic performance of recording or reproduction, miniaturization of optical heads has become important. There are various proposals for downsizing technology, but
Among these, an optical semiconductor element that integrates a light source and a photodetector by using a hologram element as an optical element is considered to be the most promising.

第3図((a)および(b))は、特開平l−1139
33号公報に見られる従来の光半導体素子の縦断面図、
平面図である。
Figure 3 ((a) and (b)) is based on Japanese Patent Application Laid-open No. 1-1139
A vertical cross-sectional view of a conventional optical semiconductor element seen in Publication No. 33,
FIG.

同図において、1は半導体レーザ、16は半導体レーザ
1から後述する窓ガラス12を介して図示しない光記録
媒体に出射される前面出射光束、17は図示しない光記
録媒体からの戻り光から分離された分離光束、18は半
導体レーザ1の前面出射光束16が出射される面とは反
対の面から出射される後面出射光束、2は半導体レーザ
1をマウントするためのシリコン基板、3は分離光束1
7を受光するために複数の光検出部を有する光検出器、
4は光検出器3をマウントするための絶縁板、5はシリ
コン基板2を介して半導体レーザ1を保持するとともに
絶縁板4を介して光検出器3を保持し、半導体レーザ1
からの発熱を放出すべく放熱のよい材料で構成された放
熱ブロック、6はリード線、7は光検出器3上に配置さ
れたポンディングパッド、8は後述するステムに同心円
上の位置にマウントされリード線6と接続される接続端
子、9は前述の後面出射光束18が入射するように後述
するステム上で半導体レーザ1の下方に設置されたモニ
タ用光検出器、10は放熱ブロック5およびモニタ用光
検出器9を保持するとともに接続端子8を外部に導出し
て保持するステム、11はステム10上に設置された各
部品を収納し外界から密閉するためのキャップ、12は
キャップ11の上面に開けられた窓に取り付けられる窓
ガラス、15は従来の光半導体素子本体である。
In the figure, 1 is a semiconductor laser, 16 is a front-emitted light beam emitted from the semiconductor laser 1 to an optical recording medium (not shown) via a window glass 12 (described later), and 17 is a beam separated from the return light from the optical recording medium (not shown). 18 is a rear emitted light beam emitted from the surface opposite to the surface from which the front emitted light beam 16 of the semiconductor laser 1 is emitted, 2 is a silicon substrate for mounting the semiconductor laser 1, and 3 is a separated light beam 1.
7, a photodetector having a plurality of photodetectors for receiving light;
4 is an insulating plate for mounting the photodetector 3; 5 is an insulating plate that holds the semiconductor laser 1 via the silicon substrate 2, and also holds the photodetector 3 via the insulating plate 4;
6 is a lead wire, 7 is a bonding pad placed on the photodetector 3, and 8 is mounted concentrically on the stem to be described later. 9 is a monitoring photodetector installed below the semiconductor laser 1 on a stem to be described later so that the rear emitted light flux 18 is incident thereon; 10 is a heat dissipation block 5 and A stem that holds the monitoring photodetector 9 and leads out the connection terminal 8 to the outside; 11 is a cap that houses each component installed on the stem 10 and seals it from the outside; 12 is a cap of the cap 11; A window glass 15 attached to a window opened on the top surface is a conventional optical semiconductor element body.

また、第3図(b)は、キャップ12を取り外したとき
の図である。
Moreover, FIG. 3(b) is a diagram when the cap 12 is removed.

以上のように構成された光半導体素子について、以下そ
の動作を説明する。半導体レーザ1から射出された前面
出射光束16は窓ガラスエ2を介して図示しない光記録
媒体上に集光され、この光記録媒体に記録された情報お
よび焦点位置誤差やトラック位置誤差の情報を持って反
射される。光記録媒体からの戻り光は出射光軸から分離
光束18に分離され、再び窓ガラス12を介して光検出
器3で受光され、光記録媒体上に記録された情報信号お
よび焦点位置誤差やトラック位置誤差の信号が、ポンデ
ィングパッド7、 リード線6.接続端子8を通じて出
力される。モニタ用光検出器9は、半導体レーザ1の後
面出射光束18を受光し、半導体レーザ1の前面出射光
束16の光量が間接的にモニタされる。また半導体レー
ザ1は発光中は多量の熱を発生するが、発生した熱は薄
いシリコン基板2および放熱ブロック5を介してステム
1Oへ伝えられ外部に放出される。
The operation of the optical semiconductor device configured as described above will be described below. The front-emitting light beam 16 emitted from the semiconductor laser 1 is focused on an optical recording medium (not shown) through the window glass 2, and carries information recorded on this optical recording medium as well as information on focal position errors and track position errors. reflected. The return light from the optical recording medium is separated from the output optical axis into a separated light beam 18, which is then received by the photodetector 3 via the window glass 12 again to detect the information signal, focal position error, and track recorded on the optical recording medium. The position error signal is sent to the bonding pad 7, the lead wire 6. It is output through the connection terminal 8. The monitoring photodetector 9 receives the rear emitted light beam 18 of the semiconductor laser 1, and the amount of the front emitted light beam 16 of the semiconductor laser 1 is indirectly monitored. Further, the semiconductor laser 1 generates a large amount of heat while emitting light, and the generated heat is transmitted to the stem 1O via the thin silicon substrate 2 and the heat radiation block 5 and is emitted to the outside.

第4図は以上のような動作を可能にするために上記の光
半導体素子を用いた光ヘツド装置の概略図である。同図
において、15は上述の光半導体素子、16は光半導体
装置15から射出される前面出射光束、20は前面出射
光束16を反射して方向を変え後述する対物レンズ21
へ導くミラーであり、対物レンズ21は前面出射光束1
6を後述する光記録媒体25上の情報面に集光し、ある
いは情報面からの戻り光を集光しミラー20に導く。そ
して、対物レンズ21は図示しないアクチュエータを介
して後述する基台23に取り付けられている。22は対
物レンズ21とミラー20の間に設置され、前述の戻り
光を出射光軸から分離するためのホログラム素子、17
は前述の戻り光からホログラム素子22によって分離さ
れた分離光束、23は光半導体装置15、ミラー20お
よびホログラム素子22を保持する基台であり、図示し
ないアクチュエータを介して対物レンズ2工をも固定し
ている。24は従来の光半導体素子15を用いた光ヘツ
ド装置本体であり、25は光記録媒体である。
FIG. 4 is a schematic diagram of an optical head device using the above-mentioned optical semiconductor element to enable the above-described operation. In the figure, 15 is the above-mentioned optical semiconductor element, 16 is a front-emission light beam emitted from the optical semiconductor device 15, and 20 is an objective lens 21 which reflects the front-emission light beam 16 and changes its direction, which will be described later.
The objective lens 21 is a mirror that guides the front emitted light beam 1.
6 is focused on an information surface on an optical recording medium 25, which will be described later, or return light from the information surface is focused and guided to a mirror 20. The objective lens 21 is attached to a base 23, which will be described later, via an actuator (not shown). 22 is a hologram element 17 installed between the objective lens 21 and the mirror 20 for separating the aforementioned return light from the output optical axis;
23 is a base that holds the optical semiconductor device 15, the mirror 20, and the hologram element 22, and also fixes the objective lens 2 via an actuator (not shown). are doing. 24 is a main body of an optical head device using a conventional optical semiconductor element 15, and 25 is an optical recording medium.

ホログラム素子22は戻り光を出射光軸から分離する機
能だけでなく、前述の誤差信号を得るためにいろいろな
方式が提案されているが、例えば非点収差を発生させ焦
点位置誤差信号を得ることが考えられる。
The hologram element 22 not only has the function of separating the returned light from the output optical axis, but also various methods have been proposed to obtain the above-mentioned error signal. For example, it can generate astigmatism to obtain a focal position error signal. is possible.

このような構成において、光半導体素子15に内蔵され
た半導体レーザ1から放射された前面出射光束16はミ
ラー20.ホログラム素子22゜対物レンズ21を介し
て光記録媒体25上に集光され、光記録媒体25に記録
された情報によって強度変調されて反射された戻り光は
再び対物レンズ21を介してホログラム素子22に入射
する。
In such a configuration, the front-emitted light beam 16 emitted from the semiconductor laser 1 built into the optical semiconductor element 15 passes through the mirror 20 . Hologram element 22° The returned light is focused on the optical recording medium 25 through the objective lens 21, intensity-modulated by the information recorded on the optical recording medium 25, and reflected, and then passes through the objective lens 21 again to the hologram element 22. incident on .

このホログラム素子22で戻り光は回折効果により出射
光束の光軸から分離され、分離光束17として光半導体
装置15に内蔵された光検出器3に入射する。光検出器
3は例えば4分割された検出部を有しており、ホログラ
ム素子22で生じた分離光束の非点収差を利用して焦点
位置誤差信号を出力し、また、いわゆるプッシュプル法
を用いてトラック位置誤差信号を出力するとともに、分
離光束17全体の変調強度を検出することによって光記
録媒体25に記録された情報信号を出力する。
The returned light is separated from the optical axis of the emitted light beam by the hologram element 22 due to the diffraction effect, and enters the photodetector 3 built in the optical semiconductor device 15 as a separated light beam 17 . The photodetector 3 has a detection section divided into four parts, for example, and outputs a focal position error signal by using astigmatism of the separated light beam generated by the hologram element 22, and also uses a so-called push-pull method. In addition to outputting a track position error signal, the information signal recorded on the optical recording medium 25 is output by detecting the modulation intensity of the entire separated light beam 17.

発明が解決しようとする課題 ところで、第4図のような構成の光ヘツド装置において
はその小型化のためには、光半導体素子15自体の小型
化も必要である。特に光ヘツド装置の厚さは同じ対物レ
ンズを用いた場合基台23の厚さ(図でIで示す)に左
右され、基台23の厚さは光半導体素子15のステム1
0の幅(図でrで示す)で決ってしまう。通常ステム1
0は熱伝導性のよい金属で形成される必要があるため、
金属の加工性を考慮すると円盤上のものを用いざるを得
ない。ところが、第4図に示すように前述の構成の光半
導体素子では、放熱ブロック5とモニタ用光検出器9が
並んで配置されており、両者の並ぶ方向(以下y方向と
呼ぶ)の幅(Llで示す)がこれとは垂直な方向(以下
X方向と呼ぶ)の幅(L2で示す)に比べて著しく大き
く、前述のステム10の幅rを小さくできない。すなわ
ち、従来の構成の光半導体素子では光ヘツド装置の小型
化、とりわけ薄型化には限界があるという問題がある。
Problems to be Solved by the Invention In order to reduce the size of the optical head device having the structure shown in FIG. 4, it is necessary to reduce the size of the optical semiconductor element 15 itself. In particular, when the same objective lens is used, the thickness of the optical head device depends on the thickness of the base 23 (indicated by I in the figure).
It is determined by the width of 0 (indicated by r in the figure). Normal stem 1
0 must be made of a metal with good thermal conductivity, so
Considering the workability of the metal, it is necessary to use a disk-shaped one. However, as shown in FIG. 4, in the optical semiconductor device having the above-mentioned configuration, the heat dissipation block 5 and the monitoring photodetector 9 are arranged side by side, and the width (hereinafter referred to as the y direction) in the direction in which they are lined up ( The width (denoted by Ll) is significantly larger than the width (denoted by L2) in a direction perpendicular to this (hereinafter referred to as the X direction), and the width r of the stem 10 described above cannot be made smaller. In other words, there is a problem in that there is a limit to the miniaturization of optical head devices, particularly to the reduction in thickness, with optical semiconductor devices having conventional configurations.

そこで本発明は、上述のステムの幅rを小さくでき、し
たがって従来よりも薄型化された光ヘツド装置を実現で
きる光半導体素子を提供するものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides an optical semiconductor element that can reduce the width r of the stem and thus realize an optical head device that is thinner than the conventional optical head device.

課題を解決するための手段 上記課題を解決するために本発明の光半導体素子は、半
導体レーザと、半導体レーザを保持するための熱伝導性
材料からなる放熱ブロックと、半導体レーザの出力光量
をモニタするモニタ用光検出器と、半導体レーザに電力
を供給しまたは光検出器の検出電流を外部に出力するた
めの接続端子と、放熱ブロックと光検出器および接続端
子を固定するための一体成形可能な樹脂より成る支持基
板とを備え、しかも放熱ブロックは、支持基板を貫通し
て底面を前記支持基板の底面から露出して固定された構
成を有している。
Means for Solving the Problems In order to solve the above problems, the optical semiconductor device of the present invention includes a semiconductor laser, a heat dissipation block made of a thermally conductive material for holding the semiconductor laser, and a device that monitors the output light amount of the semiconductor laser. A monitoring photodetector, a connection terminal for supplying power to the semiconductor laser or outputting the detection current of the photodetector to the outside, and a heat dissipation block for fixing the photodetector and connection terminal can be integrally molded. The heat dissipation block has a structure in which the heat dissipation block is fixed by penetrating the support substrate and exposing the bottom surface from the bottom surface of the support substrate.

作用 以上のような構成によれば、本発明の光半導体素子の外
形寸法を決定する支持基板を一体成形可能な樹脂で成形
することにより、支持基板の形状を自由に設計できる。
Effects According to the above configuration, the shape of the support substrate can be freely designed by molding the support substrate, which determines the external dimensions of the optical semiconductor element of the present invention, from a resin that can be integrally molded.

したがって、放熱ブロック等の形状に合わせて支持基板
の形状を設計することにより、本発明の光半導体素子自
体の小型化を図ることができ、その結果本発明の光半導
体素子を用いた光ヘツド装置の小型化、とりわけ薄型化
が可能となる。
Therefore, by designing the shape of the support substrate in accordance with the shape of the heat dissipation block etc., the optical semiconductor element of the present invention itself can be miniaturized, and as a result, an optical head device using the optical semiconductor element of the present invention can be achieved. It is possible to make the device smaller, especially thinner.

実施例 以下、本発明の第1の実施例について図面を参照しなが
ら説明する。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to the drawings.

第1図(a)、  (b)および(c)は本発明の第1
の実施例における光半導体素子の縦断面図、平面図。
FIGS. 1(a), (b) and (c) are the first embodiment of the present invention.
FIG. 3 is a vertical cross-sectional view and a plan view of an optical semiconductor element in an example.

底面図である。It is a bottom view.

同図に示す本実施例の光半導体素子は、基本的には第3
図に示した従来の光半導体素子と同じ構成であるので、
同一構成部分には同一番号を付して詳細な説明を省略す
る。
The optical semiconductor device of this example shown in the figure basically consists of a third
Since it has the same configuration as the conventional optical semiconductor device shown in the figure,
Identical components are given the same numbers and detailed explanations will be omitted.

従来例と異なる部分について説明すると、30はシリコ
ン基板2を介して半導体レーザ1を保持するとともに絶
縁板4を介して光検出器3を保持し、半導体レーザ1か
らの発熱を放出すべく熱伝導性のよい材料で構成された
放熱ブロック・であり、第1図(C)に示すように、後
述するステム31の底面を貫通して設置されている。ま
た、31は放熱ブロック30およびモニタ用光検出器9
を保持するとともに、接続端子8を外部に導出するため
のステムであり、放熱ブロック30と一体成形可能な樹
脂で形成されている。32はステム31上に設置された
各部品を収納し外界から密閉するためのキャップであり
、ステム31と同様の樹脂で形成されている。33は本
実施例の光半導体素子本体である。
To explain the differences from the conventional example, 30 holds the semiconductor laser 1 via the silicon substrate 2, and also holds the photodetector 3 via the insulating plate 4, and has a heat conduction plate 30 to release the heat generated from the semiconductor laser 1. This is a heat dissipation block made of a material with good properties, and as shown in FIG. 1(C), it is installed so as to penetrate the bottom surface of a stem 31, which will be described later. Further, 31 is a heat dissipation block 30 and a monitoring photodetector 9.
It is a stem for holding the connection terminal 8 and guiding the connection terminal 8 to the outside, and is made of resin that can be integrally molded with the heat dissipation block 30. Reference numeral 32 designates a cap for accommodating each component installed on the stem 31 and sealing it off from the outside world, and is made of the same resin as the stem 31. 33 is the main body of the optical semiconductor element of this example.

以上のように構成された本実施例の光半導体素子につい
て、その基本的な動作は前述した従来の光半導体素子の
動作と同じであるが、本実施例の光半導体素子では、ス
テム31が樹脂製であるために自由な形状が設計可能で
ある。しがも放熱ブロック30はステム31を貫通して
その底面をステム31の底面から露出させて固定されて
いる六めに、半導体レーザ1が発生した熱を放熱ブロッ
ク30を介して直接外部に放熱することができおしたが
って一般に熱伝導性の悪い樹脂を用いてステム31を形
成しても、熱伝導不良による半導付レーザ1の破損は生
じない。
The basic operation of the optical semiconductor device of this example configured as described above is the same as that of the conventional optical semiconductor device described above, but in the optical semiconductor device of this example, the stem 31 is made of resin. Since it is made of aluminum, it is possible to design any shape. However, the heat radiation block 30 is fixed by penetrating the stem 31 and exposing its bottom surface from the bottom surface of the stem 31.Sixth, the heat generated by the semiconductor laser 1 is directly radiated to the outside through the heat radiation block 30. Therefore, even if the stem 31 is formed using a resin having poor thermal conductivity, the semiconductor laser 1 will not be damaged due to poor thermal conduction.

もちろんキャップ32も同様な樹脂製であるCでステム
31に応じた形状に形成することができる。
Of course, the cap 32 can also be made of resin C and formed into a shape corresponding to the stem 31.

また、通常本実施例のような光半導体素子で(謔外部の
電気回路との接続のために、プリント基板をステム31
の裏面に直接密着させ、プリント遅板上の銅箔に接続端
子8を半田付けするが、このときにプリント基板上の接
地側の銅箔に放熱ブロック30を接触させれば、放熱を
一層確実にすることができる。
In addition, normally in an optical semiconductor device such as this embodiment, a printed circuit board is attached to the stem 31 for connection to an external electric circuit.
The connection terminal 8 is soldered to the copper foil on the printed circuit board, but if the heat dissipation block 30 is brought into contact with the copper foil on the ground side of the printed circuit board at this time, the heat dissipation will be more ensured. It can be done.

さらに、本実施例の光半導体素子はステム30およびキ
ャップ32を樹脂で形成したことにより軽量化でき、こ
れを用いた光ヘツド装置のシークタイムの短縮が期待で
きる。
Furthermore, since the optical semiconductor device of this embodiment is made of resin for the stem 30 and cap 32, the weight can be reduced, and it is expected that the seek time of an optical head device using this device will be shortened.

第2図(a)、  (b)および(c)は本発明の第2
の実施例における光半導体素子の縦断面図、平面図。
FIGS. 2(a), (b) and (c) are the second embodiments of the present invention.
FIG. 3 is a vertical cross-sectional view and a plan view of an optical semiconductor element in an example.

底面図である。It is a bottom view.

同図に示す本実施例の光半導体素子は、第1図に示した
本発明の第1の実施例の光半導体素子と同じ構成である
ので、同一構成部分には同一番号を付してその構成およ
び動作の詳細な説明を省略する。第1の実施例と異なる
のは、第2図に示すように34はステムであるが、この
ステム34の形状が、放熱ブロック30およびモニタ用
光検出器9の設置された部分を残して円周の両側を正弦
状に前述のX方向に切取られた形状をしていることと、
接続端子8を放熱ブロック30およびモニタ用光検出器
9の両側に配したことである。また、キャップ37はス
テム34上に設置された各部品を収納し外界から密閉す
るために、ステム34と同様の樹脂で形成されている。
The optical semiconductor device of this embodiment shown in the figure has the same configuration as the optical semiconductor device of the first embodiment of the present invention shown in FIG. A detailed explanation of the configuration and operation will be omitted. The difference from the first embodiment is that 34 is a stem as shown in FIG. It has a shape in which both sides of the circumference are sinusoidally cut in the aforementioned X direction,
The connection terminals 8 are arranged on both sides of the heat dissipation block 30 and the monitoring photodetector 9. Further, the cap 37 is made of the same resin as the stem 34 in order to accommodate each component installed on the stem 34 and seal it from the outside world.

36は本実施例の光半導体素子本体である。36 is the main body of the optical semiconductor element of this embodiment.

このような構成にすることにより、円盤状の形状に比べ
てステム34のX方向の幅rを小さくすることができ、
したがってこれを用いた光ヘツド装置の薄型化が可能と
なる。
By adopting such a configuration, the width r of the stem 34 in the X direction can be made smaller than that of a disk-shaped stem.
Therefore, it is possible to reduce the thickness of an optical head device using this.

ステム34をこのような形状にするには、従来の光半導
体素子のように金属性のステムでは加工が難しく、量産
性およびコストの点で問題がある。
In order to form the stem 34 into such a shape, it is difficult to process a metal stem like a conventional optical semiconductor element, and there are problems in terms of mass production and cost.

一方、本実施例のように樹脂で一体成形すると鋳型を作
製するだけで低コストで量産が可能である。
On the other hand, if the resin is integrally molded as in this embodiment, mass production can be performed at low cost simply by creating a mold.

なお以上の実施例では、同一パッケージ内に半導体レー
ザ1とモニタ用光検出器9と光記録媒体からの戻り光を
受光する光検出器3とを配した、いわゆるハイブリッド
型の光半導体素子について述べたが、半導体レーザとモ
ニタ用光検出器のみを同一パッケージ内に配した光半導
体素子についても同様の効果がある。
In the above embodiments, a so-called hybrid optical semiconductor device is described in which a semiconductor laser 1, a monitoring photodetector 9, and a photodetector 3 for receiving return light from an optical recording medium are arranged in the same package. However, a similar effect can be obtained with an optical semiconductor device in which only a semiconductor laser and a monitoring photodetector are arranged in the same package.

発明の効果 以上のように本発明によれば、放熱ブロックと光検出器
と接続端子とを固定するための支持基板を、一体成形可
能な樹脂で形成することにより支持基板の形状を自由に
設計でき、本光半導体素子の薄型化が可能となり、これ
を用いた光ヘツド装置も薄型化を図ることができる。
Effects of the Invention As described above, according to the present invention, the shape of the support substrate can be freely designed by forming the support substrate for fixing the heat dissipation block, photodetector, and connection terminal from a resin that can be integrally molded. Therefore, the present optical semiconductor device can be made thinner, and an optical head device using the same can also be made thinner.

しかも、放熱ブロックは支持基板の底面から露出して固
定されているので、半導体レーザが発生する熱は本光半
導体素子の底面から外部へ放出され、発熱による半導体
レーザの破損の問題はない。
Furthermore, since the heat dissipation block is exposed and fixed from the bottom surface of the support substrate, the heat generated by the semiconductor laser is radiated to the outside from the bottom surface of the optical semiconductor element, and there is no problem of damage to the semiconductor laser due to heat generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、  (b)および(c)は本発明の第1
の実施例における光半導体素子の縦断面図、平面図。 底面図、第2図(a)、  (b)および(C)は本発
明の第2の実施例における光半導体素子の縦断面図。 平面図、底面図、第3図(a)および(b)は従来の光
半導体素子の縦断面図、平面図、第4図は従来の光半導
体素子を用いた光ヘツド装置の概略図である。 1・・・半導体レーザ、  3・・・光検出器、  8
・・・接続端子、  9・・・モニタ用光検出器、  
3o・・・放熱ブロック、  31.34・・・ステム
。 代理人の氏名 弁理士 粟野 重孝 はか1名按車先幅
子 族黙ブロック ステA
FIGS. 1(a), (b) and (c) are the first embodiment of the present invention.
FIG. 3 is a vertical cross-sectional view and a plan view of an optical semiconductor element in an example. The bottom view, and FIGS. 2(a), 2(b), and 2(C) are longitudinal cross-sectional views of an optical semiconductor device according to a second embodiment of the present invention. 3(a) and 3(b) are a vertical cross-sectional view and a plan view of a conventional optical semiconductor element, and FIG. 4 is a schematic diagram of an optical head device using a conventional optical semiconductor element. . 1... Semiconductor laser, 3... Photodetector, 8
...Connection terminal, 9...Monitoring photodetector,
3o... Heat dissipation block, 31.34... Stem. Name of agent: Patent attorney Shigetaka Awano Haka 1 person

Claims (3)

【特許請求の範囲】[Claims] (1)半導体レーザと、前記半導体レーザを保持するた
めの熱伝導性材料からなる放熱ブロックと、前記半導体
レーザの出力光量をモニタするための光検出器と、前記
半導体レーザに電力を供給しまたは前記光検出器の検出
電流を外部に出力するための接続端子と、前記放熱ブロ
ックと前記光検出器および前記接続端子を固定するため
の支持基板とを備え、前記支持基板は一体成形可能な樹
脂より成ることを特徴とする光半導体素子。
(1) A semiconductor laser, a heat dissipation block made of a thermally conductive material for holding the semiconductor laser, a photodetector for monitoring the output light amount of the semiconductor laser, and supplying power to the semiconductor laser, or A connection terminal for outputting the detection current of the photodetector to the outside, and a support substrate for fixing the heat dissipation block, the photodetector, and the connection terminal, and the support substrate is made of resin that can be integrally molded. An optical semiconductor device characterized by comprising:
(2)前記放熱ブロックは、前記支持基板を貫通して底
面を前記支持基板の底面から露出していることを特徴と
する請求項1記載の光半導体素子。
(2) The optical semiconductor device according to claim 1, wherein the heat dissipation block penetrates the support substrate and has a bottom surface exposed from the bottom surface of the support substrate.
(3)前記支持基板は、円盤の少なくとも1箇所を正弦
状に切り取った形状であることを特徴とする請求項1記
載の光半導体素子。
(3) The optical semiconductor device according to claim 1, wherein the support substrate has a shape obtained by cutting out at least one part of a disk in a sinusoidal shape.
JP2125023A 1990-05-15 1990-05-15 Optical semiconductor element Pending JPH0424978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125023A JPH0424978A (en) 1990-05-15 1990-05-15 Optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125023A JPH0424978A (en) 1990-05-15 1990-05-15 Optical semiconductor element

Publications (1)

Publication Number Publication Date
JPH0424978A true JPH0424978A (en) 1992-01-28

Family

ID=14899945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125023A Pending JPH0424978A (en) 1990-05-15 1990-05-15 Optical semiconductor element

Country Status (1)

Country Link
JP (1) JPH0424978A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065990A (en) * 1992-06-22 1994-01-14 Sharp Corp Package for semiconductor laser
US5519720A (en) * 1993-03-04 1996-05-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device
JP2003158327A (en) * 2001-11-20 2003-05-30 Sharp Corp Semiconductor laser and method for manufacturing the same
JP2006351728A (en) * 2005-06-14 2006-12-28 Shinko Electric Ind Co Ltd Stem for optical semiconductor element and optical semiconductor device
JP4609818B2 (en) * 2000-03-31 2011-01-12 古河電気工業株式会社 Semiconductor laser module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065990A (en) * 1992-06-22 1994-01-14 Sharp Corp Package for semiconductor laser
US5519720A (en) * 1993-03-04 1996-05-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device
JP4609818B2 (en) * 2000-03-31 2011-01-12 古河電気工業株式会社 Semiconductor laser module
JP2003158327A (en) * 2001-11-20 2003-05-30 Sharp Corp Semiconductor laser and method for manufacturing the same
JP2006351728A (en) * 2005-06-14 2006-12-28 Shinko Electric Ind Co Ltd Stem for optical semiconductor element and optical semiconductor device

Similar Documents

Publication Publication Date Title
US7663200B2 (en) Integrated circuit device packaging structure and packaging method
US6487224B1 (en) Laser diode assembly
JP3233837B2 (en) Semiconductor laser device and optical pickup device
KR20060052168A (en) Semiconductor laser unit and optical pickup device having the same
US20050050569A1 (en) Optical head
JP3972814B2 (en) Semiconductor integrated device
JPH0424978A (en) Optical semiconductor element
JPH1166590A (en) Optical integrated unit, optical pickup apparatus and dvd system
US7280573B2 (en) Semiconductor laser unit and optical pickup device
JP2006324409A (en) Semiconductor laser device and optical pickup device therewith
US7173951B2 (en) Semiconductor laser device with light receiving element
JPH0896393A (en) Semiconductor laser device and optical pickup device formed by using the same
JP2005142294A (en) Semiconductor laser unit and optical pickup device using same
JPH11307871A (en) Semiconductor laser device
JP2006147751A (en) Optical semiconductor device
JP3445938B2 (en) Optical pickup device
JP2005190520A (en) Optical head device
JP2007035884A (en) Semiconductor laser device and manufacturing method thereof
JP4439313B2 (en) Manufacturing method of optical module
JP2008243869A (en) Light-receiving device
JP2005136171A (en) Semiconductor laser device and optical head device
JP3509314B2 (en) Optical pickup
JP2008146785A (en) Holder unit of frame type laser, and optical disk device provided with the holder unit
JP3846884B2 (en) Semiconductor laser device mounting frame, semiconductor laser device, optical pickup device, and method of manufacturing semiconductor laser device
JP2008004184A (en) Optical pickup device