JPH0424940A - Measuring method for rf output - Google Patents
Measuring method for rf outputInfo
- Publication number
- JPH0424940A JPH0424940A JP12499290A JP12499290A JPH0424940A JP H0424940 A JPH0424940 A JP H0424940A JP 12499290 A JP12499290 A JP 12499290A JP 12499290 A JP12499290 A JP 12499290A JP H0424940 A JPH0424940 A JP H0424940A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- polymer film
- organic polymer
- carbonized layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 229920000620 organic polymer Polymers 0.000 claims abstract description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052786 argon Inorganic materials 0.000 claims abstract description 5
- -1 argon ions Chemical class 0.000 claims abstract description 4
- 229920006254 polymer film Polymers 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 12
- 150000002500 ions Chemical class 0.000 abstract description 11
- 239000007789 gas Substances 0.000 abstract description 10
- 229920001721 polyimide Polymers 0.000 abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 5
- 239000000523 sample Substances 0.000 abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 125000004429 atom Chemical group 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 240000005499 Sasa Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
本発明は、半導体装置の製造方法、特にRF比出力用い
た処理方法に関し。DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a processing method using RF specific output.
半導体材料がRF比出力曝された際の実行RFパワーに
よる損傷度の測定を、簡便かつ容易に行う方法を得るこ
とを目的とし。The object of the present invention is to obtain a simple and easy method for measuring the degree of damage caused by the effective RF power when a semiconductor material is exposed to RF specific power.
基板上に被覆した有機高分子膜にRF比出力加え、アル
ゴンイオンにより該高分子膜の表面を分解してカーボナ
イズ層とし、該カーボナイズ層の表面に電圧を印加して
、該カーボナイズ層の通電量を測定するように構成する
。RF specific power is applied to the organic polymer film coated on the substrate, the surface of the polymer film is decomposed by argon ions to form a carbonized layer, and a voltage is applied to the surface of the carbonized layer to determine the amount of current flowing through the carbonized layer. Configure to measure.
本発明は、半導体装置の製造方法、特にRF比出力用い
た半導体材料の処理方法に関する。The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of processing a semiconductor material using RF specific power.
近年、半導体装置の製造プロセスにおいてはアルゴン(
^r)ガス等を導入して、半導体材料をRF比出力より
加工することが多く行われている。In recent years, argon (
^r) Semiconductor materials are often processed using RF specific output by introducing gas or the like.
第5図は従来例の工程順模式断面図である。 FIG. 5 is a schematic sectional view of a conventional example in the order of steps.
図において、17はシリコン(Si)基板、18は二酸
化シリコン(SiOz)膜、19はArイオン、20は
アルミニウム(A l )電極、21は電流計、22は
電圧計、23は測定電源である。In the figure, 17 is a silicon (Si) substrate, 18 is a silicon dioxide (SiOz) film, 19 is an Ar ion, 20 is an aluminum (Al) electrode, 21 is an ammeter, 22 is a voltmeter, and 23 is a measurement power source. .
半導体材料を、 Arガス等を導入して、RF比出力よ
り加工する場合に、従来は、その半導体材料の加工時に
おける実行RF比出力、半導体材料そのものに及ぼす損
傷等の影響について、簡単かつ容易な方法で測定するこ
とが出来なかった。When processing a semiconductor material using RF specific output by introducing Ar gas, etc., conventional methods have been used to easily and easily evaluate the effective RF specific output during processing of the semiconductor material and the effects of damage on the semiconductor material itself. It was not possible to measure it in any way.
極めて1間接的な方法としては、第5図(a)に示すよ
うに、 Si基板17を酸化して、基板表面に薄い数百
人単位のSing膜18を被覆し。As a very indirect method, as shown in FIG. 5(a), a Si substrate 17 is oxidized and a thin Sing film 18 of several hundred layers is coated on the surface of the substrate.
次いで、第5図(b)に示すように、 Si基板17を
処理装置内にセットし、処理装置内にArガスを導入し
て、所定のRF比出力より処理を行い1表面を^rイオ
ンで叩き。Next, as shown in FIG. 5(b), the Si substrate 17 is set in a processing device, Ar gas is introduced into the processing device, and processing is performed using a predetermined RF specific output to generate ^r ions on one surface. Hit it with.
処理後、第5図(C)に示すように、 Si基板17表
面にA1.膜を蒸着し、パターニングして特性測定用の
^l電極20を形成して、MOSダイオードを作成する
。After the treatment, as shown in FIG. 5(C), A1. A film is deposited and patterned to form an electrode 20 for measuring characteristics, thereby creating a MOS diode.
続いて、MOSダイオードをBT処理等のアニール処理
を行い、第5図(d)に示すように2M0Sダイオード
のC−■特性を測定して、RF処理によるSi基板17
に対する損傷度を判定していた。Subsequently, the MOS diode was subjected to annealing treatment such as BT treatment, and the C-■ characteristic of the 2M0S diode was measured as shown in FIG. 5(d).
The degree of damage was assessed.
上記の方法は、非常に時間が掛かるとともに。 The above method is very time consuming as well.
一般工程に取り入れて管理するのが困難である。It is difficult to incorporate and manage the general process.
また1種々の製造条件や、他の工程の条件変動の影響を
受は易く、信鯨性に欠ける。Furthermore, it is easily influenced by various manufacturing conditions and fluctuations in other process conditions, and lacks reliability.
本発明は2以上の点に鑑み、半導体材料がRFに曝され
た際の実行RFパワーによる損傷度の測定を、簡便かつ
容易に行う方法を得ることを目的として提供されるもの
である。In view of two or more points, the present invention is provided for the purpose of obtaining a method for simply and easily measuring the degree of damage by effective RF power when a semiconductor material is exposed to RF.
(課題を解決するための手段]
第1図は本発明の原理説明図、第2図は本発明の一実施
例の工程順模式断面図である。(Means for Solving the Problems) FIG. 1 is an explanatory diagram of the principle of the present invention, and FIG. 2 is a schematic sectional view of an embodiment of the present invention in the order of steps.
図において、1は基板、2は有機高分子膜、3はArイ
オン、4はカーボナイズ層、5はカーボン。In the figure, 1 is a substrate, 2 is an organic polymer film, 3 is an Ar ion, 4 is a carbonized layer, and 5 is carbon.
6は放出原子、7はプローブ、8は電源、9は電流計、
10は電圧計である。6 is the emitted atom, 7 is the probe, 8 is the power supply, 9 is the ammeter,
10 is a voltmeter.
ポリイミド系の有機高分子膜は多層配線の眉間絶縁膜と
して多用されているが1代表的なものに全芳香族ポリイ
ミド樹脂とジアミンの一部にシロキサン結合を持つポリ
イミド樹脂がある。Polyimide-based organic polymer films are often used as glabellar insulating films for multilayer wiring, and representative examples include wholly aromatic polyimide resins and polyimide resins having siloxane bonds in part of the diamine.
何れも、炭素(C)、酸素(0)、窒素(N)。All of them are carbon (C), oxygen (0), and nitrogen (N).
水素(H)、或いは珪素(Si)等の元素から構成され
ており1表面がRF処理時に、第1図(a)に示すよう
に、有機高分子膜2であるポリイミド膜の表面がArイ
オン3で叩かれると。It is composed of elements such as hydrogen (H) or silicon (Si), and when its surface is subjected to RF treatment, the surface of the polyimide film, which is the organic polymer film 2, is exposed to Ar ions as shown in FIG. When you get hit at 3.
第1図(b)に示すように、有機高分子膜2の表面近傍
のO,N、H原子等が放出原子6となって飛び出し、有
機高分子膜2の表面はカーボンがリッチとなったカーボ
ナイズ層4に変質する。As shown in FIG. 1(b), O, N, H atoms, etc. near the surface of the organic polymer film 2 jump out as released atoms 6, and the surface of the organic polymer film 2 becomes rich in carbon. It changes into a carbonized layer 4.
この変質の度合いにより、カーボナイズ層4の通電量が
変化し、その値は半導体基板に対する損傷度に相関的に
比例する。The amount of current applied to the carbonized layer 4 changes depending on the degree of this alteration, and the value is proportional to the degree of damage to the semiconductor substrate.
このことにより9本発明は、半導体材料に対するRF比
出力影響を直接的に、且つ簡便容易に測定することを可
能にするとともに、精度良(リアルタイムで損傷度を実
測することができる。As a result, the present invention makes it possible to directly, simply and easily measure the influence of RF specific output on semiconductor materials, and also to measure the degree of damage with high precision (in real time).
即ち9本発明の目的は、第2図(a)に示すように、基
板1上に有機高分子膜2を被覆し。That is, the object of the present invention is to coat a substrate 1 with an organic polymer film 2, as shown in FIG. 2(a).
第2図(b)に示すように、基板1表面の有機高分子膜
2にRF比出力加え、アルゴンイオン3により該高分子
膜2の表面を分解してカーボナイズ層4とし。As shown in FIG. 2(b), RF specific power is applied to the organic polymer film 2 on the surface of the substrate 1, and the surface of the polymer film 2 is decomposed by argon ions 3 to form a carbonized layer 4.
第2図(C)に示すように、該カーボナイズ層4の表面
に電圧を印加して、該カーボナイズ層4の通電量を測定
することにより達成される。As shown in FIG. 2(C), this is achieved by applying a voltage to the surface of the carbonized layer 4 and measuring the amount of current flowing through the carbonized layer 4.
[作用]
本発明のように、ポリイミド膜等の有機高分子膜は、R
F処理により計イオンで叩かれて分解されて 0原子や
N原子、或いはH原子が有機高分子膜の表面から放出さ
れて、有機高分子膜の表面がカーボンリッチとなり、導
電性のカーボナイズ層となるために、電流が流れる。こ
の電流値の大きさが損傷度の大きさに比例する。[Function] As in the present invention, an organic polymer film such as a polyimide film has R
During the F treatment, zero atoms, N atoms, or H atoms are released from the surface of the organic polymer film by being bombarded with ions and decomposed, making the surface of the organic polymer film carbon-rich and forming a conductive carbonized layer. To achieve this, a current flows. The magnitude of this current value is proportional to the degree of damage.
これにより、RF処理後の基板上の有機高分子膜表面の
カーボナイズ層の電流値の測定を行うことにより、半導
体材料に対する実行RF比出力大きさ、及び半導体基板
に対する損傷度の大きさを直接的にリアルタイムで測定
できる。By measuring the current value of the carbonized layer on the surface of the organic polymer film on the substrate after RF processing, the actual RF specific output power for the semiconductor material and the degree of damage to the semiconductor substrate can be directly determined. can be measured in real time.
第2図は本発明の一実施例の工程順模式断面図。 FIG. 2 is a schematic cross-sectional view of an embodiment of the present invention in the order of steps.
第3図はRF処理条件と通電量の関係を示す図。FIG. 3 is a diagram showing the relationship between RF processing conditions and energization amount.
第4図はRF処理装置の概略図である。FIG. 4 is a schematic diagram of the RF processing device.
図において、1は基板、2は有機高分子膜、3はArイ
オン、4はカーボナイズ層、5はカーボン。In the figure, 1 is a substrate, 2 is an organic polymer film, 3 is an Ar ion, 4 is a carbonized layer, and 5 is carbon.
6は放出原子、7はプローブ、8は電源、9は電流計、
10は電圧計、11はチャンバ、12は対向電極。6 is the emitted atom, 7 is the probe, 8 is the power supply, 9 is the ammeter,
10 is a voltmeter, 11 is a chamber, and 12 is a counter electrode.
13は高周波電源、14はバイアス電源、15はガス導
入口、 16は排気口である。13 is a high frequency power source, 14 is a bias power source, 15 is a gas inlet, and 16 is an exhaust port.
第2図(a)に示すように9例えばSt基板1に有機高
分子膜としてポリイミド膜2を2〜3μmの厚さに全面
塗布し、乾燥処理する。基板1はガラス板等種々のもの
が使用出来る。As shown in FIG. 2(a), for example, a polyimide film 2 as an organic polymer film is coated on the entire surface of the St substrate 1 to a thickness of 2 to 3 μm, and then dried. Various materials such as a glass plate can be used as the substrate 1.
第2図(b)に示すように、RF処理を行って。As shown in FIG. 2(b), RF processing is performed.
基板1上のポリイミド膜にArイオン3をアタックさせ
る。The polyimide film on the substrate 1 is attacked with Ar ions 3.
RF処理に使用した装置の概略図を第4図に示す。基板
1はチャンバ11の中央部にセットされ。A schematic diagram of the apparatus used for RF processing is shown in FIG. The substrate 1 is set in the center of the chamber 11.
ガス導入口15よりArガスを導入し、排気口16を調
整して、チャンバ11内の真空度を7 mmTorrに
保つ。Ar gas is introduced from the gas inlet 15, and the exhaust port 16 is adjusted to maintain the degree of vacuum in the chamber 11 at 7 mm Torr.
高周波電源13より13.56MHzのRF小出力、バ
イアス電源14より−600Vのバイアス電圧を基板1
上方の対向電極12に印加して、RF処理を行う。A small RF output of 13.56 MHz is applied from the high frequency power supply 13, and a bias voltage of -600V is applied to the substrate 1 from the bias power supply 14.
RF processing is performed by applying it to the upper counter electrode 12.
基板l上のポリイミド膜表面はArイオンに叩かれて9
表面近傍からO,N、H各原子が放出されて2表面はカ
ーボンリッチとなって、カーボナイズ層4を形成する。The surface of the polyimide film on the substrate l is struck by Ar ions and
O, N, and H atoms are released from near the surface, and the two surfaces become carbon-rich, forming a carbonized layer 4.
第2図(C)に示すように、カーボナイズ層4の表面に
プローブ7を当てて、その通電量を測定する。As shown in FIG. 2(C), a probe 7 is applied to the surface of the carbonized layer 4 to measure the amount of current applied thereto.
第4図の装置を用いてのRFの通常の処理条件は計ガス
圧力が7 mm+Torr+ RFバイアス電圧が−
600V、 RF処理時間が75秒である。The normal processing conditions for RF using the apparatus shown in Figure 4 are: Gauge gas pressure is 7 mm + Torr + RF bias voltage is -
600V, RF processing time is 75 seconds.
第3図はRF処理条件を変化させて、ポリイミド膜表面
のカーボナイズN4の通電量を測定したもので、これよ
り、RF小出力実行パワーが分かる。FIG. 3 shows the measurement of the amount of current applied to carbonized N4 on the surface of the polyimide film while changing the RF processing conditions. From this, the RF small output power can be understood.
第3図(a)はRF処理時間の依存性を示したもので、
処理時間を38秒から150秒迄変化させて通電量を測
定したものである。Figure 3(a) shows the dependence of RF processing time.
The amount of current applied was measured while changing the processing time from 38 seconds to 150 seconds.
又、第3図(b)はRFのバイアス電圧の依存性を示し
たもので、処理時間を150秒一定とし。Moreover, FIG. 3(b) shows the dependence on the RF bias voltage, and the processing time is set to be constant at 150 seconds.
バイアス電圧を一40Vから一800■まで変化させて
通電量を測定したものである。The amount of current was measured by varying the bias voltage from -40V to -1800V.
以上説明したように、RF処理後の基板上の有機高分子
膜表面が変質したカーボナイズ層の電流値の測定を行う
ことにより、半導体材料に対する実行RF出力の大きさ
、及び半導体基板に対する損傷度の大きさを直接的にリ
アルタイムで測定できる。As explained above, by measuring the current value of the carbonized layer on which the surface of the organic polymer film on the substrate has been altered after RF treatment, it is possible to determine the magnitude of the effective RF output to the semiconductor material and the degree of damage to the semiconductor substrate. Size can be measured directly in real time.
本発明により、装置の管理、製造条件の決定・管理が確
実に行われ、半導体装置の品質の向上信顛性の確立に寄
与するところが大きい。According to the present invention, device management and manufacturing conditions can be determined and managed reliably, which greatly contributes to improving the quality of semiconductor devices and establishing reliability.
第1図は本発明の原理説明図。 第2図は本発明の一実施例の工程順模式断面図。 第3図はRF処理条件と通電量。 第4図はRF処理装置。 第5図は従来例の工程順模式断面図 である。 図において。 1は基板。 3はArイオン。 5はカーボン。 7はプローブ。 9は電流計。 11はチャンバ 13は高周波電源 15はガス導入口。 2は有機高分子膜。 4はカーボナイズ層。 6は放出原子。 8は電源。 10は電圧計 12は対向電極。 14はバイアス電源 16は排気口 RF処理扶装 罫40 (d) 笹−!X:例n工程順榎へ一顔口 〃 FIG. 1 is a diagram explaining the principle of the present invention. FIG. 2 is a schematic cross-sectional view of an embodiment of the present invention in the order of steps. Figure 3 shows the RF processing conditions and amount of current. Figure 4 shows the RF processing device. Figure 5 is a schematic cross-sectional view of the conventional process order. It is. In fig. 1 is the board. 3 is Ar ion. 5 is carbon. 7 is a probe. 9 is an ammeter. 11 is a chamber 13 is a high frequency power supply 15 is a gas inlet. 2 is an organic polymer film. 4 is carbonized layer. 6 is the emitted atom. 8 is the power supply. 10 is a voltmeter 12 is a counter electrode. 14 is bias power supply 16 is the exhaust port RF processing support Rule 40 (d) Sasa! X: For example, one step towards process n. 〃
Claims (1)
力を加え、アルゴンイオン(Ar^+)(3)により該
高分子膜(2)の表面を分解してカーボナイズ層(炭化
層)(4)とし、 該カーボナイズ層(4)の表面に電圧を印加して、該カ
ーボナイズ層(4)の通電量を測定することを特徴とす
るRF出力測定方法。[Claims] RF output is applied to the organic polymer film (2) coated on the substrate (1), and the surface of the polymer film (2) is decomposed by argon ions (Ar^+) (3). A method for measuring RF output, comprising: forming a carbonized layer (4), applying a voltage to the surface of the carbonized layer (4), and measuring the amount of current flowing through the carbonized layer (4).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12499290A JPH0424940A (en) | 1990-05-15 | 1990-05-15 | Measuring method for rf output |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12499290A JPH0424940A (en) | 1990-05-15 | 1990-05-15 | Measuring method for rf output |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0424940A true JPH0424940A (en) | 1992-01-28 |
Family
ID=14899227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12499290A Pending JPH0424940A (en) | 1990-05-15 | 1990-05-15 | Measuring method for rf output |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0424940A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002339561A (en) * | 2001-05-21 | 2002-11-27 | West Japan Railway Co | Ceiling inspection hole |
WO2022035734A1 (en) * | 2020-08-10 | 2022-02-17 | Brewer Science, Inc. | Soluble polyimides and diimides for spin-on carbon applications |
-
1990
- 1990-05-15 JP JP12499290A patent/JPH0424940A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002339561A (en) * | 2001-05-21 | 2002-11-27 | West Japan Railway Co | Ceiling inspection hole |
WO2022035734A1 (en) * | 2020-08-10 | 2022-02-17 | Brewer Science, Inc. | Soluble polyimides and diimides for spin-on carbon applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06349920A (en) | Electric charge measuring method of semiconductor wafer | |
JPS60185151A (en) | Method of measuring electric resistance of metallic layer | |
JPH0424940A (en) | Measuring method for rf output | |
Matthews et al. | Effects of electrode configuration on polymer carbon-black composite chemical vapor sensor performance | |
US4599241A (en) | Method for inspecting defects of thin material film | |
JPH0590216A (en) | Manufacture of semiconductor device | |
JP3239466B2 (en) | Etching method and etching apparatus | |
JP3972463B2 (en) | Plasma processing method | |
JP4378887B2 (en) | Plasma processing apparatus and plasma processing method | |
JPH0429319A (en) | Semiconductor element and its manufacture | |
JP3846116B2 (en) | Plasma characteristic measuring apparatus and plasma processing inspection method | |
JPH08124896A (en) | Plasma evaluation system and manufacture thereof | |
JPS59208412A (en) | Method of measuring quantity of change of layer thickness onapplication or removal of thin layer | |
JP3391003B2 (en) | Method for manufacturing multilayer wiring board | |
US20070173048A1 (en) | Method of manufacturing an electrical component | |
JPH06326213A (en) | Formation of measuring pattern for thickness of interlaminar film | |
JP2000003911A (en) | Method for forming silicon oxide film and manufacture for thin film magnetic head | |
KR100188022B1 (en) | Etching rate measuring method of semiconductor film | |
KR0128237Y1 (en) | Ion dosage checking device | |
JPH05171472A (en) | Method for detecting end point of ion beam etching | |
JPH11330180A (en) | Estimating method and estimating equipment for thin insulating film | |
JPS60257350A (en) | Analyzing method of composition of depth direction | |
JPH09139388A (en) | Manufacture of metal minute pattern | |
JPH03107845A (en) | Method for inspecting resist pattern | |
JPS60113429A (en) | Evaluation method of plasma etching uniformity |