JPH04249334A - Tape carrier for tab use - Google Patents
Tape carrier for tab useInfo
- Publication number
- JPH04249334A JPH04249334A JP3565091A JP3565091A JPH04249334A JP H04249334 A JPH04249334 A JP H04249334A JP 3565091 A JP3565091 A JP 3565091A JP 3565091 A JP3565091 A JP 3565091A JP H04249334 A JPH04249334 A JP H04249334A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- nickel
- copper
- thickness
- tape carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 56
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052802 copper Inorganic materials 0.000 claims abstract description 29
- 239000010949 copper Substances 0.000 claims abstract description 29
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 24
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 21
- 239000000956 alloy Substances 0.000 claims abstract description 21
- 239000004020 conductor Substances 0.000 claims abstract description 19
- 239000011889 copper foil Substances 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 9
- 229910021578 Iron(III) chloride Inorganic materials 0.000 abstract description 7
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 abstract description 7
- 229920001721 polyimide Polymers 0.000 abstract description 3
- 239000004642 Polyimide Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 45
- 238000005530 etching Methods 0.000 description 16
- 229910000990 Ni alloy Inorganic materials 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
Landscapes
- Wire Bonding (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、TAB(Tape
Automated Bonding)法によって集
積回路(IC)を実装する際に用いるテープキャリアに
関し、特に高集積化されたIC等の実装に対応できるT
AB用テープキャリアに関する。[Industrial Application Field] The present invention relates to TAB (Tape
Regarding tape carriers used when mounting integrated circuits (ICs) using the Automated Bonding method, T is especially suitable for mounting highly integrated ICs, etc.
This invention relates to an AB tape carrier.
【0002】0002
【従来の技術】TAB法は、高集積ICの実装を効率良
く行うために開発された方法であり、テープキャリア上
でIC素子の実装を行うものである。図4及び図5は、
このようなTAB用テープキャリアの平面図及び断面図
を示すもので、長尺の可撓性絶縁フィルム10に、IC
素子を装着するためのデバイスホール11と位置合わせ
等のためのパイロットホール(送り孔)12が形成され
ており、さらに銅箔から成る配線パターン13が形成さ
れている。この配線パターン13はインナーリード部1
3aとアウターリード部13bとから成る。2. Description of the Related Art The TAB method is a method developed for efficiently mounting highly integrated ICs, in which IC elements are mounted on a tape carrier. FIGS. 4 and 5 are
This figure shows a plan view and a sectional view of such a TAB tape carrier, in which an IC is mounted on a long flexible insulating film 10.
A device hole 11 for mounting an element, a pilot hole (feeding hole) 12 for positioning, etc. are formed, and a wiring pattern 13 made of copper foil is further formed. This wiring pattern 13 is the inner lead part 1
3a and an outer lead portion 13b.
【0003】可撓性絶縁フィルム10は、一般に厚さ5
0〜126μm、幅35〜70mmの有機ポリイミドフ
ィルムやガラス強化エポキシフィルム等から成る。また
、デバイスホール11及びパイロットホール12は可撓
性絶縁フィルム10を打抜き加工して形成される。さら
に配線パターン13は、厚さ18〜35μmの圧延銅箔
や電解銅箔等の銅箔を接着層14を介して可撓性絶縁フ
ィルム10に接着した後、塩化第二鉄溶液等をエッチン
グ液として用いたフォトエッチング法により、所定のパ
ターンが得られるように銅箔不要部15を除去して形成
したものである。なお、インナーリード部13aはIC
素子上の微小電極と加熱圧着により接合されるので、イ
ンナーリード部13aの表面は、キャグボンディングと
呼ばれる工程において接着性のある金属(例えば金)又
は低融点の金属接合剤(例えば錫、半田等)で被覆され
る。一般には無電解錫又は電解半田メッキが施される。[0003] The flexible insulating film 10 generally has a thickness of 5
It is made of an organic polyimide film, a glass-reinforced epoxy film, etc. with a width of 0 to 126 μm and a width of 35 to 70 mm. Further, the device hole 11 and the pilot hole 12 are formed by punching the flexible insulating film 10. Further, the wiring pattern 13 is formed by bonding a copper foil such as a rolled copper foil or an electrolytic copper foil having a thickness of 18 to 35 μm to the flexible insulating film 10 via an adhesive layer 14, and then using an etching solution such as a ferric chloride solution. It was formed by removing unnecessary portions 15 of the copper foil so as to obtain a predetermined pattern using the photo-etching method used as a method. Note that the inner lead portion 13a is an IC
Since it is bonded to microelectrodes on the element by heat and pressure bonding, the surface of the inner lead part 13a is coated with adhesive metal (for example, gold) or a low melting point metal bonding agent (for example, tin, solder, etc.) in a process called CAG bonding. ) coated with Generally, electroless tin or electrolytic solder plating is applied.
【0004】0004
【発明が解決しようとする課題】最近はIC素子の超多
ピン化及び超微細化が強く望まれている。しかし、現状
では、IC素子の実装工程から望まれているような、イ
ンナーリード部のリードピッチが90μm以下で且つそ
の強度が十分大きいTAB用テープキャリアは実用化さ
れていなかった。すなわち、従来のTAB用テープキャ
リアにおいては、インナーリード部をフォトエッチング
により形成する場合に、エッチング後に銅箔のフィルム
面への根残りが生じ、隣合うリードが繋がってしまうと
いう問題が生じていた。このためTAB法で実装できる
ICの多ピン化及び微細化が制約されていた。例えば、
配線パターンを構成する銅箔の厚さが35μmの場合で
は、インナーリード部のリードピッチは100μm(リ
ード幅50μm、リード間隔50μm)が限界であり、
厚さ18μmの銅箔の場合では、リードピッチ80μm
が限界である。しかも、厚さ18μmの銅箔の場合は箔
が薄いので、形成される配線パターンの強度が小さいと
いう問題があった。そこで、強度を大きくするために合
金箔の採用が検討されているが、現状では実現されてい
ない。[Problems to be Solved by the Invention] Recently, there has been a strong desire for IC devices to have a very large number of pins and be made very fine. However, at present, a TAB tape carrier with an inner lead portion having a lead pitch of 90 μm or less and having a sufficiently high strength, which is desired from the IC element mounting process, has not been put into practical use. In other words, in conventional TAB tape carriers, when the inner lead portion is formed by photo-etching, the copper foil remains on the film surface after etching, resulting in the problem that adjacent leads are connected. . This has limited the ability to increase the number of pins and miniaturize ICs that can be mounted using the TAB method. for example,
When the thickness of the copper foil constituting the wiring pattern is 35 μm, the lead pitch of the inner lead part is limited to 100 μm (lead width 50 μm, lead spacing 50 μm).
In the case of copper foil with a thickness of 18 μm, the lead pitch is 80 μm.
is the limit. Moreover, in the case of copper foil having a thickness of 18 μm, since the foil is thin, there is a problem that the strength of the formed wiring pattern is low. Therefore, the use of alloy foil has been considered in order to increase the strength, but this has not been realized at present.
【0005】従って、本発明の目的は、IC素子の超多
ピン化や超微細化に対応できるようにするため、リード
ピッチが小さい、特に80μm以下で、しかもインナー
リード部の強度が十分に大きいTAB用テープキャリア
を提供することにある。[0005] Therefore, an object of the present invention is to have a small lead pitch, especially 80 μm or less, and a sufficiently strong inner lead portion, in order to be able to cope with the ultra-high pin count and ultra-fine design of IC devices. The purpose of the present invention is to provide a tape carrier for TAB.
【0006】[0006]
【課題を解決するための手段】本発明は、可撓性絶縁フ
ィルム上に形成する配線パターンを、銅層とニッケル系
合金層との多層導体層で構成するようにしたものである
。この多層導体層は、銅層−ニッケル系合金層の二層導
体層、銅層−ニッケル系合金層−銅層の三層導体層、及
びニッケル系合金層−銅層−ニッケル系合金層の三層導
体層のいずれかであるのが望ましく、多層導体層の厚さ
が総厚35μmで、その内ニッケル系合金層の厚さが5
μmであるのが望ましい。さらに、銅層は無酸素銅から
成るのが望ましい。この無酸素銅は、一般に酸素含有量
10ppm以下、銅純度99.99%以上の銅を言い、
その厚さは10〜20μmが適当である。また、ニッケ
ル系合金層は、例えば純ニッケル、ニッケル─クロム合
金、又はニッケル─鉄合金が挙げられ、その厚さは5〜
15μmが適当である。なお、銅層とニッケル系合金層
とをクラッドにした場合の総厚は25μm以下で十分で
ある。[Means for Solving the Problems] According to the present invention, a wiring pattern formed on a flexible insulating film is composed of a multilayer conductor layer including a copper layer and a nickel-based alloy layer. This multilayer conductor layer consists of a two-layer conductor layer of copper layer-nickel alloy layer, a three-layer conductor layer of copper layer-nickel alloy layer-copper layer, and a three-layer conductor layer of nickel alloy layer-copper layer-nickel alloy layer. It is desirable that the multilayer conductor layer has a total thickness of 35 μm, of which the thickness of the nickel alloy layer is 5 μm.
It is desirable that it is μm. Furthermore, the copper layer preferably comprises oxygen-free copper. This oxygen-free copper generally refers to copper with an oxygen content of 10 ppm or less and a copper purity of 99.99% or more.
The appropriate thickness is 10 to 20 μm. Further, the nickel-based alloy layer includes, for example, pure nickel, a nickel-chromium alloy, or a nickel-iron alloy, and its thickness is 5 to 5.
15 μm is appropriate. Note that when the copper layer and the nickel-based alloy layer are used as a cladding, a total thickness of 25 μm or less is sufficient.
【0007】[0007]
【作用】銅層とニッケル系合金層とから成る多層導体層
を、塩化第二鉄をエッチング溶液として用いたフォトエ
ッチング法によりエッチングして配線パターンを形成す
る場合、銅層とニッケル系合金層の塩化第二鉄によるエ
ッチング速度は異なり、銅層の方がニッケル系合金層よ
りもエッチングが速く進行する。従って、銅層のエッチ
ングが十分進んでも銅層上のニッケル系合金層のエッチ
ングは相対的に遅く進行する。その結果、接着剤面側に
位置している銅層のエッチングの度合いが大きく、接着
剤面への裾野の広がりが少ない一方で、ニッケル系合金
層は十分な幅が確保されている。従って、従来のように
接着剤面上の銅層の裾野の広がりによりリード間が繋が
ってしまうという問題が生じない。一方、リード幅はニ
ッケル系合金層の幅で決まるので、リードピッチはニッ
ケル系合金層のエッチング速度に依存する。従って、銅
層のエッチングが進行しても、リード幅が細くなり過ぎ
るといういわゆるオーバーエッチングの問題も生じなく
なる。また、ニッケル系合金層は厚さが比較的小さくて
も良いので、薄い層を採用すればエッチング制御が容易
となり、微細化に対して有利となる。さらに、リードの
耐折強度は、銅層の強度にニッケル系合金層の強度が加
算されるので、銅層のみの場合に比較して約2倍となる
。[Operation] When forming a wiring pattern by etching a multilayer conductor layer consisting of a copper layer and a nickel-based alloy layer by photo-etching using ferric chloride as an etching solution, the copper layer and nickel-based alloy layer are The etching rate with ferric chloride is different, with the copper layer being etched more quickly than the nickel-based alloy layer. Therefore, even if the etching of the copper layer progresses sufficiently, the etching of the nickel-based alloy layer on the copper layer progresses relatively slowly. As a result, the degree of etching of the copper layer located on the adhesive side is large and the extent of the base to the adhesive side is small, while the nickel alloy layer has a sufficient width. Therefore, there is no problem that the leads are connected due to the broadening of the base of the copper layer on the adhesive surface, unlike in the conventional case. On the other hand, since the lead width is determined by the width of the nickel-based alloy layer, the lead pitch depends on the etching rate of the nickel-based alloy layer. Therefore, even if the etching of the copper layer progresses, the problem of so-called over-etching, in which the lead width becomes too narrow, does not occur. Further, since the nickel-based alloy layer may have a relatively small thickness, adopting a thin layer facilitates etching control and is advantageous for miniaturization. Furthermore, since the strength of the nickel-based alloy layer is added to the strength of the copper layer, the bending strength of the lead is approximately twice that of the case where only the copper layer is used.
【0008】[0008]
【実施例】以下、本発明の実施例について図を参照しな
がら詳細に説明する。Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
【0009】実施例1
図1に示すように、厚さ75μm、幅35mmのポリイ
ミド製の可撓性絶縁フィルム10の上に、厚さ10μm
の接着層14を介して厚さ25μmの銅箔21と厚さ1
0μmのニッケル箔22をクラッドにして成る導体層を
形成し、塩化第二鉄溶液を用いてエッチングを行い、配
線パターン20を形成した。Example 1 As shown in FIG. 1, a 10 μm thick film was placed on a polyimide flexible insulating film 10 with a thickness of 75 μm and a width of 35 mm.
A copper foil 21 with a thickness of 25 μm and a copper foil 21 with a thickness of 1
A conductor layer made of a 0 μm nickel foil 22 as a cladding was formed and etched using a ferric chloride solution to form a wiring pattern 20.
【0010】図1から明らかなように、銅箔21の接着
層14面への裾野の広がりが少ないので、リード間が繋
がってしまうという問題は生じない。一方、ニッケル箔
22は銅箔21と比較して大きな幅を有している。配線
パターン20のリード間隔は、厚さが10μmという薄
いニッケル箔22のエッチング速度で決めることができ
るので、従来のように厚さが35μmの銅箔を用いた場
合では不可能であった80μmや60μmという極めて
狭いリード間隔を有するTAB用テープキャリアを製造
が可能となった。さらに、リードの耐折強度も銅箔のみ
の場合に比較してニッケル箔の強度が加算され、約2倍
となっている。As is clear from FIG. 1, the spread of the base of the copper foil 21 toward the surface of the adhesive layer 14 is small, so that the problem of the leads being connected does not occur. On the other hand, the nickel foil 22 has a larger width than the copper foil 21. The lead spacing of the wiring pattern 20 can be determined by the etching rate of the thin nickel foil 22 with a thickness of 10 μm, so it can be set to 80 μm or more, which was impossible when using conventional copper foil with a thickness of 35 μm. It has become possible to manufacture a TAB tape carrier with an extremely narrow lead spacing of 60 μm. Furthermore, the bending strength of the lead is approximately twice that of the case of only copper foil due to the addition of the strength of nickel foil.
【0011】実施例2
図2に示すように、可撓性絶縁フィルム10の上に、厚
さ20μmの銅箔31、厚さ10μmのニッケル箔32
、及び厚さ5μmの銅箔33を積層した導体層を形成し
、塩化第二鉄溶液を用いエッチングを行い、配線パター
ン30を形成した。本実施例のTAB用テープキャリア
においてもリード間隔60μmが可能となり、リード強
度の向上も図ることができる。なお、本実施例において
は、最上層に銅箔33があるので、錫及び半田メッキ作
業が容易となる。Example 2 As shown in FIG. 2, a copper foil 31 with a thickness of 20 μm and a nickel foil 32 with a thickness of 10 μm are placed on a flexible insulating film 10.
A conductor layer was formed by laminating copper foil 33 having a thickness of 5 μm, and etching was performed using a ferric chloride solution to form a wiring pattern 30. Also in the TAB tape carrier of this embodiment, a lead spacing of 60 μm is possible, and lead strength can also be improved. In this embodiment, since the copper foil 33 is provided on the top layer, the tin and solder plating work is facilitated.
【0012】実施例3
図3に示すように、可撓性絶縁フィルム10の上に、厚
さ5μmのニッケル箔41、厚さ20μmの銅箔42、
及び厚さ10μmの銅箔43を積層した導体層を形成し
、塩化第二鉄溶液を用いてエッチングを行い、配線パタ
ーン40を形成した。この実施例の場合には、最下層が
ニッケル箔41なので、裾野の広がりがなく、より微細
化に対して有利となる。Example 3 As shown in FIG. 3, a nickel foil 41 with a thickness of 5 μm, a copper foil 42 with a thickness of 20 μm,
A conductor layer was formed by laminating copper foil 43 with a thickness of 10 μm, and etching was performed using a ferric chloride solution to form a wiring pattern 40. In the case of this embodiment, since the bottom layer is the nickel foil 41, there is no widening of the base, which is advantageous for further miniaturization.
【0013】[0013]
【発明の効果】以上説明した通り、本発明のTAB用テ
ープキャリアは、リードピッチが小さい、特に80μm
以下で、しかもインナーリード部の強度が十分に大きい
ので、IC素子の超多ピン化や超微細化に対応すること
ができる。また、製造時におけるエッチング精度も向上
するので、生産性も向上する。Effects of the Invention As explained above, the TAB tape carrier of the present invention has a small lead pitch, particularly 80 μm.
In addition, since the strength of the inner lead portion is sufficiently high, it is possible to cope with an ultra-high number of pins and ultra-miniaturization of IC elements. Furthermore, since etching accuracy during manufacturing is improved, productivity is also improved.
【図1】本発明の一実施例のTAB用テープキャリアを
示す断面図である。FIG. 1 is a sectional view showing a TAB tape carrier according to an embodiment of the present invention.
【図2】本発明の第二の実施例のTAB用テープキャリ
アを示す断面図である。FIG. 2 is a sectional view showing a TAB tape carrier according to a second embodiment of the present invention.
【図3】本発明の第三の実施例のTAB用テープキャリ
アを示す断面図である。FIG. 3 is a sectional view showing a TAB tape carrier according to a third embodiment of the present invention.
【図4】TAB用テープキャリアを示す平面図である。FIG. 4 is a plan view showing a TAB tape carrier.
【図5】従来のTAB用テープキャリアを示す断面図で
ある。FIG. 5 is a sectional view showing a conventional TAB tape carrier.
10 可撓性絶縁フィルム
11 デバイスホール
12 パイロットホール
13,20,30,40 配線パターン13a
インナーリード部
13b アウターリード部
14 接着層
15 銅箔不要部
21,31,33,42 銅箔10 Flexible insulation film 11 Device hole 12 Pilot hole 13, 20, 30, 40 Wiring pattern 13a
Inner lead part 13b Outer lead part 14 Adhesive layer 15 Copper foil unnecessary parts 21, 31, 33, 42 Copper foil
Claims (4)
ターンを形成して成るTAB用テープキャリアにおいて
、前記配線パターンが、銅層とニッケル又はニッケル系
合金層(以下「ニッケル系合金層」という。)とを含む
多層導体層から成ることを特徴とするTAB用テープキ
ャリア。1. A TAB tape carrier comprising a desired wiring pattern formed on a flexible insulating film, wherein the wiring pattern comprises a copper layer and a nickel or nickel-based alloy layer (hereinafter referred to as "nickel-based alloy layer"). .) A tape carrier for TAB, comprising a multilayer conductor layer including:
層で第二層がニッケル系合金層の二層導体層、(2)第
一層が銅層、第二層がニッケル系合金層、及び第三層が
銅層の三層導体層、及び(3)第一層がニッケル系合金
層、第二層が銅層、及び第三層がニッケル系合金層の三
層導体層、の中から選択されたいずれかの導体層である
、請求項1に記載のTAB用テープキャリア。2. The multilayer conductor layer includes (1) a two-layer conductor layer in which the first layer is a copper layer and the second layer is a nickel-based alloy layer; (2) the first layer is a copper layer and the second layer is a nickel-based alloy layer; (3) A three-layer conductor layer in which the first layer is a nickel-based alloy layer, the second layer is a copper layer, and the third layer is a nickel-based alloy layer. The TAB tape carrier according to claim 1, wherein the TAB tape carrier is any conductor layer selected from the following layers.
であり、その内ニッケル系合金層の厚さは5μmである
、請求項1又は2に記載のTAB用テープキャリア。[Claim 3] The multilayer conductor layer has a total thickness of 35 μm.
The TAB tape carrier according to claim 1 or 2, wherein the nickel-based alloy layer has a thickness of 5 μm.
1ないし3のいずれか記載のTAB用テープキャリア。4. The TAB tape carrier according to claim 1, wherein the copper layer is made of oxygen-free copper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3565091A JPH04249334A (en) | 1991-02-04 | 1991-02-04 | Tape carrier for tab use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3565091A JPH04249334A (en) | 1991-02-04 | 1991-02-04 | Tape carrier for tab use |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04249334A true JPH04249334A (en) | 1992-09-04 |
Family
ID=12447752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3565091A Pending JPH04249334A (en) | 1991-02-04 | 1991-02-04 | Tape carrier for tab use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04249334A (en) |
-
1991
- 1991-02-04 JP JP3565091A patent/JPH04249334A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060220242A1 (en) | Method for producing flexible printed wiring board, and flexible printed wiring board | |
JP2005191408A (en) | Coil conductor, method for manufacturing the same, and electronic component using the same | |
JPH10335569A (en) | Lead frame and its manufacture and semiconductor device and its manufacture | |
KR100861246B1 (en) | Cof film carrier tape and its manufacturing method | |
JP3555502B2 (en) | Method of manufacturing TAB tape carrier for COF | |
JPS5929146B2 (en) | Method for manufacturing substrates for semiconductor devices | |
JPH04249334A (en) | Tape carrier for tab use | |
JPH06177315A (en) | Multi-layered lead frame | |
JPH08107263A (en) | Manufacturing method of printed-wiring board | |
JP4033090B2 (en) | Manufacturing method of tape carrier for semiconductor device | |
JPH1117315A (en) | Manufacture of flexible circuit board | |
JPH08139126A (en) | Semiconductor device | |
JPH06252310A (en) | Lead frame and manufacture thereof | |
JPH04102341A (en) | Manufacture of tab tape | |
JPS60154536A (en) | Wiring process of integrated circuit element | |
JP4137295B2 (en) | CSP tape carrier manufacturing method | |
JPH01183192A (en) | Flexible printed wiring board and manufacture thereof | |
JPH07304Y2 (en) | Mask for solder paste printing | |
TW202348101A (en) | Coil device and printed wiring board | |
KR100447495B1 (en) | circuit pattern of tape carrier type semiconductor package and the method of manufacturing the same | |
JPH1117331A (en) | Manufacture of flexible circuit board | |
JP2000091386A (en) | Film carrier tape for tab | |
JPH11307594A (en) | Film carrier tape for electronic component mounting and semiconductor device | |
JPH05326786A (en) | Finely patterned lead frame and manufacture thereof | |
JP2000124345A (en) | High-density wiring board |