JPH04249305A - Ferromagnetic laminated film - Google Patents

Ferromagnetic laminated film

Info

Publication number
JPH04249305A
JPH04249305A JP1428991A JP1428991A JPH04249305A JP H04249305 A JPH04249305 A JP H04249305A JP 1428991 A JP1428991 A JP 1428991A JP 1428991 A JP1428991 A JP 1428991A JP H04249305 A JPH04249305 A JP H04249305A
Authority
JP
Japan
Prior art keywords
layer
film
fcc
laminated
saturation magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1428991A
Other languages
Japanese (ja)
Inventor
Yoshiaki Saito
好昭 斉藤
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1428991A priority Critical patent/JPH04249305A/en
Publication of JPH04249305A publication Critical patent/JPH04249305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Co-based laminated film whose saturation magnetization value is large by a method wherein an Mn layer is laminated on a face-centered cubic Co layer. CONSTITUTION:An Mn layer is laminated on a face-centered cubic (fcc) Co layer. In this case, both the Co layer and the Mn layer can be formed by using various film-formation methods such as an ion-beam sputtering method, an RF magnetron sputtering method, a vapor deposition method, a molecular-beam epitaxy method and the like. The fcc Co film can be obtained easily by forming a substratum body to becomes fcc Co when the Co film is formed, such as Pt, Pd or the like, on a substrate such as a quartz glass or the like and by growing a Co thin film on it. It is desirable that the film thickness of the Mn layer is at 3Angstrom or higher and at 200Angstrom or lower. In addition, the fcc Co film is not limited to one layer, and a plurality of layers may be laminated by using it as a fundamental unit. In this case, said Pt layer or the like may be laid in order to form the Co layer formed on the Mn layer as fcc.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、高周波磁気デバイス等
への応用に好適な強磁性積層膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic laminated film suitable for application to high frequency magnetic devices and the like.

【0002】0002

【従来の技術】飽和磁化の値は、トランス,インダクタ
等の高周波磁気デバイス、磁気ヘッド材料,永久磁石な
どの分野において重要なファクターである。この値の大
きい元素の一つとしてCoがある。バルクCoの飽和磁
化の値は1450emu/ccであり、一般的に薄膜に
するとこの値は小さくなることが知られている。例えば
、hcp Co(六方晶Co)とMnの積層膜で飽和磁
化の値が小さくなることがすでに報告されている(J.
Appl.Phys.57(1985)3651, J
.Phys.F(Met.Phys.)16(1986
)93等)。
2. Description of the Related Art The value of saturation magnetization is an important factor in the fields of high-frequency magnetic devices such as transformers and inductors, magnetic head materials, and permanent magnets. Co is one of the elements with a large value. The saturation magnetization value of bulk Co is 1450 emu/cc, and it is known that this value generally decreases when the film is made thinner. For example, it has already been reported that the value of saturation magnetization decreases in a laminated film of hcp Co (hexagonal Co) and Mn (J.
Appl. Phys. 57 (1985) 3651, J
.. Phys. F (Met. Phys.) 16 (1986
)93 etc.).

【0003】0003

【発明が解決しようとする課題】しかしながら高飽和磁
化材料の薄膜化への要求は強く、Co系の材料で薄膜化
した場合でも飽和磁化の値が低下しないような技術が望
まれている。本発明は以上の点を考慮してなされたもの
で、飽和磁化の値の大きいCo系の積層膜を提供するこ
とを目的とする。[発明の構成]
[Problems to be Solved by the Invention] However, there is a strong demand for thinner films of high saturation magnetization materials, and a technology is desired that will not reduce the saturation magnetization value even when thinner films are made of Co-based materials. The present invention has been made in consideration of the above points, and an object of the present invention is to provide a Co-based laminated film having a large value of saturation magnetization. [Structure of the invention]

【0004】0004

【課題を解決するための手段及び作用】本発明は、fc
c Co(面心立方晶Co)層上にMn層が積層された
ことを特徴とする強磁性積層膜である。
[Means and effects for solving the problems] The present invention provides fc
This is a ferromagnetic laminated film characterized by laminating a Mn layer on a c Co (face-centered cubic Co) layer.

【0005】すなわち本発明者らは、fcc Co薄膜
上にMnを積層した場合に、バルクCo以上の飽和磁化
を得ることができることを見出したのである。その原因
は定かではないものの、fcc Co膜上のMnが強磁
性になり、積層膜の飽和磁化の値を大きくしていると考
えられる。
That is, the present inventors have discovered that when Mn is laminated on an fcc Co thin film, a saturation magnetization higher than that of bulk Co can be obtained. Although the cause is not clear, it is thought that Mn on the fcc Co film becomes ferromagnetic, increasing the saturation magnetization value of the laminated film.

【0006】なおCo層,Mn層ともに各種成膜方法,
例えば,イオンビームスパッタリング法,RFマグネト
ロンスパッタリング法,蒸着法,分子線エピタキシー(
MBE) 法などで作製できる。
[0006] Both the Co layer and the Mn layer can be formed by various film forming methods.
For example, ion beam sputtering method, RF magnetron sputtering method, vapor deposition method, molecular beam epitaxy (
(MBE) method.

【0007】fcc Co膜は例えば石英ガラスなどの
基板上に、Pt,Pd,Cu等Coを成膜した場合にf
cc Coとなるような下地層を形成し、これを基板と
してCo薄膜を成長させることで容易に得ることができ
る(図1)。また本発明はfcc Coの製法にはよら
ないため、直接fccCoが成膜できれば特に下地層は
形成しなくても良い(図2(a))。
[0007] The fcc Co film is formed by depositing Co such as Pt, Pd, or Cu on a substrate such as quartz glass.
It can be easily obtained by forming a base layer of cc Co and using this as a substrate to grow a Co thin film (FIG. 1). Furthermore, since the present invention does not depend on the method for producing FCC Co, it is not necessary to form a base layer as long as FCC Co can be directly formed (FIG. 2(a)).

【0008】またfcc Co/Mnの1層の膜に限ら
ず、これを基本単位として複数層積層しても良い。この
場合、Mn層の上に成膜されるCo層をfcc とする
ため、前述のPt層などを介在させても良い(図2(b
))。
Furthermore, the film is not limited to a single layer of fcc Co/Mn, but may be laminated in multiple layers using this as a basic unit. In this case, since the Co layer formed on the Mn layer is fcc, the above-mentioned Pt layer or the like may be interposed (Fig. 2(b)
)).

【0009】本発明にかかるMn層の膜厚は200 オ
ングストローム以下であることが好ましい。この範囲で
Mn層による飽和磁化の上昇効果が顕著となる。Mn層
は極めて薄い膜厚から効果が有るが、好ましくは3オン
グストローム以上である。
The thickness of the Mn layer according to the present invention is preferably 200 angstroms or less. In this range, the effect of increasing saturation magnetization by the Mn layer becomes significant. Although the Mn layer is effective even if it is extremely thin, it is preferably 3 angstroms or more.

【0010】0010

【実施例】以下に本発明の実施例を説明する。 (実施例1)[Examples] Examples of the present invention will be described below. (Example 1)

【0011】基板としてガラス基板上にPt膜を下地層
(100オングストローム)として設けたものを用い、
予め5×10−7torrの真空度まで排気した後、A
rガスを分圧が2.9 ×10−4torrになるまで
導入し、イオンビームスパッタリング法により、fcc
Co/Mnの積層膜を製造した。
[0011] As a substrate, a glass substrate with a Pt film provided as an underlayer (100 angstroms) was used,
After evacuating to a vacuum level of 5 x 10-7 torr in advance,
r gas was introduced until the partial pressure became 2.9 × 10-4 torr, and by ion beam sputtering method, fcc
A Co/Mn laminated film was manufactured.

【0012】Coの膜厚を30オングストロームとし、
Mnの膜厚(tMn)を変化させた場合の飽和磁化を図
1に示す。図3から明らかな様に、Mnを積層すること
で飽和磁化の値が上昇し、tMnが200 オングスト
ロームを越える程度から、飽和磁化の値がバルクCoと
同程度となることが分かる。 (実施例2)
[0012] The Co film thickness is 30 angstroms,
FIG. 1 shows the saturation magnetization when the Mn film thickness (tMn) is changed. As is clear from FIG. 3, the value of saturation magnetization increases by stacking Mn, and when tMn exceeds 200 angstroms, the value of saturation magnetization becomes comparable to that of bulk Co. (Example 2)

【0013】下地層MをPd(30オングストローム)
 とし、Coの膜厚(tCo)を60オングストローム
とした以外は実施例1と同様の条件で成膜した。加えて
(Mn/fcc Co/M)の層構成を複数回繰返した
場合の特性も調べた。 その結果を図4に示す。飽和磁化の値は積層数に依存せ
ず、いずれの場合もバルクCoよりまさっていることが
分かる。 (実施例3)基板としてGaAs基板を用いた以外は実
施例1と同様の条件で成膜し、その結果を図5に示す。
[0013] The base layer M is Pd (30 angstroms)
A film was formed under the same conditions as in Example 1 except that the Co film thickness (tCo) was 60 angstroms. In addition, the characteristics when the layer structure (Mn/fcc Co/M) was repeated multiple times were also investigated. The results are shown in FIG. It can be seen that the saturation magnetization value does not depend on the number of laminated layers and is superior to bulk Co in all cases. (Example 3) A film was formed under the same conditions as in Example 1 except that a GaAs substrate was used as the substrate, and the results are shown in FIG.

【0014】本実施例は下地層がない場合であるが、図
3から明らかなように、実施例1と同様に、Mn層の積
層によりバルクCoより大きい飽和磁化が得られている
ことが分かる。
Although this example is a case in which there is no underlayer, as is clear from FIG. 3, it can be seen that, as in Example 1, a saturation magnetization larger than that of bulk Co is obtained by laminating Mn layers. .

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、f
cc Co薄膜にMn層を積層することでバルク状態の
Co以上の飽和磁化を実現することが可能な強磁性積層
膜を得ることができる。従って高周波磁気デバイス,磁
気ヘッド,永久磁石などの高い飽和磁化が要求される用
途に好適である。
[Effects of the Invention] As explained above, according to the present invention, f
By laminating a Mn layer on a cc Co thin film, it is possible to obtain a ferromagnetic laminated film that can achieve saturation magnetization higher than that of bulk Co. Therefore, it is suitable for applications requiring high saturation magnetization, such as high frequency magnetic devices, magnetic heads, and permanent magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の強磁性積層膜の層構成を示す概略
断面図
[Fig. 1] A schematic cross-sectional view showing the layer structure of the ferromagnetic laminated film of the present invention

【図2】  本発明の強磁性積層膜の層構成を示す概略
断面図
[Fig. 2] A schematic cross-sectional view showing the layer structure of the ferromagnetic laminated film of the present invention

【図3】  本発明の強磁性積層膜の磁化特性を示す特
性図
[Figure 3] Characteristic diagram showing the magnetization characteristics of the ferromagnetic laminated film of the present invention

【図4】  本発明の強磁性積層膜の磁化特性を示す特
性図
[Figure 4] Characteristic diagram showing the magnetization characteristics of the ferromagnetic laminated film of the present invention

【図5】  本発明の強磁性積層膜の磁化特性を示す特
性図
[Figure 5] Characteristic diagram showing the magnetization characteristics of the ferromagnetic laminated film of the present invention

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  面心立方のCo層上にMn層が積層さ
れたことを特徴とする強磁性積層膜。
1. A ferromagnetic laminated film characterized in that a Mn layer is laminated on a face-centered cubic Co layer.
JP1428991A 1991-02-05 1991-02-05 Ferromagnetic laminated film Pending JPH04249305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1428991A JPH04249305A (en) 1991-02-05 1991-02-05 Ferromagnetic laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1428991A JPH04249305A (en) 1991-02-05 1991-02-05 Ferromagnetic laminated film

Publications (1)

Publication Number Publication Date
JPH04249305A true JPH04249305A (en) 1992-09-04

Family

ID=11856941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1428991A Pending JPH04249305A (en) 1991-02-05 1991-02-05 Ferromagnetic laminated film

Country Status (1)

Country Link
JP (1) JPH04249305A (en)

Similar Documents

Publication Publication Date Title
US6139907A (en) High coercivity longitudinal recording media and method for its preparation
US5998048A (en) Article comprising anisotropic Co-Fe-Cr-N soft magnetic thin films
CA1062657A (en) EPITAXIAL PROCESS OF FORMING FERRITE, FE3O4 AND .gamma. FE2O3 THIN FILMS ON SPECIAL MATERIALS
JPH09320846A (en) Magnetic device
EP0304927B1 (en) Perpendicular magnetic recording medium
JPH09237714A (en) Thin film magnet, r-tm-b exchanged spring magnet and manufacturing method
JPH04249305A (en) Ferromagnetic laminated film
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
JPH0831372B2 (en) Method for manufacturing Fe—Co magnetic film
US5728421A (en) Article comprising spinel-structure material on a substrate, and method of making the article
EP0438687A1 (en) Iron/iron nitride multilayer films
Naoe et al. Preparation of soft magnetic films of nanocrystalline Fe–Cu–Nb–Si–B alloy by facing targets sputtering
JPH04178909A (en) Soft magnetic thin film and its manufacture
JP3532607B2 (en) Magnetoresistance effect element
JPS61242321A (en) Magnetic recording medium
JP2875295B2 (en) Manganese aluminum superlattice magnetic film
JP3559333B2 (en) Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS61233409A (en) Production of laminated magnetic core for high frequency and magnetic head core
JP2752199B2 (en) Magnetic head
JP3412133B2 (en) Alloy for underlayer of high density horizontal magnetic recording media
JPH0557238B2 (en)
Roll et al. CoCr thin films prepared by high rate magnetron sputtering
JP2002171012A (en) Exchange coupled device, spin-valve-type thin-film magnetic element, and magnetic head
JPS61211818A (en) Vertical magnetic recording medium