JPH0424879B2 - - Google Patents

Info

Publication number
JPH0424879B2
JPH0424879B2 JP4537585A JP4537585A JPH0424879B2 JP H0424879 B2 JPH0424879 B2 JP H0424879B2 JP 4537585 A JP4537585 A JP 4537585A JP 4537585 A JP4537585 A JP 4537585A JP H0424879 B2 JPH0424879 B2 JP H0424879B2
Authority
JP
Japan
Prior art keywords
lead
emitting diode
light emitting
alloy
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4537585A
Other languages
Japanese (ja)
Other versions
JPS61202484A (en
Inventor
Nobuo Ogasa
Akira Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60045375A priority Critical patent/JPS61202484A/en
Publication of JPS61202484A publication Critical patent/JPS61202484A/en
Publication of JPH0424879B2 publication Critical patent/JPH0424879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4823Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a pin of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放熱特性を改善した半導体発光ダイ
オード装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light emitting diode device with improved heat dissipation characteristics.

〔従来の技術とその問題点〕 半導体発光ダイオード装置における重要な課題
の1つに、放熱効率をいかにして高めるかがあ
る。即ち、発光ダイオードは、電流駆動による大
電力消費素子であるので動作中の発熱量が大き
く、適切な放熱設計がなされていない場合には、
発熱による性能劣化や寿命の短縮、或いはダイオ
ードペレツトの破壊等をも招く恐れがある。
[Prior art and its problems] One of the important issues in semiconductor light emitting diode devices is how to improve heat dissipation efficiency. In other words, since light emitting diodes are current-driven devices that consume large amounts of power, they generate a large amount of heat during operation, and if an appropriate heat dissipation design is not made,
There is a risk that heat generation may cause performance deterioration, shorten the lifespan, or even destroy the diode pellet.

ところが、発光ダイオード装置は、小型である
特性を生かして高密度に実装されることが多く、
放熱器の使用に対する制約が大きい。このため、
装置自体の放熱性を少しでも良くする必要があ
る。しかし、従来の装置はその要求に対して次の
欠点を有する。
However, light emitting diode devices are often packed in high density to take advantage of their small size.
There are significant restrictions on the use of heat sinks. For this reason,
It is necessary to improve the heat dissipation of the device itself. However, the conventional device has the following drawbacks in meeting the requirements.

例えば、第2図に示すいわゆるTO−18型と呼
ばれる周知の発光ダイオード用パツケージの場
合、ステム1はプレス成形が可能なため、加工性
に優れるが図のようにステム内部は電極引出し用
リード線2の一方とステムとを絶縁するガラス3
で充填されるため、発光ダイオードペレツト4
(5はボンデイングワイヤ)から外部への熱伝導
性が悪く、放熱効率が低い。
For example, in the case of a well-known light emitting diode package called the so-called TO-18 type shown in Fig. 2, the stem 1 can be press-molded, so it has excellent workability, but as shown in the figure, the inside of the stem has lead wires for drawing out the electrodes. Glass 3 insulating one side of 2 and the stem
light emitting diode pellet 4
(5 is a bonding wire) Thermal conductivity from the outside to the outside is poor, and the heat dissipation efficiency is low.

一方、その対策としていわゆるTO−46型と呼
ばれる第2図のような全金属ステム1′を使つて
ステム全体から放熱するようにしたものも存在す
る。この装置のステム材には気密封止ガラスとの
接着性に優れるFeやFe−Ni−Co合金のコバール
(商品名)が広く用いられているが、これ等の材
料は熱伝導性が必ずしも良くないので、TO−18
型に比して放熱抵抗は小さくなるにしても、その
値はせいぜい数10〜100℃/W程度に迄しか下げ
られないため、大出力素子の定格温度を維持する
には充分でない。
On the other hand, as a countermeasure to this problem, there is also a so-called TO-46 type, which uses an all-metal stem 1' as shown in FIG. 2 and radiates heat from the entire stem. As the stem material of this device, Fe and Fe-Ni-Co alloy Kovar (trade name), which have excellent adhesion to the hermetically sealed glass, are widely used, but these materials do not necessarily have good thermal conductivity. Since there is no, TO−18
Even if the heat dissipation resistance is smaller than that of the type, the value can only be lowered to about several tens to 100 degrees Celsius/W at most, which is not sufficient to maintain the rated temperature of the high output element.

このため、熱膨張係数をガラス封止可能な範囲
に限定した上で熱伝導性の良好なCuW合金や
CuMo合金をステム材として用いることも一部で
提案されている。この場合、放熱抵抗を10〜20
℃/Wまで下げることが可能である。しかし、こ
れ等の材料はプレス加工、高精度加工が困難なた
め、装置の製造コストが非常に高くつき、なおか
つ、使用範囲も限定される欠点がある。
For this reason, after limiting the thermal expansion coefficient to a range that can be sealed with glass, we developed a CuW alloy with good thermal conductivity.
Some proposals have also been made to use CuMo alloy as the stem material. In this case, set the heat dissipation resistance to 10 to 20
It is possible to lower the temperature to ℃/W. However, since these materials are difficult to press and process with high precision, the manufacturing cost of the device is extremely high, and the range of use is also limited.

本発明は、上記の相反する問題を解決し、発光
ダイオード装置の信頼性、生産性、性能を高める
ことを目的としている。
The present invention aims to solve the above contradictory problems and improve the reliability, productivity, and performance of light emitting diode devices.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成する本発明の発光ダイオード
装置は、パツケージのFe−Ni−Co合金を材料と
したステムに少なくとも1個の貫通孔を設け、そ
の孔の1つにCuを5〜30重量%含有するCuW合
金、CuMo合金又はCuWMo合金から成る素子支
持リードを孔内面に対して非接触状態に貫通させ
ると共にこのリードの頂部には発光ダイオード素
子を直接又はサブマウントを介して装着し、かつ
リードの底部にCu被覆比率が断面積比で50〜90
%のCu被覆鉄リードを接続し、さらに、素子支
持リードの外面とそのリードを通した貫通孔の内
面との間の隙間をガラスで気密に封止したことを
特徴とする。
The light emitting diode device of the present invention which achieves the above object has at least one through hole in the stem made of Fe-Ni-Co alloy of the package, and one of the holes is filled with 5 to 30% by weight of Cu. An element support lead made of CuW alloy, CuMo alloy, or CuWMo alloy containing CuW alloy, CuMo alloy, or CuWMo alloy is passed through the hole inner surface in a non-contact state, and a light emitting diode element is attached to the top of this lead directly or via a submount, and the lead The Cu coverage ratio at the bottom of the cross-sectional area ratio is 50 to 90.
% Cu-coated iron leads are connected, and the gap between the outer surface of the element support lead and the inner surface of the through hole through which the lead passes is hermetically sealed with glass.

ここで、ステム材にいわゆるコバールを用いた
のは、プレス成形が可能であり、かつ良好なガラ
ス封止性が得られるからである。
Here, so-called Kovar was used as the stem material because it can be press-molded and provides good glass sealing properties.

また、素子支持リードの材料を上記に限定した
のは、放熱路の一部となすこのリードの熱膨張係
数を5〜10.0×10-6cm/cm℃の範囲に収めること
によつてガラス封止を可能ならしめるため、及び
その頂部に装着されるInP、GaAs等の化合物半
導体結晶の発光ダイオード素子との熱膨張係数を
整合させることにより、素子に対する熱応力の影
響を小さくして素子の信頼性、寿命を向上させ
つゝリードの熱伝導率を極力高め、それによつて
可能になる入力パワーの増加により発光出力を増
大させるためである。この素子支持リードは、目
的とする2つの効果を充分に発揮し得るように、
W又はMoの組織中にCuを均一に分散させること
と、封止ガラスの接着性をより高めることが望ま
れる。そのうち、前者の要求には素子支持リード
を粉末焼結法で製造することによつて応えること
ができる。一方、後者の要求には、リード表面
に、Fe、Ni、Fe−Ni−Co等のFe、Ni、Co、Cu
のうち少なくとも1種以上の元素から成る被覆層
を施すことによつて応えることができる。なお、
このリードは、CuWMo合金を材料とした場合も
同じ効果が得られる。
Furthermore, the reason why the material for the element support leads is limited to the above is that the thermal expansion coefficient of these leads, which form part of the heat radiation path, is within the range of 5 to 10.0 x 10 -6 cm/cm°C. By matching the coefficient of thermal expansion with the compound semiconductor crystal light emitting diode element such as InP or GaAs mounted on the top of the LED element, the influence of thermal stress on the element can be reduced and reliability of the element can be improved. This is to increase the thermal conductivity of the leads as much as possible while improving performance and life, thereby increasing the light emitting output by increasing the input power that becomes possible. In order to fully demonstrate the two intended effects, this element support lead is designed to:
It is desired to uniformly disperse Cu in the W or Mo structure and to further improve the adhesiveness of the sealing glass. Of these, the former requirement can be met by manufacturing element support leads using a powder sintering method. On the other hand, the latter requirement requires the use of Fe, Ni, Co, Cu such as Fe, Ni, Fe-Ni-Co, etc. on the lead surface.
This can be achieved by applying a coating layer made of at least one of these elements. In addition,
The same effect can be obtained when this lead is made of CuWMo alloy.

さらに、上記素子支持リードの底部に接続する
リード線として、Cu被覆鉄リードを用いたのは、
これによる放熱をも考慮してCu被覆鉄リードそ
のものゝ熱伝導度を上げるためである。このリー
ドは装置実装時の良好な作業性を維持し得る強度
を確保するため、Cuの被覆比率を上記した50〜
90%の範囲に収める必要がある。
Furthermore, Cu-coated iron leads were used as the lead wires connected to the bottom of the element support leads.
This is to take into account the heat dissipation caused by this and increase the thermal conductivity of the Cu-coated iron lead itself. In order to ensure the strength to maintain good workability during device mounting, this lead has a Cu coating ratio of 50 to 50%.
Must be within the 90% range.

以上の如く構成された本発明の装置は、ダイオ
ード素子の発した熱の一部がパツケージを通じ
て、残りの一部がリードを通じて周囲の空気又は
外囲器へ放散される。従来の装置もリードによる
放熱効果は得られるが、主にコバールを使つた従
来のリード線を通じての放熱抵抗は非常に大き
い。例えば、TO−18型に採用されている直径
0.45mmのコバールリード線のそれは実験により
1500℃/Wにも達することが判明している。従つ
て、リードによる放熱量は微々たるものである。
これに対し、本発明の装置は、ダイオード素子を
熱伝導性の良いリード上に設けているのでリード
を介しての放熱量が非常に多い。
In the device of the present invention constructed as described above, part of the heat generated by the diode element is dissipated through the package, and the remaining part is dissipated through the leads to the surrounding air or the envelope. Conventional devices can also provide heat dissipation effects using leads, but the heat dissipation resistance through conventional lead wires, which mainly use Kovar, is extremely high. For example, the diameter used in the TO-18 type
That of 0.45mm Kovar lead wire is determined by experiment.
It has been found that the temperature can reach up to 1500℃/W. Therefore, the amount of heat dissipated by the leads is insignificant.
In contrast, in the device of the present invention, the diode element is provided on the lead with good thermal conductivity, so that the amount of heat dissipated through the lead is extremely large.

また、加工性の悪い材料から成る素子支持リー
ドをステムから分離しているのでステムのプレス
加工が可能であり、一方、素子支持リードは材料
の成形性は悪くても簡単な丸棒形状でよいので比
較的容易に製造でき、このために全体としての生
産性が向上し、装置のコスト低下につながる。
In addition, since the element support lead made of a material with poor workability is separated from the stem, the stem can be pressed.On the other hand, the element support lead can be a simple round bar shape even if the material has poor formability. Therefore, it is relatively easy to manufacture, which improves overall productivity and reduces the cost of the device.

〔実施例〕〔Example〕

第1図に、通信用発光ダイオード装置への適用
例を示す。図の符号11はステム、12は電極引
出し用リード線、13は絶縁ガラス、14は発光
ダイオードペレツト、15はボンデイングワイ
ヤ、16は本発明の特徴をなす素子支持リード、
17はその底部に接続したCu被覆鉄リード線を
示している。
FIG. 1 shows an example of application to a communication light emitting diode device. In the figure, reference numeral 11 is a stem, 12 is an electrode lead wire, 13 is an insulating glass, 14 is a light emitting diode pellet, 15 is a bonding wire, and 16 is an element support lead which is a feature of the present invention.
17 indicates a Cu-coated iron lead wire connected to the bottom thereof.

この装置のステム11は、コバールをプレス成
形したものであつて、直径3mmの貫通孔18と直
径1mmの貫通孔19を有する。そして、前者の貫
通孔18には全面を厚さ2μmの50%Ni−Fe合金
メツキ層で被覆した直径2mmの20重量%Cu−W
合金から成る素子支持リード16が挿通され、か
つその外周の隙間はコバールガラス13によつて
ステムとリード間の絶縁性を保つように気密に封
止されている。また、このリード16の底部に
は、ステムへのリード取付後にCu被覆比率が断
面積比で80%のCu被覆リード線17を銀鑞を使
つて接合してある。一方、後者の貫通孔19には
周知のリード線12が挿通され、外周が同様にガ
ラス封止されている。
The stem 11 of this device is press-molded from Kovar and has a through hole 18 with a diameter of 3 mm and a through hole 19 with a diameter of 1 mm. The former through hole 18 is covered with a 2 mm diameter 20 wt% Cu-W plated layer of 50% Ni-Fe alloy with a thickness of 2 μm.
An element support lead 16 made of an alloy is inserted, and a gap around its outer periphery is hermetically sealed with Kovar glass 13 to maintain insulation between the stem and the lead. Further, a Cu-coated lead wire 17 having a Cu coating ratio of 80% in terms of cross-sectional area is bonded to the bottom of the lead 16 using silver solder after the lead is attached to the stem. On the other hand, a well-known lead wire 12 is inserted into the latter through hole 19, and the outer periphery thereof is similarly sealed with glass.

2本のリード取付後、パツケージの全面にAu
被覆が1.5μm厚さに施され、その後、素子支持リ
ード16の頂部にInPから成る長波長の発光ダイ
オードペレツト14を装着し、リード線12との
間にワイヤボンデイングを施してある。
After attaching the two leads, apply Au to the entire surface of the package cage.
A coating is applied to a thickness of 1.5 μm, and then a long wavelength light emitting diode pellet 14 made of InP is mounted on the top of the device support lead 16, and wire bonding is performed between it and the lead wire 12.

このようにして得られた例示のパツケージは、
第3図のパツケージに比較して放熱性に優れ、発
光パワーを約30%向上させ得ることが実験により
確認された。
An exemplary package thus obtained is
It has been confirmed through experiments that the package has superior heat dissipation properties compared to the package shown in Figure 3, and that the light emitting power can be increased by approximately 30%.

なお、ダイオードペレツト14は、素子支持リ
ードの頂部にダイヤモンド、CBN(高圧相型窒化
硼素)、Si等のサブマウンを介して装着してもよ
い。
Note that the diode pellet 14 may be attached to the top of the element support lead via a submount of diamond, CBN (high pressure phase type boron nitride), Si, or the like.

また、素子を外気から保護する目的で、ステム
の上部を従来と同様にガラス窓の付いた或いは透
明なキヤツプシールで封止することも自由であ
る。
Further, in order to protect the element from the outside air, the upper part of the stem may be sealed with a glass window or a transparent cap seal as in the conventional case.

さらに、リード線12とボンデイングワイヤ1
5をステムに接続し、ステムを導電路の一部とし
た通電を行うことも可能であり、この場合、ステ
ムの貫通孔は1個で済むことがある。
Furthermore, the lead wire 12 and the bonding wire 1
It is also possible to connect 5 to the stem and conduct electricity using the stem as part of the conductive path. In this case, only one through hole in the stem may be sufficient.

〔効果〕〔effect〕

以上述べたように、本発明によれば、コバール
ステムの貫通孔に通されてガラス封止された
CuW、CuMo又はCuWMo合金製の素子支持リー
ド上に発光ダイオード素子が装着されているの
で、全金属ステムを通じての放熱効果が得られる
のは勿論、素子支持リードとその底部に接続した
Cu被覆リードを通じての効率の良い放熱が行わ
れる。従つて素子の熱劣化や熱破壊等が抑制さ
れ、装置の信頼性が高まると共に発光パワーを増
大させることも可能になる。
As described above, according to the present invention, the glass-sealed glass is passed through the through hole of the Kovar stem.
Since the light emitting diode element is mounted on the element support lead made of CuW, CuMo or CuWMo alloy, it not only provides a heat dissipation effect through the all-metal stem, but also allows the LED element to be connected to the element support lead and its bottom.
Efficient heat dissipation occurs through the Cu-coated leads. Therefore, thermal deterioration, thermal destruction, etc. of the element are suppressed, and the reliability of the device is increased, and it is also possible to increase the light emission power.

また、ステム本体はコバールを用いているため
プレス加工が可能であり、加工し難い素子支持リ
ードは丸棒をそのまゝ使用できるため装置の量産
化が計れ、コスト面でも有利となる。
In addition, since the stem body is made of Kovar, it can be press-formed, and round rods can be used as they are for the element support leads, which are difficult to process, so the device can be mass-produced, which is advantageous in terms of cost.

さらに、第3図に示すような構造にすることに
よつて、素子とステムとを電気的に絶縁できるた
め、装置の設計面、レイアウト面での自由度も大
巾に高め得る。
Furthermore, by adopting the structure shown in FIG. 3, the element and the stem can be electrically insulated, so that the degree of freedom in the design and layout of the device can be greatly increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の発光ダイオード装置の一例
を示す図、第2図及び第3図は従来の発光ダイオ
ード装置を示す図であり、それぞれaは中央部の
断面bは上面を示している。 11……ステム、12……電極引出し用リード
線、13……絶縁ガラス、14……発光ダイオー
ドペレツト、15……ボンデイングワイヤ、16
……素子支持リード、17……Cu被覆リード線、
18,19……貫通孔。
FIG. 1 is a diagram showing an example of the light emitting diode device of the present invention, and FIGS. 2 and 3 are diagrams showing conventional light emitting diode devices, in which a is a cross section of the central part, and b is a top view. . DESCRIPTION OF SYMBOLS 11... Stem, 12... Lead wire for electrode extraction, 13... Insulating glass, 14... Light emitting diode pellet, 15... Bonding wire, 16
...Element support lead, 17...Cu coated lead wire,
18, 19...through hole.

Claims (1)

【特許請求の範囲】 1 パツケージのFe−Ni−Co合金を材料とした
ステムに少なくとも1個の貫通孔を設け、その孔
の1つにCuを5〜30重量%含有するCuW合金、
CuMo合金又はCuWMo合金から成る素子支持リ
ードを孔内面に対して非接触状態に貫通させると
共にこのリードの頂部には発光ダイオード素子を
直接又はサブマウントを介して装着し、かつリー
ドの底部にCu被覆比率が断面積比で50〜90%の
Cu被覆鉄リードを接続し、さらに、素子支持リ
ードの外面とそのリードを通した貫通孔の内面と
の間の隙間をガラスで気密に封止したことを特徴
とする発光ダイオード装置。 2 上記素子支持リードの表面に、Fe、Ni、
Co、Cuのうち少なくとも1種以上の元素から成
る被覆層が施されていることを特徴とする特許請
求の範囲第1項記載の発光ダイオード装置。 3 上記素子リードが組織中にCuを均一に含有
していることを特徴とする特許請求の範囲第1項
又は第2項記載の発光ダイオード装置。
[Claims] 1. A CuW alloy containing at least one through hole in the stem made of the Fe-Ni-Co alloy of the package, one of the holes containing 5 to 30% by weight of Cu;
An element support lead made of CuMo alloy or CuWMo alloy is passed through the hole inner surface in a non-contact state, and a light emitting diode element is attached to the top of this lead directly or via a submount, and the bottom of the lead is coated with Cu. The ratio is 50 to 90% in cross-sectional area ratio.
A light-emitting diode device characterized in that Cu-coated iron leads are connected, and the gap between the outer surface of the element support lead and the inner surface of a through hole through which the lead passes is hermetically sealed with glass. 2 Fe, Ni,
2. The light emitting diode device according to claim 1, further comprising a coating layer made of at least one element selected from among Co and Cu. 3. The light emitting diode device according to claim 1 or 2, wherein the element lead uniformly contains Cu in its structure.
JP60045375A 1985-03-05 1985-03-05 Light emitting diode Granted JPS61202484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045375A JPS61202484A (en) 1985-03-05 1985-03-05 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045375A JPS61202484A (en) 1985-03-05 1985-03-05 Light emitting diode

Publications (2)

Publication Number Publication Date
JPS61202484A JPS61202484A (en) 1986-09-08
JPH0424879B2 true JPH0424879B2 (en) 1992-04-28

Family

ID=12717518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045375A Granted JPS61202484A (en) 1985-03-05 1985-03-05 Light emitting diode

Country Status (1)

Country Link
JP (1) JPS61202484A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055373B2 (en) * 2001-05-31 2008-03-05 日亜化学工業株式会社 Method for manufacturing light emitting device
EP1587151A3 (en) 2004-04-17 2011-09-28 LG Electronics, Inc. Semiconductor light emitting device and fabrication method thereof
EP1596440A1 (en) * 2004-05-11 2005-11-16 Excel Cell Electronic Co., Ltd. Light emitting device
JP2005347375A (en) * 2004-06-01 2005-12-15 Shinko Electric Ind Co Ltd Stem for light-emitting element, and optical semiconductor device
US8233512B2 (en) 2007-12-21 2012-07-31 Mitsubishi Electric Corporation Laser light source module
WO2009105334A1 (en) * 2008-02-22 2009-08-27 Illinois Tool Works Inc. Surface mount led and holder
JP2009272656A (en) * 2009-08-20 2009-11-19 Sumitomo Electric Ind Ltd Semiconductor light-emitting element, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS61202484A (en) 1986-09-08

Similar Documents

Publication Publication Date Title
US5293301A (en) Semiconductor device and lead frame used therein
JP4254669B2 (en) Light emitting device
US20020004251A1 (en) Method of making a semiconductor radiation emitter package
US8748200B2 (en) Method for manufacturing LED package
JP2009135440A (en) Light-emitting device having heat dissipating function, and process for manufacturing such device
JP4443188B2 (en) Light emitting element storage package and light emitting device
US8513698B2 (en) LED package
JP4480407B2 (en) Light emitting element storage package and light emitting device
JPH0424879B2 (en)
CN103531544B (en) Explosion-proof semiconductor module
JP4165760B2 (en) Semiconductor laser device and manufacturing method thereof
JP2004327632A (en) Package for housing light emitting element and light emitting device
US3337781A (en) Encapsulation means for a semiconductor device
US20010040300A1 (en) Semiconductor package with heat dissipation opening
JP4238058B2 (en) Light emitting element storage package and light emitting device
JP4920214B2 (en) Electronic component package and manufacturing method thereof
JP5179795B2 (en) Method for manufacturing light emitting device
US3353073A (en) Magnesium-aluminum alloy contacts for semiconductor devices
US3249982A (en) Semiconductor diode and method of making same
JP2014003134A (en) High heat dissipation type electronic component storing package
US10825974B2 (en) Light-emitting diode package and method of manufacture
JP3502511B2 (en) Semiconductor device
US3460002A (en) Semiconductor diode construction and mounting
JPS62183191A (en) Header for semiconductor element
JPH0778918A (en) Semiconductor device