JPH04244559A - Multi-stage multi-element freezer - Google Patents

Multi-stage multi-element freezer

Info

Publication number
JPH04244559A
JPH04244559A JP1052691A JP1052691A JPH04244559A JP H04244559 A JPH04244559 A JP H04244559A JP 1052691 A JP1052691 A JP 1052691A JP 1052691 A JP1052691 A JP 1052691A JP H04244559 A JPH04244559 A JP H04244559A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
separator
low
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1052691A
Other languages
Japanese (ja)
Inventor
Akira Fujitaka
章 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1052691A priority Critical patent/JPH04244559A/en
Publication of JPH04244559A publication Critical patent/JPH04244559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To provide a multi-stage multi-element freezer capable of performing an efficient setting of a lower temperature. CONSTITUTION:A vapor outlet side of a gas-liquid separator 18 of a low temperature freezing cycle 12 is connected to a refrigerant separator 101 having a functional film having an easy selectiveness in respect to a transition of specified component of refrigerant and at the same time an outlet of the refrigerant separator 101 is connected to an evaporator 22 communicating with the second compressor 17 of a low temperature side freezing cycle 12 through the second heat exchanger 20 and the third throttle device 21 and then the transit refrigerant outlet of the refrigerant separator 101 is connected to a low pressure side of the second throttle device 19. It is possible to get a low temperature more efficiently by increasing a concentration of the characteristic component in the refrigerant with the refrigerant separator 101.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、より低い低温を得るた
めに混合冷媒を用いた多段多元冷凍装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multistage refrigeration system using a mixed refrigerant to obtain a lower temperature.

【0002】0002

【従来の技術】従来、冷凍装置で低温を得る方式として
、たとえば特開昭62−26458号公報に記載された
多段多元冷凍サイクルが用いられており、図4は従来の
冷凍装置の一例を示す冷凍サイクル図である。
BACKGROUND OF THE INVENTION Conventionally, as a system for obtaining a low temperature using a refrigeration system, a multi-stage multi-component refrigeration cycle described in Japanese Patent Application Laid-Open No. 62-26458 has been used, and FIG. 4 shows an example of a conventional refrigeration system. It is a refrigeration cycle diagram.

【0003】図4において、冷凍装置は高温側冷凍サイ
クル1と低温側冷凍サイクル2を有し、高温側冷凍サイ
クル1は第1の圧縮機3と凝縮器4と第1の絞り装置5
で構成され、高温側冷凍サイクル1に熱交換器6を介し
て接続された低温側冷凍サイクル2は熱交換器6と第2
の圧縮機7と第2の絞り装置8と蒸発器9で構成されて
いる。
In FIG. 4, the refrigeration system has a high temperature side refrigeration cycle 1 and a low temperature side refrigeration cycle 2, and the high temperature side refrigeration cycle 1 has a first compressor 3, a condenser 4, and a first expansion device 5.
The low temperature side refrigeration cycle 2 is connected to the high temperature side refrigeration cycle 1 via the heat exchanger 6.
It consists of a compressor 7, a second throttle device 8, and an evaporator 9.

【0004】以上のように構成された冷凍装置において
は、高温側冷凍サイクル1の第1の圧縮機3により圧縮
された冷媒蒸気が凝縮器4により凝縮されて高温を発生
し、第1の絞り装置5により膨張して熱交換器6内で蒸
発し、再び第1の圧縮機3に吸入される。そして熱交換
器6では高温側冷凍サイクルの蒸発冷媒と低温側冷凍サ
イクルの第2の圧縮機7で圧縮された冷媒蒸気を熱交換
させ、低温側冷凍サイクル2の冷媒蒸気を凝縮させる。 この凝縮液は第2の絞り装置8により膨張し蒸発器9内
で蒸発し低温を発生する。この様に、冷媒の圧縮比を高
めることなくより低温を得ることができる。
In the refrigeration system configured as described above, refrigerant vapor compressed by the first compressor 3 of the high temperature side refrigeration cycle 1 is condensed by the condenser 4 to generate high temperature, and the first throttle It is expanded by the device 5, evaporated in the heat exchanger 6, and sucked into the first compressor 3 again. In the heat exchanger 6, the evaporated refrigerant of the high temperature side refrigeration cycle and the refrigerant vapor compressed by the second compressor 7 of the low temperature side refrigeration cycle are heat exchanged, and the refrigerant vapor of the low temperature side refrigeration cycle 2 is condensed. This condensed liquid is expanded by the second throttle device 8 and evaporated in the evaporator 9 to generate a low temperature. In this way, lower temperatures can be obtained without increasing the compression ratio of the refrigerant.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記した従来
のような構成では、より低い低温を得るためには、以下
のような課題があった。
[Problems to be Solved by the Invention] However, in the conventional configuration described above, the following problems were encountered in order to obtain a lower temperature.

【0006】1.低温側冷凍サイクルの蒸発温度を下げ
る必要があるが、蒸発温度を下げると圧縮比が大きくな
り運転効率が低下する。2.さらに独立した冷凍サイク
ルを接続し多元サイクルにして、低温を得ることも可能
であるが、装置が複雑になる。
1. It is necessary to lower the evaporation temperature of the low-temperature side refrigeration cycle, but lowering the evaporation temperature increases the compression ratio and reduces operational efficiency. 2. Furthermore, it is possible to obtain a low temperature by connecting independent refrigeration cycles to create a multi-component cycle, but the equipment becomes complicated.

【0007】本発明は上記課題に鑑み、より低い低温を
効率よく得ることができる多段多元冷凍装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a multi-stage, multi-component refrigeration system that can efficiently obtain lower temperatures.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、第1の圧縮機と凝縮器と第1の絞り装置と
第1の熱交換器を環状に接続した高温側冷凍サイクルと
、冷媒に非共沸混合冷媒を用いるとともに前記高温側冷
凍サイクルに第1の熱交換器を介して接続され、第1の
熱交換器と第2の圧縮機と気液分離器と気液分離器の液
側出口に連通する第2の絞り装置と第2の熱交換器を環
状に接続した低温側冷凍サイクルとの二つの独立した冷
凍サイクルを有し、前記低温側冷凍サイクルの気液分離
器の蒸気側出口を、冷媒中の特定成分を容易に透過する
冷媒分離装置と接続するとともに、この冷媒分離装置の
出口を低温側冷凍サイクルの第2の圧縮機に連通する蒸
発器に第2の熱交換器および第3の絞り装置を経て接続
し、前記冷媒分離装置の透過冷媒出口を第2の絞り装置
の低圧側に接続した構成としたものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a high temperature side refrigeration cycle in which a first compressor, a condenser, a first expansion device, and a first heat exchanger are connected in an annular manner. A non-azeotropic mixed refrigerant is used as the refrigerant, and the refrigeration cycle is connected to the high temperature side refrigeration cycle via a first heat exchanger, and the first heat exchanger, the second compressor, the gas-liquid separator, and the gas-liquid separator are connected to the high-temperature side refrigeration cycle. It has two independent refrigeration cycles, a second throttling device communicating with the liquid side outlet of the separator, and a low temperature side refrigeration cycle in which a second heat exchanger is connected in an annular manner. The vapor side outlet of the separator is connected to a refrigerant separator that easily permeates specific components in the refrigerant, and the outlet of the refrigerant separator is connected to an evaporator that communicates with a second compressor of the low temperature side refrigeration cycle. The second heat exchanger and the third expansion device are connected to each other, and the permeated refrigerant outlet of the refrigerant separation device is connected to the low pressure side of the second expansion device.

【0009】また、冷媒中の特定成分を容易に透過する
冷媒分離装置を複数個直列に接続した構成としたもので
ある。
[0009] Furthermore, the refrigerant separator has a structure in which a plurality of refrigerant separators are connected in series to allow specific components in the refrigerant to pass through easily.

【0010】0010

【作用】上記した構成により、高温側冷凍サイクルにお
いては、第1の圧縮機で圧縮された冷媒蒸気が凝縮器に
より凝縮されて高温を発生し、第1の絞り装置で膨張し
て第1の熱交換器内で蒸発し、再び第1の圧縮機に吸入
される。
[Operation] With the above configuration, in the high-temperature side refrigeration cycle, the refrigerant vapor compressed by the first compressor is condensed by the condenser to generate high temperature, and is expanded by the first expansion device to generate the first It is evaporated in the heat exchanger and sucked into the first compressor again.

【0011】そして、第1の熱交換器においては、高温
側冷凍サイクルの蒸発冷媒と低温側冷凍サイクルの第2
の圧縮機で圧縮された冷媒蒸気とが熱交換されて低温側
冷凍サイクルの冷媒蒸気が部分的に凝縮される。この部
分的に冷却液化された冷媒は、気液分離器に入り低沸点
成分の濃度の高い蒸気と高沸点成分の濃度の高い液に分
離される。
In the first heat exchanger, the evaporative refrigerant of the high temperature side refrigeration cycle and the second evaporative refrigerant of the low temperature side refrigeration cycle are
The refrigerant vapor compressed by the compressor exchanges heat with the refrigerant vapor in the low temperature side refrigeration cycle, and the refrigerant vapor in the low temperature side refrigeration cycle is partially condensed. This partially cooled and liquefied refrigerant enters a gas-liquid separator and is separated into vapor with a high concentration of low boiling point components and liquid with a high concentration of high boiling point components.

【0012】そして、低沸点成分の濃度の高い蒸気は冷
媒分離装置に流入し、この蒸気の内で機能膜を透過しや
すい高沸点成分の冷媒は透過冷媒出口を通り第2の絞り
装置の低圧側に戻される。一方、低沸点成分の冷媒は機
能膜を透過しにくいため、冷媒分離装置の出口ではさら
に低沸点成分の濃度が高くなって第2の熱交換器に入る
[0012] Then, the vapor with a high concentration of low-boiling point components flows into the refrigerant separation device, and among this vapor, the high-boiling point refrigerant that easily permeates through the functional membrane passes through the permeated refrigerant outlet to the low pressure of the second throttling device. returned to the side. On the other hand, since it is difficult for the refrigerant with low boiling point components to permeate through the functional membrane, the concentration of the low boiling point components becomes even higher at the outlet of the refrigerant separation device and enters the second heat exchanger.

【0013】さらに、第2の熱交換器では、低沸点成分
の濃度の高い高温,高圧冷媒蒸気が高沸点成分の濃度の
高い低温,低圧冷媒との熱交換によって冷却液化され、
第3の絞り装置により膨張して蒸発器内で蒸発する。こ
のとき、低沸点成分の濃度は高くなっているため、より
低温を得ることができる。
Furthermore, in the second heat exchanger, the high temperature, high pressure refrigerant vapor with a high concentration of low boiling point components is cooled and liquefied by heat exchange with the low temperature, low pressure refrigerant with a high concentration of high boiling point components,
It is expanded by the third throttling device and evaporated in the evaporator. At this time, since the concentration of the low boiling point component is high, a lower temperature can be obtained.

【0014】また、複数の冷媒分離装置を直列状に接続
した場合には、低沸点成分の濃度の高い蒸気は第1の冷
媒分離装置に流入し、機能膜を透過しやすい高沸点成分
は透過出口配管を通り第2の絞り装置の低圧側に戻され
る。一方、低沸点成分は機能膜を透過しにくいために、
第1の冷媒分離装置の出口ではさらに低沸点成分の濃度
が高くなって第2の冷媒分離装置に入る。
Furthermore, when a plurality of refrigerant separators are connected in series, vapor with a high concentration of low-boiling point components flows into the first refrigerant separator, while high-boiling components that easily permeate through the functional membrane are permeated. It passes through the outlet pipe and returns to the low pressure side of the second throttling device. On the other hand, low boiling point components have difficulty permeating the functional membrane, so
At the outlet of the first refrigerant separator, the concentration of low-boiling components is further increased and enters the second refrigerant separator.

【0015】さらに、第2の冷媒分離装置でも同様に、
機能膜を透過しやすい高沸点成分は透過冷媒出口を通っ
て第2の絞り装置の低圧側に戻され、低沸点成分は機能
膜を透過しにくいために、第2の冷媒分離装置の出口で
はさらに濃度が高くなって第2の熱交換器に入る。
Furthermore, in the second refrigerant separation device, similarly,
High boiling point components that easily permeate the functional membrane are returned to the low pressure side of the second throttling device through the permeated refrigerant outlet, while low boiling point components that are difficult to permeate through the functional membrane are returned to the low pressure side of the second throttling device through the permeated refrigerant outlet. It becomes even more concentrated and enters the second heat exchanger.

【0016】そして、第2の熱交換器では、低沸点成分
の濃度の高い高温,高圧冷媒蒸気が高沸点成分の濃度の
高い低温,低圧冷媒と熱交換して冷却液化され、第3の
絞り装置により膨張して蒸発器内で蒸発する。このとき
、低沸点成分の濃度は高くなっており、より低温を得る
ことができる。
In the second heat exchanger, the high-temperature, high-pressure refrigerant vapor with a high concentration of low-boiling components is cooled and liquefied by exchanging heat with the low-temperature, low-pressure refrigerant with a high concentration of high-boiling components. It is expanded by the device and evaporated in the evaporator. At this time, the concentration of low boiling point components is high, and a lower temperature can be obtained.

【0017】[0017]

【実施例】最初に、冷媒分離に機能膜を用いることが可
能であることを明らかにした実験結果について説明する
[Example] First, the experimental results that revealed that it is possible to use a functional membrane for refrigerant separation will be explained.

【0018】図1において、機能膜を用いた冷媒分離装
置(以下単に分離器と称す)101 は、分離器本体1
02 の内部を網状の保持具104 で高圧側空間aと
低圧側空間bに仕切られており、保持具104 の高圧
側に機能膜103 が設置されている。また、分離器本
体102 の高圧側空間aには高圧冷媒入口配管105
 と出口配管106 が開口しており、低圧側空間bに
は透過冷媒出口配管107 が開口している。
In FIG. 1, a refrigerant separation device (hereinafter simply referred to as a separator) 101 using a functional membrane has a separator main body 1.
02 is partitioned into a high-pressure side space a and a low-pressure side space b by a net-like holder 104, and a functional membrane 103 is installed on the high-pressure side of the holder 104. In addition, a high pressure refrigerant inlet pipe 105 is provided in the high pressure side space a of the separator main body 102.
and an outlet pipe 106 are open, and a permeated refrigerant outlet pipe 107 is open to the low pressure side space b.

【0019】以上のような構成の分離器101 におい
て、ジメチルシリコーンのベンゼン溶液を水上に展開し
て超薄膜とした後、ポリプロピレンの多孔質フィルム(
セラニーズ社:ジュラガード)に転写製膜した薄膜の高
分子複合膜を機能膜103 として用いてR−22とR
−13B1の混合冷媒を分離する場合について説明する
In the separator 101 configured as described above, a benzene solution of dimethyl silicone is spread on water to form an ultra-thin film, and then a porous film of polypropylene (
R-22 and R
A case will be described in which a mixed refrigerant of -13B1 is separated.

【0020】圧縮機などにより加圧された混合冷媒は入
口配管105 より分離器本体102 の高圧側空間a
に送られる。ここで高圧側空間aと低圧側空間bの圧力
差によって一部の冷媒は低圧側空間bに透過し、透過冷
媒出口配管107 より排出される。このときR−22
はR−13B1より透過し易いので、透過冷媒出口配管
107 より排出される冷媒は入口配管105 の冷媒
組成に比べてR−22の比率が上昇する。一方、機能膜
103 を透過せずに高圧冷媒出口配管106 より排
出される冷媒組成は、R−22の比率が低下する。
The mixed refrigerant pressurized by a compressor or the like is passed through the inlet pipe 105 to the high pressure side space a of the separator main body 102.
sent to. Here, due to the pressure difference between the high-pressure side space a and the low-pressure side space b, a part of the refrigerant permeates into the low-pressure side space b and is discharged from the permeated refrigerant outlet pipe 107. At this time R-22
Since R-13B1 permeates more easily than R-13B1, the refrigerant discharged from the permeated refrigerant outlet pipe 107 has a higher proportion of R-22 than the refrigerant composition of the inlet pipe 105. On the other hand, the refrigerant composition discharged from the high-pressure refrigerant outlet pipe 106 without passing through the functional membrane 103 has a lower R-22 ratio.

【0021】ここで実験結果の一例を表1に示す。表1
においては分離器101 の入口配管より冷媒蒸気を流
入した場合について示したが、冷媒液あるいは蒸気と液
の混合を流入しても分離できる。
[0021] Here, an example of the experimental results is shown in Table 1. Table 1
Although the case in which refrigerant vapor was introduced from the inlet pipe of the separator 101 was shown in , separation is possible even if refrigerant liquid or a mixture of vapor and liquid is introduced.

【0022】このように、機能膜を用いて冷媒分離を行
うことが可能であることが明らかとなった。
[0022] Thus, it has become clear that refrigerant separation can be performed using a functional membrane.

【0023】[0023]

【0024】なお、先の実験においては、ジメチルシリ
コーンのベンゼン溶液を水上に展開して超薄膜とした後
、ポリプロピレンの多孔質フィルム(セラニーズ社:ジ
ュラガード)に転写製膜した高分子複合膜を用いたが、
ジメチルシリコーン以外の非孔質高分子膜材として他に
天然ゴム、ポリエチレン、ポリ酢酸ビニルなどを用いて
もよい。
In the previous experiment, a polymer composite film was prepared by spreading a benzene solution of dimethyl silicone on water to form an ultra-thin film, and then transferring the film to a porous polypropylene film (Celanese: Duraguard). I used it, but
Natural rubber, polyethylene, polyvinyl acetate, etc. may be used as the non-porous polymer membrane material other than dimethyl silicone.

【0025】さらに多孔質高分子膜、生体膜などを用い
、透過量の比を利用して冷媒分離を行っても、本発明の
要旨を脱するものではない。次に、上述した機能膜を用
いた冷凍サイクルの一実施例として、低温側冷凍サイク
ルの冷媒としてR−22とR−13B1の非共沸混合冷
媒を用い、機能膜を透過しにくいR−13B1の成分比
率を高めることにより低温を得る場合の実施例1を図2
に基づいて説明する。
Furthermore, even if a porous polymer membrane, a biological membrane, or the like is used to separate the refrigerant by utilizing the ratio of permeation amounts, the gist of the present invention will not be exceeded. Next, as an example of a refrigeration cycle using the above-mentioned functional membrane, a non-azeotropic mixed refrigerant of R-22 and R-13B1 is used as the refrigerant in the low-temperature side refrigeration cycle, and R-13B1, which is difficult to permeate through the functional membrane, is used as a refrigerant. Figure 2 shows Example 1 in which a low temperature is obtained by increasing the component ratio of
The explanation will be based on.

【0026】図2において、冷凍装置は高温側冷凍サイ
クル11と低温側冷凍サイクル12とを有し、高温側冷
凍サイクル11は第1の圧縮機13と凝縮器14と第1
の絞り装置15と第1の熱交換器16とで構成されてい
る。また、高温側冷凍サイクル11に第1の熱交換器1
6を介して接続された低温側冷凍サイクル12は、第2
の圧縮機17と気液分離器18と第2の絞り装置19と
第2の熱交換器20を有し、気液分離器18の液側出口
が第2の絞り装置19および第2の熱交換器20を経て
第2の圧縮機17の吸入側に環状に接続されるとともに
、気液分離器18の蒸気側出口が前述した構成の分離器
101 の入口配管105 に接続されており、分離器
101 の出口配管106 は第2の熱交換器20およ
び第3の絞り装置21を経て蒸発器22に接続され、透
過冷媒出口配管107 は第2の絞り装置19の後の低
圧側に接続されている。
In FIG. 2, the refrigeration system has a high temperature side refrigeration cycle 11 and a low temperature side refrigeration cycle 12, and the high temperature side refrigeration cycle 11 has a first compressor 13, a condenser 14, and a first
It is composed of a throttle device 15 and a first heat exchanger 16. In addition, a first heat exchanger 1 is provided in the high temperature side refrigeration cycle 11.
The low temperature side refrigeration cycle 12 connected via the second
It has a compressor 17, a gas-liquid separator 18, a second throttle device 19, and a second heat exchanger 20, and the liquid side outlet of the gas-liquid separator 18 is connected to the second throttle device 19 and the second heat exchanger 19. It is connected in an annular manner to the suction side of the second compressor 17 via the exchanger 20, and the vapor side outlet of the gas-liquid separator 18 is connected to the inlet pipe 105 of the separator 101 configured as described above. The outlet pipe 106 of the vessel 101 is connected to the evaporator 22 via the second heat exchanger 20 and the third throttling device 21, and the permeated refrigerant outlet pipe 107 is connected to the low pressure side after the second throttling device 19. ing.

【0027】以上のように構成された冷凍サイクルの作
用を説明する。まず、高温側冷凍サイクル11において
は、第1の圧縮機13により圧縮された冷媒蒸気が凝縮
器14により凝縮されて高温を発生し、第1の絞り装置
15により膨張して第1の熱交換器16内で蒸発し、再
び第1の圧縮機13に吸入される。
The operation of the refrigeration cycle constructed as above will be explained. First, in the high temperature side refrigeration cycle 11, refrigerant vapor compressed by the first compressor 13 is condensed by the condenser 14 to generate high temperature, and expanded by the first expansion device 15 to perform the first heat exchange. It evaporates in the container 16 and is sucked into the first compressor 13 again.

【0028】そして、第1の熱交換器16においては、
高温側冷凍サイクル11の蒸発冷媒と低温側冷凍サイク
ル12の第2の圧縮機17で圧縮された冷媒蒸気とを熱
交換させて低温側冷凍サイクル12の冷媒蒸気を部分的
に凝縮させる。この部分的に冷却液化された冷媒は、気
液分離器18に入り低沸点成分であるR−13B1の濃
度の高い蒸気と、高沸点成分であるR−22の濃度の高
い液に分離される。
[0028] In the first heat exchanger 16,
The evaporated refrigerant of the high temperature side refrigeration cycle 11 and the refrigerant vapor compressed by the second compressor 17 of the low temperature side refrigeration cycle 12 are exchanged to partially condense the refrigerant vapor of the low temperature side refrigeration cycle 12. This partially cooled and liquefied refrigerant enters the gas-liquid separator 18 and is separated into vapor with a high concentration of R-13B1, a low boiling point component, and liquid with a high concentration of R-22, a high boiling point component. .

【0029】そして、低沸点成分R−13B1の濃度の
高い蒸気は分離器101 に流入し、この蒸気の内で機
能膜103 を透過しやすい高沸点成分R−22は透過
出口配管107 を通り第2の絞り装置19の出口と第
2の熱交換器20入口の間に戻される。一方、低沸点成
分R−13B1は機能膜103 を透過しにくいため、
分離器101 の出口配管106 ではさらにR−13
B1の濃度が高くなって第2の熱交換器20に入る。
Then, the vapor with a high concentration of low boiling point component R-13B1 flows into the separator 101, and among this vapor, the high boiling point component R-22 that easily permeates the functional membrane 103 passes through the permeation outlet pipe 107. It is returned between the outlet of the second throttling device 19 and the inlet of the second heat exchanger 20. On the other hand, the low boiling point component R-13B1 is difficult to permeate through the functional membrane 103.
In the outlet piping 106 of the separator 101, R-13
The concentration of B1 increases and enters the second heat exchanger 20.

【0030】さらに、第2の熱交換器20では、低沸点
成分R−13B1の濃度の高い高温,高圧冷媒蒸気が高
沸点成分R−22の濃度の高い低温,低圧冷媒との熱交
換によって冷却液化され、第3の絞り装置21により膨
張して蒸発器22内で蒸発する。このとき、低沸点成分
R−13B1の濃度は高くなっているため、より低温を
得ることができる。
Furthermore, in the second heat exchanger 20, the high-temperature, high-pressure refrigerant vapor with a high concentration of the low-boiling point component R-13B1 is cooled by heat exchange with the low-temperature, low-pressure refrigerant with a high concentration of the high-boiling point component R-22. It is liquefied, expanded by the third throttle device 21 and evaporated in the evaporator 22. At this time, since the concentration of the low boiling point component R-13B1 is high, a lower temperature can be obtained.

【0031】次に、機能膜を有する冷媒分離装置を複数
接続して、さらに低い低温を得る場合の実施例2を図3
に基づいて説明する。尚、先の実施例1と同様の作用を
行う部材について同一番号を付して説明を省略する。
Next, FIG. 3 shows a second embodiment in which a plurality of refrigerant separators having functional membranes are connected to obtain an even lower temperature.
The explanation will be based on. Incidentally, members that perform the same functions as those in the first embodiment are given the same numbers and their explanations will be omitted.

【0032】図3において、第1の分離器101 の出
口配管106 は第2の分離器201 の入口側に接続
され、第2の分離器201 の出口配管206 は第2
の熱交換器20および第3の絞り装置21を経て蒸発器
22に接続されている。また、第1、第2の分離器10
1 ,201 の透過冷媒出口配管107 ,207 
は第2の絞り装置19の低圧側に接続されている。
In FIG. 3, the outlet pipe 106 of the first separator 101 is connected to the inlet side of the second separator 201, and the outlet pipe 206 of the second separator 201 is connected to the second separator 201.
It is connected to an evaporator 22 via a heat exchanger 20 and a third throttle device 21 . In addition, the first and second separators 10
1 , 201 permeated refrigerant outlet piping 107 , 207
is connected to the low pressure side of the second throttle device 19.

【0033】以上のように構成された冷凍サイクルの作
用を説明する。まず、高温側冷凍サイクル11において
、第1の圧縮機13により圧縮された冷媒蒸気は凝縮器
14により凝縮されて高温を発生し、第1の絞り装置1
5により膨張して第1の熱交換器16内で蒸発し、再び
第1の圧縮機13に吸入される。
The operation of the refrigeration cycle constructed as above will be explained. First, in the high temperature side refrigeration cycle 11, refrigerant vapor compressed by the first compressor 13 is condensed by the condenser 14 to generate high temperature, and the first throttle device 1
5 and evaporated in the first heat exchanger 16, and then sucked into the first compressor 13 again.

【0034】そして、第1の熱交換器16では、高温側
冷凍サイクル11の蒸発冷媒と低温側冷凍サイクル12
の第2の圧縮機17で圧縮された冷媒蒸気とを熱交換さ
せ、低温側冷凍サイクル12の冷媒蒸気を部分的に凝縮
させる。この部分的に冷却液化された冷媒は、気液分離
器18に入り低沸点成分R−13B1の濃度の高い蒸気
と、高沸点成分R−22の濃度の高い液に分離される。
In the first heat exchanger 16, the evaporative refrigerant of the high temperature side refrigeration cycle 11 and the low temperature side refrigeration cycle 12
The refrigerant vapor compressed by the second compressor 17 is exchanged with the refrigerant vapor, and the refrigerant vapor in the low-temperature side refrigeration cycle 12 is partially condensed. This partially cooled and liquefied refrigerant enters the gas-liquid separator 18 and is separated into vapor with a high concentration of low boiling point component R-13B1 and liquid with high concentration of high boiling point component R-22.

【0035】そして、低沸点成分R−13B1の濃度の
高い蒸気は第1の分離器101 に流入し、機能膜10
3 を透過しやすいR−22は透過出口配管107 を
通り第2の絞り装置19の出口と第2の熱交換器20入
口の間に戻される。一方、R−13B1は機能膜103
 を透過しにくいために、第1の分離器101 の出口
配管106 ではさらにR−13B1の濃度が高くなっ
て第2の分離器201 に入る。
[0035]Then, the vapor with a high concentration of the low boiling point component R-13B1 flows into the first separator 101 and passes through the functional membrane 10.
R-22 that easily permeates through the permeation outlet pipe 107 is returned between the outlet of the second throttle device 19 and the inlet of the second heat exchanger 20. On the other hand, R-13B1 has a functional film 103
Because R-13B1 is difficult to pass through, the concentration of R-13B1 becomes even higher in the outlet pipe 106 of the first separator 101 and enters the second separator 201.

【0036】さらに、第2の分離器201 でも同様に
、機能膜203 を透過しやすいR−22は透過出口配
管207 を通って第1の分離器101 の透過出口配
管107 に至り、R−13B1は機能膜203 を透
過しにくいために、第2の分離器201 の出口配管2
06 ではさらにR−13B1の濃度が高くなって第2
の熱交換器20に入る。
Furthermore, in the second separator 201, similarly, R-22, which easily permeates the functional membrane 203, passes through the permeate outlet pipe 207 and reaches the permeate outlet pipe 107 of the first separator 101, and R-13B1 Because it is difficult to permeate through the functional membrane 203, the outlet piping 2 of the second separator 201
In 06, the concentration of R-13B1 was further increased and the second
into the heat exchanger 20.

【0037】そして、第2の熱交換器20では、低沸点
成分R−13B1の濃度の高い高温,高圧冷媒蒸気が高
沸点成分R−22の濃度の高い低温,低圧冷媒と熱交換
して冷却液化され、第3の絞り装置21により膨張して
蒸発器22内で蒸発する。このとき、低沸点成分R−1
3B1の濃度は高くなっており、より低温を得ることが
できる。
In the second heat exchanger 20, the high temperature, high pressure refrigerant vapor with a high concentration of the low boiling point component R-13B1 is cooled by heat exchange with the low temperature, low pressure refrigerant with a high concentration of the high boiling point component R-22. It is liquefied, expanded by the third throttle device 21 and evaporated in the evaporator 22. At this time, low boiling point component R-1
The concentration of 3B1 is higher and lower temperatures can be obtained.

【0038】以上のように本実施例によれば、機能膜を
有する冷媒分離器を2個接続することにより、より低温
を得ることができる。尚、実施例2では機能膜を有する
冷媒分離器を2個接続した場合を示したが、さらに多く
の分離器を同様に接続すれば、より低温を得ることがで
きる。
As described above, according to this embodiment, a lower temperature can be obtained by connecting two refrigerant separators having functional membranes. Although the second embodiment shows a case in which two refrigerant separators having functional membranes are connected, a lower temperature can be obtained by connecting more separators in the same way.

【0039】[0039]

【発明の効果】以上のように本発明によれば、低温側冷
凍サイクルの気液分離器の蒸気側出口に特定の種類の冷
媒の通過を容易とする機能膜を有する冷媒分離装置を設
けることにより、より低温を効率よく得ることができる
と言う効果を奏する。
As described above, according to the present invention, a refrigerant separator having a functional membrane that facilitates the passage of a specific type of refrigerant is provided at the vapor side outlet of the gas-liquid separator of the low temperature side refrigeration cycle. This has the effect that lower temperatures can be efficiently obtained.

【0040】また、機能膜を有する冷媒分離装置を複数
個設けることにより、さらに分離回路の高性能化を図る
ことができ、より低温を得ることができる。
Furthermore, by providing a plurality of refrigerant separation devices each having a functional membrane, the performance of the separation circuit can be further improved and a lower temperature can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における冷媒分離器の詳細断
面図である。
FIG. 1 is a detailed sectional view of a refrigerant separator in one embodiment of the present invention.

【図2】同分離器を使用した場合の実施例1を示す冷凍
サイクル図である。
FIG. 2 is a refrigeration cycle diagram showing Example 1 in which the same separator is used.

【図3】同分離器を2個使用した場合の実施例2を示す
冷凍サイクル図である。
FIG. 3 is a refrigeration cycle diagram showing a second embodiment in which two separators are used.

【図4】従来例における冷凍サイクル図である。FIG. 4 is a diagram of a refrigeration cycle in a conventional example.

【符号の説明】[Explanation of symbols]

11      高温側冷凍サイクル 12      低温側冷凍サイクル 13      第1の圧縮機 14      凝縮器 15      第1の絞り装置 16      第1の熱交換器 17      第2の圧縮機 18      気液分離器 19      第2の絞り装置 20      第2の熱交換器 21      第3の絞り装置 22      蒸発器 101     第1の冷媒分離装置 103     機能膜 201     第2の冷媒分離装置 11 High temperature side refrigeration cycle 12 Low temperature side refrigeration cycle 13 First compressor 14 Condenser 15 First aperture device 16 First heat exchanger 17 Second compressor 18 Gas-liquid separator 19 Second diaphragm device 20 Second heat exchanger 21 Third diaphragm device 22 Evaporator 101 First refrigerant separation device 103 Functional membrane 201 Second refrigerant separation device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1の圧縮機と凝縮器と第1の絞り装
置と第1の熱交換器を環状に接続した高温側冷凍サイク
ルと、冷媒に非共沸混合冷媒を用いるとともに前記高温
側冷凍サイクルに第1の熱交換器を介して接続され、第
1の熱交換器と第2の圧縮機と気液分離器と気液分離器
の液側出口に連通する第2の絞り装置と第2の熱交換器
を環状に接続した低温側冷凍サイクルとの二つの独立し
た冷凍サイクルを有し、前記低温側冷凍サイクルの気液
分離器の蒸気側出口を、冷媒中の特定成分を容易に透過
する冷媒分離装置と接続するとともに、この冷媒分離装
置の出口を低温側冷凍サイクルの第2の圧縮機に連通す
る蒸発器に第2の熱交換器および第3の絞り装置を経て
接続し、前記冷媒分離装置の透過冷媒出口を第2の絞り
装置の低圧側に接続した多段多元冷凍装置。
1. A high-temperature side refrigeration cycle in which a first compressor, a condenser, a first expansion device, and a first heat exchanger are connected in a ring, a non-azeotropic mixed refrigerant is used as a refrigerant, and the high-temperature side a second throttling device connected to the refrigeration cycle via the first heat exchanger and communicating with the first heat exchanger, the second compressor, the gas-liquid separator, and the liquid side outlet of the gas-liquid separator; It has two independent refrigeration cycles, including a low-temperature side refrigeration cycle connected in a ring with a second heat exchanger, and the vapor side outlet of the gas-liquid separator of the low-temperature side refrigeration cycle is connected to the vapor side outlet of the gas-liquid separator to facilitate the removal of specific components in the refrigerant. The outlet of the refrigerant separator is connected to an evaporator communicating with a second compressor of the low-temperature side refrigeration cycle via a second heat exchanger and a third throttling device. , a multi-stage multi-component refrigeration system in which a permeated refrigerant outlet of the refrigerant separation device is connected to a low pressure side of a second expansion device.
【請求項2】  冷媒中の特定成分を容易に透過する冷
媒分離装置を複数個直列に接続した請求項1記載の多段
多元冷凍装置。
2. The multi-stage multi-component refrigeration system according to claim 1, further comprising a plurality of refrigerant separators connected in series that allow specific components in the refrigerant to pass through easily.
JP1052691A 1991-01-31 1991-01-31 Multi-stage multi-element freezer Pending JPH04244559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052691A JPH04244559A (en) 1991-01-31 1991-01-31 Multi-stage multi-element freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052691A JPH04244559A (en) 1991-01-31 1991-01-31 Multi-stage multi-element freezer

Publications (1)

Publication Number Publication Date
JPH04244559A true JPH04244559A (en) 1992-09-01

Family

ID=11752697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052691A Pending JPH04244559A (en) 1991-01-31 1991-01-31 Multi-stage multi-element freezer

Country Status (1)

Country Link
JP (1) JPH04244559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1315940A1 (en) * 2000-04-04 2003-06-04 Venturedyne Ltd. Cascade refrigeration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1315940A1 (en) * 2000-04-04 2003-06-04 Venturedyne Ltd. Cascade refrigeration system
EP1315940A4 (en) * 2000-04-04 2005-08-03 Venturedyne Ltd Cascade refrigeration system
USRE43121E1 (en) 2000-04-04 2012-01-24 Venturedyne Limited Cascade refrigeration system

Similar Documents

Publication Publication Date Title
KR100713986B1 (en) Freezing device construction method and freezing device
JPH04244559A (en) Multi-stage multi-element freezer
JPH0367961A (en) Refrigerating plant
JPH02187570A (en) Freezing device
CN110411047A (en) Refrigeration system
JPH0486458A (en) Freezer device
JPH01200154A (en) Freezing apparatus
JPH02187565A (en) Freezing device
JPH0678851B2 (en) Refrigeration equipment
JP2004019995A (en) Refrigeration device
JPH06265228A (en) Refrigerating device
JP3334418B2 (en) Refrigeration equipment
JPS63238367A (en) Refrigeration cycle device
JP2005127561A (en) Refrigerating plant constructing method and refrigerating plant
JPH0781751B2 (en) Refrigeration equipment
JPH047491Y2 (en)
JPH02187566A (en) Freezing device
JPS6353456B2 (en)
JPH03158659A (en) Refrigerating plant
JPH01263471A (en) Method for separating mixed coolant
JPH01210757A (en) Refrigerating device
JPH01208663A (en) Refrigerating plant
JPH0432663A (en) Refrigeration cycle arrangement
JPH04263745A (en) Refrigerator
JPH02176372A (en) Refrigerating plant