JPH0424370B2 - - Google Patents

Info

Publication number
JPH0424370B2
JPH0424370B2 JP12865588A JP12865588A JPH0424370B2 JP H0424370 B2 JPH0424370 B2 JP H0424370B2 JP 12865588 A JP12865588 A JP 12865588A JP 12865588 A JP12865588 A JP 12865588A JP H0424370 B2 JPH0424370 B2 JP H0424370B2
Authority
JP
Japan
Prior art keywords
formula
weight
flame retardant
prepreg
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12865588A
Other languages
Japanese (ja)
Other versions
JPH01299834A (en
Inventor
Toshiharu Takada
Yoshihide Sawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12865588A priority Critical patent/JPH01299834A/en
Publication of JPH01299834A publication Critical patent/JPH01299834A/en
Publication of JPH0424370B2 publication Critical patent/JPH0424370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、プリント配線板として用いられる積
層板の製造方法に関するものである。
The present invention relates to a method for manufacturing a laminate used as a printed wiring board.

【従来の技術】[Conventional technology]

近年、電子工業や通信、コンピユータなどの分
野において使用される周波数がMHzやGHzのよう
に高周波の領域にシフトしている。そしてこのよ
うな高周波領域で用いられるプリント配線板の絶
縁層においては、信号の伝播遅延を短くするうえ
で誘電率がより小さいことが、また電力ロスを小
さくするうえで誘電正接がより小さいことがそれ
ぞれ望まれる。 このために誘電率や誘電正接が小さい四フツ化
エチレン樹脂(テフロン)やポリフエニレンオキ
サイド(PPO)などの樹脂を用いて絶縁層を形
成することが試みられている。
In recent years, frequencies used in fields such as the electronic industry, communications, and computers have shifted to high frequency regions such as MHz and GHz. In the insulating layers of printed wiring boards used in such high frequency ranges, it is necessary to have a smaller dielectric constant in order to shorten signal propagation delay, and a smaller dielectric loss tangent in order to reduce power loss. Each is desired. For this reason, attempts have been made to form an insulating layer using resins such as tetrafluoroethylene resin (Teflon) and polyphenylene oxide (PPO), which have small dielectric constants and dielectric loss tangents.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしこれらの樹脂を用いて絶縁層を形成する
場合、ガラス転移温度(Tg)が180〜200℃程度
と低く、スルーホール加工時のスミアの発生など
スルーホールの信頼性を高く得られないために多
層のプリント配線板に形成することができないな
どの問題があつた。 本発明は上記の点に鑑みて為されたものであ
り、低い誘電率や誘電正接、高い耐熱性を保持す
ることができ、加えて難燃性を高めることができ
る積層板の製造方法を提供することを目的とする
ものである。
However, when forming an insulating layer using these resins, the glass transition temperature (Tg) is low at about 180 to 200℃, and it is difficult to obtain high reliability of through holes due to the occurrence of smear during through hole processing. There were problems such as the inability to form multilayer printed wiring boards. The present invention has been made in view of the above points, and provides a method for manufacturing a laminate that can maintain low dielectric constant, dielectric loss tangent, and high heat resistance, and can also improve flame retardancy. The purpose is to

【課題を解決するための手段】[Means to solve the problem]

本発明は、次式()に示されるポリ芳香族シ
アネートに、 (式中Arは芳香族。BはC7〜20の多環式脂肪族
基。Dは各々独立に活性水素を含まない置換基。
q,r,sは各々独立に0,1,2又は3の整数
であり、ただしq,r,sの合計は2より大きい
か又は2に等しい。tは各々独立に0から4まで
の整数。xは0から5までの数) 次式()に示される難燃剤と、 (式中nは0,1又は2の整数) ポリ芳香族シアネートの反応触媒とを配合して
ワニスを調製すると共にこのワニスを基材に含浸
してプリプレグを作成し、このプリプレグを積層
成形することを特徴とする積層板の製造方法に係
るものである。 以下本発明を詳細に説明する。 式()で示すポリ芳香族シアネートとして
は、特許出願公表昭61―500434号公報によつて開
示されているものを用いることができる。すなわ
ち、このポリ芳香族シアネートは、従来のポリト
リアジンよりも加水分解作用に対して著しく安定
で熱安定性に優れた芳香族ポリトリアジンを与え
るものである。 本発明において用いる式()のポリ芳香族シ
アネートにおいて、芳香族基Arは芳香族基を含
む総ての基を意味するものであり、例えばベンゼ
ン、ナフタリン、フエナントラセン、アントラセ
ン、またはビ芳香族基、アルキレン部分によつて
架橋された2個以上の芳香族基である。好適には
ベンゼン、ナフタリン、ビフエニル、ビナフチ
ル、ジフエニルアルキレン基であり、特にベンゼ
ン基であることが望ましい。C7〜20の多環式脂肪
族基Bとは、2個以上の環を含む脂肪族基を意味
するものであり、多環式脂肪族基には1つ以上の
二重結合または三重結合が含まれていてもよい。
好適な多環式脂肪族基を列挙すれば次のものがあ
る。 (式中Yは―CH2―、―S―、
The present invention provides a polyaromatic cyanate represented by the following formula (), (In the formula, Ar is aromatic. B is a C7-20 polycyclic aliphatic group. D is each independently a substituent containing no active hydrogen.
q, r, and s are each independently an integer of 0, 1, 2, or 3, provided that the sum of q, r, and s is greater than or equal to 2. t is an integer from 0 to 4, each independently. x is a number from 0 to 5) A flame retardant represented by the following formula (), (In the formula, n is an integer of 0, 1 or 2) A varnish is prepared by blending with a polyaromatic cyanate reaction catalyst, and a base material is impregnated with this varnish to create a prepreg, and this prepreg is laminated and molded. The present invention relates to a method for manufacturing a laminate, which is characterized by the following. The present invention will be explained in detail below. As the polyaromatic cyanate represented by the formula (), those disclosed in Patent Application Publication No. 1988-500434 can be used. That is, this polyaromatic cyanate provides an aromatic polytriazine that is significantly more stable against hydrolytic action and has superior thermal stability than conventional polytriazine. In the polyaromatic cyanate of formula () used in the present invention, the aromatic group Ar means any group containing an aromatic group, such as benzene, naphthalene, phenanthracene, anthracene, or biaromatic group. group, two or more aromatic groups bridged by alkylene moieties. Suitable examples include benzene, naphthalene, biphenyl, binaphthyl, and diphenylalkylene groups, with benzene groups being particularly preferred. The C 7-20 polycyclic aliphatic group B means an aliphatic group containing two or more rings, and the polycyclic aliphatic group has one or more double bonds or triple bonds. may be included.
Suitable polycyclic aliphatic groups include the following. (In the formula, Y is -CH 2 -, -S-,

【式】【formula】

【式】であり、D′はC1〜5のアルキル基である。) なかでもa,b,c,d,e,f,g又はlもの
ものが好適であり、より好適にはa,b,c,
d,lで、特にaのものが好ましい。 式()中のDは有機炭化水素基上に置換され
得る総ての置換基を意味するものであるが、活性
水素原子を含む置換基は除去される。活性水素原
子とは酸素、硫黄、窒素原子に結合した水素原子
を意味する。式()中の各Dはそれぞれ独立し
て規定されるものであり、例えば、アルキル、ア
ルケニル、アルキニル、アリール、アルカリー
ル、アルアルキル、ハロ、アルコキシ、ニトロ、
カルボキシート、スルホン、スルフイド、カーボ
ネートなどであり、好適にはC1〜10のアルキル、
C1〜10のアルケニル、ニトロ、ハロであり、C1〜3
のアルキル、C1〜3のアルキニル、ブロモ、クロロ
が最も好ましい。 また式()中のtは0から4までの整数であ
り、なかでも0,1又は2の整数、特に0又は1
が好ましく、最適には0である。式()中の各
tはそれぞれ独立して規定される。q,r,sは
0,1,2又は3の整数であり、最適には1であ
る。q,r,sはそれぞれ独立して規定される
が、これらの合計は2以上になるように設定され
る。さらにxは0から5までの数である。式
()のポリ芳香族シアネートはxが0〜5まで
の化合物類の混合物として見出だされるものであ
り、xはこの混合物の平均の数として規定される
ものである。 式()のポリ芳香族シアネートの好ましい実
施態様は次の式で表される。 しかして、式()のポリ芳香族シアネートか
ら得られる芳香族ポリトリアジン(ポリ芳香族シ
アネート樹脂)は、低い誘電率(ε2.78前後)、低
い誘電正接(tanδ0.003前後)及び高い耐熱性
(ガラス転移温度Tg250以上、オーブン耐熱性300
℃程度)を有するという、プリント配線板の絶縁
基板を構成する樹脂として優れた特性を有する。
そこで本発明ではさらに式()の難燃剤を配合
してプリント配線板において要求される難燃特性
を付与するようにしたものである。 式()の難燃剤の配合量は難燃剤中に含有さ
れるBr量に設定される。すなわち、式()の
n=0のものはBrの含有率が58重量%、n=1
のものはBrの含有率が50%、n=2のものはBr
の含有率が48重量%である。そして式()のポ
リ芳香族シアネートと式()の難燃剤との合計
量に対してBrの含有率が10重量%未満であると
難燃性はUL規格でHBのレベル、Brの含有率が
10重量%以上13重量%未満であると94V−1のレ
ベルであり、94V―0のレベルにするにはBrの
含有率が13重量%以上になるようにする必要があ
る。従つて94V−0を達成するには、n=0の場
合は式()の難燃剤を22.4重量%以上(式
()のものは77.6重量%以下)の配合量に、n
=1の場合は式()の難燃剤を26.0重量%以上
(式()のものは74.0重量%以下)の配合量に、
n=2の場合は式()の難燃剤を27.0重量%以
上(指示()のものは73.0重量%以下)に配合
量にそれぞれ設定することが望ましい。n=0の
難燃剤の場合、上記配合量以上に配合すると耐熱
性に問題が生じてくるおそれがあるので、上記数
値に設定するのが望ましい。またn=1の難燃剤
の場合は、耐熱性に特に問題が生じることはなく
却つて誘電正接の特性を良くする効果があるの
で、26重量%以上、40重量%程度まで配合するこ
とが可能である。n=2の難燃剤の場合はn=0
のものと同様の理由によつて、配合量は27重量%
前後が好適である。式()のポリ芳香族シアネ
ートと式()の難燃剤との配合比率は上記を参
酌して、一般的には前者を60〜90重量%、後者を
40〜10重量%に設定するのが望ましい。 式()のポリ芳香族シアネートを重合させる
反応触媒としては、イミダゾール類、第三級アミ
ン、ナフテン酸コバルトやオクチル酸コバルトな
ど有機コバルト塩類等の有機金属塩類を用いるこ
とができるものであり、特に有機コバルト塩類が
好ましい。反応触媒の配合量は特に限定されない
が、例えば有機コバルト塩類を反応触媒として用
いる場合には、ワニス(後述)の所望するゲルタ
イムに応じて、式()のポリ芳香族シアネート
の重量に対するコバルトイオンの重量比で10〜
700ppm程度の範囲で配合される。 そして上記式()のポリ芳香族シアネート、
式()の難燃剤、及び反応触媒等を有機溶剤に
溶解することによつて、ワニスを調製する。有機
溶剤としては式()のポリ芳香族シアネートや
式()の難燃剤を溶解し反応に悪い影響を与え
ないものであれば芳香族炭化水素、アルコール、
ケトンなど特に限定されない。例えばトルエン、
アセトン、メチルエチルケトン、ジメチルホルム
アミド、メチルセロソルブなどを一種もしくは二
種以上を混合して用いることができる。ワニスの
濃度は固形分が50〜70重量%になるように調製す
るのが一般的である。 しかしてプリプレグを調製するにあたつては、
基材としては特に限定されるものではないが、ガ
ラス繊維の織布あるいは不織布を使用するのが一
般的であり、この基材にワニスを含浸させて加熱
乾燥する。基材へのワニスの含浸量は、基材に対
する固形分(式()の化合物と式()の化合
物)の比率が45重量%以上になるように設定する
のが好ましい。樹脂分の含有量によつて誘電率の
水準に影響が出るものであり、基材をEガラスの
布で形成した場合は45重量%以上の含浸で誘電率
4.0以下を達成することができ、また基材をDガ
ラスの布で形成した場合は45重量%以上の含浸で
誘電率3.5以下を達成することができる。プリプ
レグを調製する際の加熱乾燥条件は、反応触媒の
配合量などによつて影響されるが、例えば加熱温
度が160℃の場合は加熱時間を3〜10分間程度に
設定することによつて、所望のプリプレグのスト
ロークゲルタイムを得るようにすることができ
る。プリプレグのストロークゲルタイムは成形条
件等によつて異なるが、170℃で2〜10分程度が
一般的である。 そしてこのように調製したプリプレグを複数枚
重ね、さらに上下の両面もしくは片面に銅箔など
の金属箔を重ね、これを加熱加圧成形することに
よつて、プリプレグ中のポリ芳香シアネートが重
合硬化して構成される絶縁基板の両面又は片面に
金属箔を積層接着した両面金属箔張り若しくは片
面金属箔張り積層板を作成することができる。こ
の積層板の金属箔をエツチング加工等して回路形
成することによつて内層プリント配線板を作成す
ることができ、この内層プリント配線板を複数枚
の上記プリプレグを介して複数枚重ねると共に最
外層に金属箔を重ね、これを加熱加圧成形するこ
とによつて、多層のプリント配線板を作成するこ
とができる。成形条件は、加熱温度を170℃〜230
℃、圧力を最高圧力で30〜40Kg/cm2程度、時間を
90〜120分程度に設定するのが一般的である。成
形後に220〜230℃程度の温度でアフターキユアー
する場合には成形温度は170〜180℃程度で十分で
ある。
[Formula], and D' is a C 1-5 alkyl group. ) Among them, those having a, b, c, d, e, f, g or l are preferable, and more preferably a, b, c,
Among d and l, a is particularly preferred. D in formula () means all substituents that can be substituted on the organic hydrocarbon group, but substituents containing active hydrogen atoms are removed. Active hydrogen atom means a hydrogen atom bonded to an oxygen, sulfur, or nitrogen atom. Each D in formula () is defined independently, and includes, for example, alkyl, alkenyl, alkynyl, aryl, alkaryl, aralkyl, halo, alkoxy, nitro,
carboxylate, sulfone, sulfide, carbonate, etc., preferably C1-10 alkyl,
C 1-10 alkenyl, nitro, halo, C 1-3
most preferred are alkyl, C1-3 alkynyl, bromo, chloro. In addition, t in formula () is an integer from 0 to 4, especially an integer of 0, 1 or 2, especially 0 or 1.
is preferable, and optimally 0. Each t in formula () is defined independently. q, r, s are integers of 0, 1, 2, or 3, and optimally 1. Although q, r, and s are each defined independently, their total is set to be 2 or more. Furthermore, x is a number from 0 to 5. The polyaromatic cyanates of formula () are found as mixtures of compounds in which x ranges from 0 to 5, and x is defined as the average number of this mixture. A preferred embodiment of the polyaromatic cyanate of formula () is represented by the following formula. Therefore, the aromatic polytriazine (polyaromatic cyanate resin) obtained from the polyaromatic cyanate of formula () has a low dielectric constant (ε2.78 or so), a low dielectric loss tangent (tan δ0.003 or so), and high heat resistance. (Glass transition temperature Tg250 or higher, oven heat resistance 300
It has excellent properties as a resin constituting the insulating substrate of a printed wiring board.
Therefore, in the present invention, a flame retardant of formula () is further blended to impart flame retardant properties required for printed wiring boards. The amount of flame retardant in formula () is set to the amount of Br contained in the flame retardant. That is, in the formula () where n=0, the Br content is 58% by weight and n=1
The one with Br content is 50%, and the one with n=2 is Br
The content is 48% by weight. If the Br content is less than 10% by weight based on the total amount of the polyaromatic cyanate of the formula () and the flame retardant of the formula (), the flame retardance is at the level of HB according to the UL standard, and the Br content but
If it is 10% by weight or more and less than 13% by weight, it is at a level of 94V-1, and in order to achieve a level of 94V-0, it is necessary to make the Br content higher than 13% by weight. Therefore, in order to achieve 94V-0, when n = 0, the flame retardant of formula () should be added in an amount of 22.4% by weight or more (77.6% by weight or less for formula ());
= 1, the flame retardant of formula () should be blended in an amount of 26.0% by weight or more (74.0% by weight or less for formula ()),
When n=2, it is desirable to set the blending amount of the flame retardant of formula () to 27.0% by weight or more (73.0% by weight or less for the flame retardant of formula ()). In the case of a flame retardant with n=0, if it is blended in an amount greater than the above-mentioned amount, a problem may arise in heat resistance, so it is desirable to set the flame retardant to the above-mentioned value. In addition, in the case of a flame retardant with n=1, there is no particular problem with heat resistance, and on the contrary, it has the effect of improving the dielectric loss tangent characteristics, so it can be blended up to 26% by weight or more and up to about 40% by weight. It is. For flame retardants with n=2, n=0
Due to the same reason as the above, the blending amount is 27% by weight.
The front and back are preferred. Considering the above, the blending ratio of polyaromatic cyanate of formula () and flame retardant of formula () is generally 60 to 90% by weight of the former and 60 to 90% by weight of the latter.
It is desirable to set it at 40 to 10% by weight. As the reaction catalyst for polymerizing the polyaromatic cyanate of formula (), organic metal salts such as imidazoles, tertiary amines, organic cobalt salts such as cobalt naphthenate and cobalt octylate can be used, and in particular Organic cobalt salts are preferred. Although the amount of the reaction catalyst is not particularly limited, for example, when organic cobalt salts are used as the reaction catalyst, the amount of cobalt ions relative to the weight of the polyaromatic cyanate of formula () may be adjusted depending on the desired gel time of the varnish (described later). Weight ratio: 10~
It is blended in a range of about 700ppm. and polyaromatic cyanate of the above formula (),
A varnish is prepared by dissolving a flame retardant of formula (), a reaction catalyst, etc. in an organic solvent. As an organic solvent, aromatic hydrocarbons, alcohols, alcohols, etc. can be used as long as they dissolve the polyaromatic cyanate of the formula () and the flame retardant of the formula () and do not adversely affect the reaction.
Ketones and the like are not particularly limited. For example, toluene,
Acetone, methyl ethyl ketone, dimethyl formamide, methyl cellosolve, etc. can be used alone or in combination of two or more. The concentration of varnish is generally adjusted so that the solid content is 50 to 70% by weight. However, when preparing prepreg,
The base material is not particularly limited, but woven or nonwoven glass fiber fabric is generally used, and this base material is impregnated with varnish and dried by heating. The amount of varnish impregnated into the base material is preferably set so that the ratio of solid content (compound of formula () to compound of formula ()) to the base material is 45% by weight or more. The level of dielectric constant is affected by the resin content, and when the base material is made of E glass cloth, the dielectric constant will change if it is impregnated with 45% by weight or more.
A dielectric constant of 4.0 or less can be achieved, and when the base material is made of D glass cloth, a dielectric constant of 3.5 or less can be achieved with impregnation of 45% by weight or more. The heating drying conditions when preparing prepreg are influenced by the amount of reaction catalyst blended, etc., but for example, if the heating temperature is 160 ° C., by setting the heating time to about 3 to 10 minutes, It is possible to obtain a desired prepreg stroke gel time. The stroke gel time of prepreg varies depending on molding conditions, etc., but is generally about 2 to 10 minutes at 170°C. The polyaromatic cyanate in the prepreg is then polymerized and hardened by layering multiple sheets of the prepreg prepared in this way, then layering metal foil such as copper foil on both or one side of the top and bottom, and molding this under heat and pressure. A double-sided metal foil-clad laminate or a single-sided metal foil-clad laminate can be produced by laminating and adhering metal foil on both sides or one side of an insulating substrate made up of an insulating substrate. An inner layer printed wiring board can be created by etching the metal foil of this laminate to form a circuit, and by stacking a plurality of inner layer printed wiring boards via a plurality of the above prepregs, the outermost layer A multilayer printed wiring board can be created by layering metal foil on the substrate and molding it under heat and pressure. The molding conditions are heating temperature 170℃~230℃
℃, the pressure is about 30-40Kg/cm2 at the maximum pressure, and the time
It is common to set the time to about 90 to 120 minutes. When after-curing at a temperature of about 220 to 230°C after molding, a molding temperature of about 170 to 180°C is sufficient.

【実施例】【Example】

以下本発明を実施例によつて詳述する。 実施例 1 次式に示されるポリ芳香族シアネート(ダウケ
ミカル社製XU−71787)を重量部、 及び式()においてn=0の難燃剤(テトラブ
ロモビスフエノールA:TBBA)を20重量部そ
れぞれ採り、これらをメチルエチルケトンとメチ
ルセロソルブの1:1混合溶媒に固形分が60重量
%になるように攪拌溶解し、これに反応触媒とし
てナフテン酸コバルトをポリ芳香族シアネートに
対するコバルトイオンの重量比で50ppm添加し
て、ワニスを調製した。 このワニスを2116タイプEガラス布基材(日東
紡績社製116E)に固形分含量(ポリ芳香族シア
ネートと難燃剤)が45重量%になるように含浸
し、150℃、4分間の条件で加熱乾燥することに
よつてプリプレグを調製した。 次にこのプリプレグを4枚重ねると共にその上
下両側に70μ厚の両面粗面化銅箔を重ね、成形温
度170℃、成形圧力40Kg/cm2、90分間の条件で積
層成形をおこない、さらに成形後に電気オーブン
にて230℃、2時間の条件でアフターキユアーし
て、厚み0.4mmの内層プリント配線板用の両面銅
張り積層板を得た。 実施例 2 実施例1で得た両面銅張り積層板の銅箔をエツ
チング処理して回路形成することによつて内層プ
リント配線板を作成した。この3枚の内層プリン
ト配線板をそれぞれの間に実施例1で得た3枚の
プリプレグを介して重ねると共にその上下にさら
に3枚のプリプレグを介して18μ厚の銅箔を重
ね、これを実施例1と同じ条件で積層成形し、さ
らにアフターキユアーすることによつて、厚み
2.4mmの8層の回路構成の多層プリント配線板を
得た。 実施例 3 実施例1で用いたポリ芳香族シアネート(ダウ
ケミカル社製XU−71787)を75重量部、式()
においてn=1の難燃剤(テトラブロモビスフエ
ノールAビス(2−ハイドロキシルエーテル);
グレートレイク社製)を25重量部それぞれ採り、
これらをメチルエチルケトンとジメチルホルムア
ミドの1:1混合溶媒に固形分が60重量%になる
ように攪拌溶解し、これに反応触媒としてオクチ
ル酸コバルトをポリ芳香族シアネート樹脂に対す
るコバルトイオンの重量比で75ppm添加して、ワ
ニスを調製した。後は実施例1と同様にしてプリ
プレグを作成すると共に実施例1と同様にして積
層成形及びアフターキユアーをおこなつて、厚み
0.4mmの内層プリント配線板用の両面銅張り積層
板を得た。 実施例 4 プリプレグの基材としてEガラス布を用いる代
わりにDガラス布(日東紡績(株)製WDX−723)
を用いるようにした他は、実施例1と同様にして
厚み0.4mmの内層プリント配線板用の両面銅張り
積層板を得た。 実施例 5 実施例1で用いたポリ芳香族シアネート(ダウ
ケミカル社製XU−71787)を70重量部、式()
においてn=2の難燃剤(第一工業製薬社製GX
−6107)を30重量部それぞれ採り、これらをジメ
チルアセトアミドに固形分が60重量%になるよう
に攪拌溶解し、これに反応触媒として8重量%の
Co3+を含むオクチル酸コバルト溶液をポリ芳香
族シアネート樹脂に対するコバルトイオンの重量
比で50ppm添加して、ワニスを調製した。後は実
施例1と同様にしてプリプレグを作成すると共に
実施例1と同様にして積層成形及びアフターキユ
アーをおこなつて、厚み0.4mmの内層プリント配
線板用の両面銅張り積層板を得た。 比較例 1 ポリアミノビスマレイミド樹脂(日本ポリイミ
ド社製ケルイミド601)を固形分が60重量%にな
るようN−メチル−2−ピロリドンに溶解してポ
リイミド樹脂ワニスを調整した。このワニスを実
施例1と同様のEガラス布基材に樹脂含量が45重
量%になるように含浸し、実施例1と同様に乾燥
してプリプレグを作成した。次にこのプリプレグ
を4枚重ねると共にその上下両側に70μ厚の両面
粗面化銅箔を重ね、実施例1と同じ条件で積層成
形をおこない、さらに電気オープンにて200℃、
2時間の条件でアフターキユアーして、厚み0.4
mmの内層プリント配線板用の両面銅張り積層板を
得た。このようにして得た両面銅張り積層板の銅
箔をエツチング処理して回路形成することによつ
て内層プリント配線板を作成し、3枚の内層プリ
ント配線板をそれぞれの間に上記と同じ3枚のプ
リプレグを介して重ねると共にその上下にさらに
3枚のプリプレグを介して18μ厚の銅箔を重ね、
これを実施例1と同じ条件で積層成形し、さらに
200℃、2時間の条件でアフターキユアーするこ
とによつて、厚み2.4mmの8層の回路構成の多層
プリント配線板を得た。 比較例 2 実施例1で用いたポリ芳香族シアネート(ダウ
ケミカル社製XU−71787)のみを使用し(難燃
剤は使用せず)、これをメチルエチルケトンとジ
メチルホルムアミドの1:1混合溶媒に固形分が
60重量%になるように攪拌溶解し、これに反応触
媒としてナフテン酸コバルトをポリ芳香族シアネ
ート樹脂に対するコバルトイオンの重量比で
200ppm添加して、ワニスを調製した。後は実施
例1と同様にしてプリプレグを作成すると共に実
施例1と同様にして積層成形及びアフターキユア
ーをおこなつて、厚み0.4mmの内層プリント配線
板用の両面銅張り積層板を得た。 上記のようにして得た実施例1〜5及び比較例
1,2の積層板について、その電気的特性や熱的
特性などを測定し、その結果を次表に示す。次表
において、誘電率、誘電正接、耐熱性、オーブン
耐熱性はJISC6481に基づいて測定をおこなつた。
またガラス転移温度は粘弾性スペクトルのチヤー
トから計測した。さらに厚さ方向の膨張率は、試
料を加熱・冷却することによつて膨張・収縮させ
て機械的な寸法変化を起こさせ、この変化量を計
測する熱機械的分析法で測定した。膨張率は106
倍した数値(ppm/℃)で示した。
The present invention will be explained in detail below using examples. Example 1 Parts by weight of polyaromatic cyanate (XU-71787, manufactured by Dow Chemical Company) represented by the following formula, Take 20 parts by weight of a flame retardant (tetrabromobisphenol A: TBBA) with n = 0 in formula () and add them to a 1:1 mixed solvent of methyl ethyl ketone and methyl cellosolve so that the solid content is 60% by weight. The mixture was stirred and dissolved, and cobalt naphthenate was added thereto as a reaction catalyst at a weight ratio of 50 ppm of cobalt ions to the polyaromatic cyanate to prepare a varnish. This varnish was impregnated into a 2116 type E glass cloth substrate (116E manufactured by Nittobo Co., Ltd.) to a solid content (polyaromatic cyanate and flame retardant) of 45% by weight, and heated at 150°C for 4 minutes. A prepreg was prepared by drying. Next, four sheets of this prepreg were stacked together, and 70 μ thick double-sided roughened copper foil was stacked on both sides of the top and bottom, and laminated molding was performed at a molding temperature of 170°C and a molding pressure of 40 kg/cm 2 for 90 minutes. After-curing was carried out in an electric oven at 230°C for 2 hours to obtain a double-sided copper-clad laminate with a thickness of 0.4 mm for an inner layer printed wiring board. Example 2 An inner layer printed wiring board was prepared by etching the copper foil of the double-sided copper-clad laminate obtained in Example 1 to form a circuit. These three inner layer printed wiring boards were stacked with the three prepregs obtained in Example 1 interposed between them, and 18μ thick copper foil was further stacked above and below them via three prepregs, and this was carried out. By laminating and molding under the same conditions as Example 1 and further after-curing, the thickness
A multilayer printed wiring board with a circuit configuration of 8 layers of 2.4 mm was obtained. Example 3 75 parts by weight of the polyaromatic cyanate (XU-71787 manufactured by Dow Chemical Company) used in Example 1, formula ()
n=1 flame retardant (tetrabromobisphenol A bis(2-hydroxyl ether);
Take 25 parts by weight of each product (manufactured by Great Lakes),
These were stirred and dissolved in a 1:1 mixed solvent of methyl ethyl ketone and dimethyl formamide so that the solid content was 60% by weight, and to this was added cobalt octylate as a reaction catalyst at a weight ratio of 75 ppm of cobalt ions to the polyaromatic cyanate resin. A varnish was prepared. After that, prepreg was prepared in the same manner as in Example 1, and laminated molding and after-curing were performed in the same manner as in Example 1 to determine the thickness.
A double-sided copper-clad laminate for a 0.4 mm inner layer printed wiring board was obtained. Example 4 Instead of using E glass cloth as the prepreg base material, D glass cloth (WDX-723 manufactured by Nittobo Co., Ltd.) was used.
A double-sided copper-clad laminate for an inner-layer printed wiring board having a thickness of 0.4 mm was obtained in the same manner as in Example 1, except that . Example 5 70 parts by weight of the polyaromatic cyanate (XU-71787 manufactured by Dow Chemical Company) used in Example 1, formula ()
n=2 flame retardant (GX manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
-6107) were taken and dissolved in dimethylacetamide with stirring so that the solid content was 60% by weight, and 8% by weight was added to this as a reaction catalyst.
A varnish was prepared by adding a cobalt octylate solution containing Co 3+ at a weight ratio of 50 ppm of cobalt ions to the polyaromatic cyanate resin. After that, a prepreg was prepared in the same manner as in Example 1, and lamination molding and after-curing were performed in the same manner as in Example 1 to obtain a double-sided copper-clad laminate with a thickness of 0.4 mm for an inner layer printed wiring board. . Comparative Example 1 A polyimide resin varnish was prepared by dissolving polyamino bismaleimide resin (Kelimide 601 manufactured by Nippon Polyimide Co., Ltd.) in N-methyl-2-pyrrolidone so that the solid content was 60% by weight. This varnish was impregnated into the same E glass cloth base material as in Example 1 so that the resin content was 45% by weight, and dried in the same manner as in Example 1 to prepare a prepreg. Next, four sheets of this prepreg were stacked, and double-sided roughened copper foil with a thickness of 70μ was stacked on both the top and bottom sides, and laminated molding was performed under the same conditions as in Example 1.
After cured for 2 hours, thickness 0.4
A double-sided copper-clad laminate for inner-layer printed wiring boards of mm was obtained. An inner layer printed wiring board was created by etching the copper foil of the double-sided copper-clad laminate thus obtained to form a circuit. It is layered with two sheets of prepreg, and above and below it is layered with 18μ thick copper foil through three sheets of prepreg.
This was laminated and molded under the same conditions as Example 1, and then
By post-curing at 200° C. for 2 hours, a multilayer printed wiring board with a thickness of 2.4 mm and an 8-layer circuit structure was obtained. Comparative Example 2 Only the polyaromatic cyanate (XU-71787 manufactured by Dow Chemical Company) used in Example 1 was used (no flame retardant was used), and the solid content was added to a 1:1 mixed solvent of methyl ethyl ketone and dimethyl formamide. but
Stir and dissolve to a concentration of 60% by weight, and add cobalt naphthenate as a reaction catalyst to the polyaromatic cyanate resin in a weight ratio of cobalt ions to polyaromatic cyanate resin.
A varnish was prepared by adding 200 ppm. After that, a prepreg was prepared in the same manner as in Example 1, and lamination molding and after-curing were performed in the same manner as in Example 1 to obtain a double-sided copper-clad laminate with a thickness of 0.4 mm for an inner layer printed wiring board. . The electrical properties, thermal properties, etc. of the laminates of Examples 1 to 5 and Comparative Examples 1 and 2 obtained as described above were measured, and the results are shown in the following table. In the following table, dielectric constant, dielectric loss tangent, heat resistance, and oven heat resistance were measured based on JISC6481.
Moreover, the glass transition temperature was measured from the chart of the viscoelastic spectrum. Furthermore, the coefficient of expansion in the thickness direction was measured using a thermomechanical analysis method in which the sample was heated and cooled to expand and contract to cause a mechanical dimensional change, and the amount of this change was measured. The expansion rate is 10 6
It is shown as a multiplied value (ppm/°C).

【表】 表の結果にみられるように、ポリ芳香族シアネ
ートを重合させた芳香族ポリトリアジンで絶縁基
板を形成するようにした各実施例のものは、ポリ
アミド樹脂で絶縁基板を形成するようにした比較
例1のものよりも誘電率や誘電正接が低いことが
確認されるものであり、またポリ芳香族シアネー
トに難燃剤を配合した各実施例のものでは、難燃
剤を配合しない比較例2のHBレベルから94V―
0のレベルに難燃性が高まることが確認されると
共に、しかもガラス転移温度や耐熱温度のレベル
も大きく劣化されず高く保持されていることが確
認されるものである。
[Table] As seen in the results of the table, each example in which the insulating substrate was formed with aromatic polytriazine obtained by polymerizing polyaromatic cyanate was different from that in which the insulating substrate was formed with polyamide resin. It is confirmed that the dielectric constant and dielectric loss tangent are lower than those of Comparative Example 1, and each Example in which a flame retardant was blended with polyaromatic cyanate was compared to Comparative Example 2 in which no flame retardant was blended. 94V from the HB level of
It is confirmed that the flame retardance is increased to a level of 0, and that the glass transition temperature and heat resistance temperature are maintained at high levels without significant deterioration.

【発明の効果】【Effect of the invention】

上述のように本発明にあつては、式()のポ
リ芳香族シアネートに式()の難燃剤を配合し
て使用することによつて積層板を製造するように
したので、ポリ芳香族シアネートの重合体の低い
誘電率や誘電正接によつて積層板の高周波特性を
高く確保することができるものであり、しかも難
燃剤の配合によつて積層板の難燃グレードを高め
ることができると共に、耐熱性のレベルを高く保
持することができるものである。
As mentioned above, in the present invention, the laminate is manufactured by blending and using the polyaromatic cyanate of the formula () with the flame retardant of the formula (). Due to the low dielectric constant and dielectric loss tangent of the polymer, the high frequency properties of the laminate can be ensured, and by adding a flame retardant, the flame retardant grade of the laminate can be increased. It is possible to maintain a high level of heat resistance.

Claims (1)

【特許請求の範囲】 1 次式()に示されるポリ芳香族シアネート
に、 (式中Arは芳香族。BはC7〜20の多環式脂肪族
基。Dは各々独立に活性水素を含まない置換基。
q,r,sは各々独立に0,1,2又は3の整数
であり、ただしq,r,sの合計は2より大きい
か又は2に等しい。tは各々独立に0から4まで
の整数。xは0〜5までの数) 次式()に示される難燃剤と、 (式中nは0,1又は2の整数) ポリ芳香族シアネートの反応触媒とを配合して
ワニスを調製すると共にこのワニスを基材に含浸
してプリプレグを作成し、このプリプレグを積層
成形することを特徴とする積層板の製造方法。
[Claims] A polyaromatic cyanate represented by the primary formula (), (In the formula, Ar is aromatic. B is a C7-20 polycyclic aliphatic group. D is each independently a substituent containing no active hydrogen.
q, r, and s are each independently an integer of 0, 1, 2, or 3, provided that the sum of q, r, and s is greater than or equal to 2. t is an integer from 0 to 4, each independently. x is a number from 0 to 5) A flame retardant represented by the following formula (), (In the formula, n is an integer of 0, 1 or 2) A varnish is prepared by blending with a polyaromatic cyanate reaction catalyst, and a base material is impregnated with this varnish to create a prepreg, and this prepreg is laminated and molded. A method for manufacturing a laminate, characterized by:
JP12865588A 1988-05-26 1988-05-26 Production of laminate Granted JPH01299834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12865588A JPH01299834A (en) 1988-05-26 1988-05-26 Production of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12865588A JPH01299834A (en) 1988-05-26 1988-05-26 Production of laminate

Publications (2)

Publication Number Publication Date
JPH01299834A JPH01299834A (en) 1989-12-04
JPH0424370B2 true JPH0424370B2 (en) 1992-04-24

Family

ID=14990178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12865588A Granted JPH01299834A (en) 1988-05-26 1988-05-26 Production of laminate

Country Status (1)

Country Link
JP (1) JPH01299834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049422A1 (en) 2005-10-25 2007-05-03 Mitsubishi Gas Chemical Company, Inc. Cyanate ester polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049422A1 (en) 2005-10-25 2007-05-03 Mitsubishi Gas Chemical Company, Inc. Cyanate ester polymer

Also Published As

Publication number Publication date
JPH01299834A (en) 1989-12-04

Similar Documents

Publication Publication Date Title
JP6620844B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
US4933228A (en) Thermosetting resin and prepreg and laminate using the same
US11339251B2 (en) Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
CN107663374B (en) Resin composition, semi-cured sheet and laminate
JP2018012772A (en) Resin composition, resin layer-attached support, prepreg, laminate, multilayer printed board and printed wiring board for millimeter wave radar
JP2005112981A (en) Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board
JP7102682B2 (en) Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board and printed wiring board for millimeter wave radar
JP2654121B2 (en) Glass substrate for laminate and laminate
JPH02286723A (en) Laminating resin composition and laminate
JP2842152B2 (en) Thermosetting resin composition, method for producing prepreg, and method for producing laminate
JPH1121452A (en) Modified cyanate ester-based hardening resin composition for laminated sheet, prepreg and laminated sheet using the same composition
JPH0424370B2 (en)
JPH1160692A (en) Resin composition for printed wiring board and printed wiring board using the same
JPH0424371B2 (en)
JPH0424372B2 (en)
JPH0747637B2 (en) Curable resin composition
JPH0424373B2 (en)
JPH0288673A (en) Resin composition for laminated sheet
JP4788934B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
JPH02302446A (en) Prepreg and wiring board using the same prepreg
JPH0289635A (en) Treating method of glass base material for laminated board
JPH02286711A (en) Resin composition for laminate and laminate
JPH11189718A (en) Modified cyanate ester-based curable resin composition for laminated plate, and prepreg and metal-lined laminated plate using the same
JPH02302447A (en) Prepreg and wiring board using the same prepreg
JP2002138199A (en) Resin composition for laminate, prepreg using the same and laminate