JPH0424373B2 - - Google Patents

Info

Publication number
JPH0424373B2
JPH0424373B2 JP12865888A JP12865888A JPH0424373B2 JP H0424373 B2 JPH0424373 B2 JP H0424373B2 JP 12865888 A JP12865888 A JP 12865888A JP 12865888 A JP12865888 A JP 12865888A JP H0424373 B2 JPH0424373 B2 JP H0424373B2
Authority
JP
Japan
Prior art keywords
formula
molding
prepreg
laminate
flame retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12865888A
Other languages
Japanese (ja)
Other versions
JPH01299837A (en
Inventor
Toshiharu Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12865888A priority Critical patent/JPH01299837A/en
Publication of JPH01299837A publication Critical patent/JPH01299837A/en
Publication of JPH0424373B2 publication Critical patent/JPH0424373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention] 【産業䞊の利甚分野】[Industrial application field]

本発明は、プリント配線板ずしお甚いられる積
局板の連続成圢による補法に関するものである。
The present invention relates to a manufacturing method by continuous molding of a laminate used as a printed wiring board.

【埓来の技術】 近幎、電子工業や通信、コンピナヌタなどの分
野においお䜿甚される呚波数がHzやHzのよう
に高呚波の領域にシフトしおいる。そしおこのよ
うな高呚波領域で甚いられるプリント配線板の絶
瞁局においおは、信号の䌝播遅延を短くするうえ
で誘電率がより小さいこずが、たた電力ロスを小
さくするうえで誘電正接がより小さいこずがそれ
ぞれ望たれる。 このために誘電率や誘電正接が小さい四フツ化
゚チレン暹脂テフロンやポリプニレンオキ
サむドPPOなどの暹脂を甚い、この暹脂を
ガラス垃などの基材に含浞しお䜜成したプリプレ
グを積局成圢するこずによ぀おプリント配線板の
絶瞁局ずなる積局板を䜜成するこずが詊みられる
に至぀おいる。 たた、絶瞁局ずなる積局板の誘電率を小さくす
るためにはプリプレグ䞭の暹脂の含有率を高くす
るこずが有効である。すなわち、積局板䞭の暹脂
の䜓積分率をVR、積局板䞭のガラス垃基材の䜓
積分率をVG、暹脂の誘電率をεR、ガラス垃基材
の誘電率をεG、ずするず、積局板党䜓の誘電率ε
は次の匏のようになる。 logεVRlogεRVGlogεG そしお䞀般的に暹脂の誘電率εRはガラスの誘電
率εGよりも小さいためにちなみに本発明の匏
の重合䜓の誘電率は2.8皋床であるのに察し
おガラスの誘電率は7.23、ガラスの誘電率は
4.74、暹脂の䜓積分率VRが倧きくなり、ガラス
垃基材の䜓積分率VGが小さくなる皋、積局板党
䜓の誘電率εは小さくなる。䞀方、ガラスの比重
は2.2皋床で、暹脂の比重は1.4皋床であり、暹脂
の含有率を重量ずするず、 VR1.41.4100−
2.2 VG−VR ずなるために、が倧きくなればなる皋VRが倧
きくなるず共にVGが小さくなる。埓぀お暹脂の
含有率が高くなるず積局板党䜓の誘電率εは小
さくなるのである。
BACKGROUND OF THE INVENTION In recent years, frequencies used in fields such as electronic industry, communications, and computers have shifted to high frequency regions such as MHz and GHz. In the insulating layers of printed wiring boards used in such high frequency ranges, it is necessary to have a smaller dielectric constant in order to shorten signal propagation delay, and a smaller dielectric loss tangent in order to reduce power loss. Each is desired. For this purpose, resins such as tetrafluoroethylene resin (Teflon) and polyphenylene oxide (PPO), which have small dielectric constants and dielectric loss tangents, are used, and prepregs made by impregnating base materials such as glass cloth with these resins are laminated. Attempts have been made to create laminates that serve as insulating layers for printed wiring boards by molding. Furthermore, in order to reduce the dielectric constant of the laminate serving as the insulating layer, it is effective to increase the resin content in the prepreg. That is, the volume fraction of the resin in the laminate is V R , the volume fraction of the glass cloth base material in the laminate is V G , the dielectric constant of the resin is ε R , the dielectric constant of the glass cloth base material is ε G , Then, the dielectric constant ε of the entire laminate is
becomes like the following formula. logε=V R logε R +V G logε G And since the dielectric constant ε R of resin is generally smaller than the dielectric constant ε G of glass (by the way, the dielectric constant of the polymer according to the formula () of the present invention is about 2.8). On the other hand, the dielectric constant of E glass is 7.23, and the dielectric constant of D glass is
4.74), the larger the volume fraction V R of the resin and the smaller the volume fraction V G of the glass cloth base material, the smaller the dielectric constant ε of the entire laminate. On the other hand, the specific gravity of glass is about 2.2 and the specific gravity of resin is about 1.4, and if the resin content is x% by weight, then V R = (x/1.4)/{(x/1.4) + (100−x )/
2.2} Since V G =1−V R , the larger x becomes, the larger V R becomes and the smaller V G becomes. Therefore, as the resin content x increases, the dielectric constant ε of the entire laminate decreases.

【発明が解決しようずする課題】[Problem to be solved by the invention]

しかし䞊蚘の暹脂を甚しお絶瞁局を圢成する堎
合、これらはガラス転移枩床Tgが180〜200
℃皋床ず䜎く耐熱性が䞍十分で、スルヌホヌル加
工時のスミアの発生などスルヌホヌルの信頌性を
高く埗られないために倚局のプリント配線板に圢
成するこずができないなどの問題がある。 たた、䞊蚘のように誘電率を䜎くするためには
暹脂の含有率を高めるこずが有利であり、埓぀お
暹脂の含浞率の高いプリプレグを甚いお積局板を
補造するこずが望たれるずころであるが、倚段プ
レスによ぀お積局成圢する堎合には、加熱加圧成
圢の際に暹脂が倚量に流動するためにプリプレグ
の局間でスリツプが発生し易くなり、暹脂含有率
が45〜50重量以䞊では成圢が殆ど䞍可胜にな
る。このために倚段プレスで成圢する堎合は暹脂
含有率を高めるこずには限界がある。 本発明は䞊蚘の点に鑑みお為されたものであ
り、䜎い誘電率や誘電正接、高い耐熱性を保持す
るこずができ、加えお難燃性を高めるこずができ
る積局板の補造方法を提䟛するこずを第の目的
ずし、さらに暹脂含有率を高めお成圢しおこの点
においおも誘電率を䜎くするこずができるように
するこずを第の目的ずするものである。
However, when forming an insulating layer using the above resins, the glass transition temperature (Tg) of these resins is 180 to 200.
There are problems such as insufficient heat resistance, which is as low as 10°C, and the inability to form a multilayer printed wiring board because the reliability of the through holes cannot be obtained due to the occurrence of smear during through hole processing. Furthermore, as mentioned above, it is advantageous to increase the resin content in order to lower the dielectric constant, and therefore it is desirable to manufacture a laminate using prepreg with a high resin impregnation rate. In the case of laminated molding using a multi-stage press, slips are likely to occur between the prepreg layers due to a large amount of resin flowing during hot and pressure molding, and if the resin content is 45 to 50% by weight or more, Molding becomes almost impossible. For this reason, there is a limit to increasing the resin content when molding is performed using a multistage press. The present invention has been made in view of the above points, and provides a method for manufacturing a laminate that can maintain low dielectric constant, dielectric loss tangent, and high heat resistance, and can also improve flame retardancy. The first objective is to further increase the resin content and mold it, and the second objective is to make it possible to lower the dielectric constant in this respect as well.

【課題を解決するための手段】[Means to solve the problem]

本発明は、次匏に瀺されるポリ芳銙族シ
アネヌトに、 匏䞭Arは芳銙族。はC7〜20の倚環匏脂肪族
基。は各々独立に掻性氎玠を含たない眮換基。
は各々独立に又はの敎数
であり、ただしの合蚈はより倧きい
か又はに等しい。は各々独立にからたで
の敎数。は〜たでの数 次匏に瀺される難燃剀ず、 匏䞭及びR′は掻性氎玠を含たない芳銙族
又は臭玠化芳銙族の眮換基。は正数 次匏に瀺される難燃剀ず、 匏䞭は又はの敎数 ポリ芳銙族シアネヌトの反応觊媒ずを配合しおワ
ニスを調補するず共にこのワニスを基材に含浞し
お長尺垯状のプリプレグを䜜成し、このプリプレ
グを耇数枚重ねお匕き取りながら連続しお送り぀
぀加熱加圧しお積局成圢するこずを特城ずする積
局板の補造方法に係るものである。 以䞋本発明を詳现に説明する。 匏で瀺すポリ芳銙族シアネヌトずしお
は、特蚱出願公衚昭61−500434号公報によ぀お開
瀺されおいるものを甚いるこずができる。すなわ
ち、このポリ芳銙族シアネヌトは、埓来のポリト
リアゞンよりも加氎分解䜜甚に察しお著しく安定
で熱安定性に優れた芳銙族ポリトリアゞンポリ
芳銙族シアネヌト暹脂を䞎えるものである。 本発明においお甚いる匏のポリ芳銙族シ
アネヌトにおいお、芳銙族基Arは芳銙族基を含
む総おの基を意味するものであり、䟋えばベンれ
ン、ナフタリン、プナントラセン、アントラセ
ン、たたはビ芳銙族基、アルキレン郚分によ぀お
架橋された個以䞊の芳銙族基である。奜適には
ベンれン、ナフタリン、ビプニル、ビナフチ
ル、ゞプニルアルキレン基であり、特にベンれ
ン基であるこずが望たしい。C7〜20の倚環匏脂肪
族基ずは、個以䞊の環を含む脂肪族基を意味
するものであり、倚環匏脂肪族基には぀以䞊の
二重結合たたは䞉重結合が含たれおいおもよい。
奜適な倚環匏脂肪族基を列挙すれば次のものがあ
る。 匏䞭は−CH2−−−
The present invention provides a polyaromatic cyanate represented by the following formula (), (In the formula, Ar is aromatic. B is a C7-20 polycyclic aliphatic group. D is each independently a substituent containing no active hydrogen.
q, r, and s are each independently an integer of 0, 1, 2, or 3, provided that the sum of q, r, and s is greater than or equal to 2. t is an integer from 0 to 4, each independently. x is a number from 0 to 5) A flame retardant represented by the following formula (), (In the formula, R and R' are aromatic or brominated aromatic substituents that do not contain active hydrogen. n is a positive number) A flame retardant represented by the following formula (), (In the formula, n is an integer of 0, 1 or 2) A varnish is prepared by blending a polyaromatic cyanate with a reaction catalyst, and a base material is impregnated with this varnish to create a long belt-shaped prepreg. The present invention relates to a method for manufacturing a laminate, which is characterized in that a plurality of laminates are piled up, taken off, continuously fed, heated and pressurized, and laminated. The present invention will be explained in detail below. As the polyaromatic cyanate represented by the formula (), those disclosed in Patent Application Publication No. 1988-500434 can be used. That is, this polyaromatic cyanate provides an aromatic polytriazine (polyaromatic cyanate resin) that is significantly more stable against hydrolysis and has superior thermal stability than conventional polytriazine. In the polyaromatic cyanate of formula () used in the present invention, the aromatic group Ar means any group containing an aromatic group, such as benzene, naphthalene, phenanthracene, anthracene, or biaromatic group. group, two or more aromatic groups bridged by alkylene moieties. Suitable examples include benzene, naphthalene, biphenyl, binaphthyl, and diphenylalkylene groups, with benzene groups being particularly preferred. The C 7-20 polycyclic aliphatic group B means an aliphatic group containing two or more rings, and the polycyclic aliphatic group has one or more double bonds or triple bonds. may be included.
Suitable polycyclic aliphatic groups include the following. (In the formula, Y is -CH 2 -, -S-,

【匏】であ り、D1はC1〜5のアルキル基である。なかでも(a)
(b)(c)(d)(e)(f)(g)又は(l)のものが奜適であり、より
奜
適には(a)(b)(c)(d)(l)で、特に(a)のものが奜たしい。 匏䞭のは有機炭化氎玠基䞊に眮換され
埗る総おの眮換基を意味するものであるが、掻性
氎玠原子を含む眮換基は陀倖される。掻性氎玠原
子ずは酞玠、硫黄、窒玠原子に結合した氎玠原子
を意味する。匏䞭の各はそれぞれ独立し
お芏定されるものであり、䟋えば、アルキル、ア
ルケニル、アルキニル、アリヌル、アルカリヌ
ル、アルアルキル、ハロ、アルコキシ、ニトロ、
カルボキシレヌト、スルホン、スルフむド、カヌ
ボネヌトなどであり、奜適にはC1〜10のアルキル、
C1〜10のアルケニル、ニトロ、ハロであり、C1〜3
のアルキル、C1〜3のアルキニル、ブロモ、クロロ
が最も奜たしい。 たた匏䞭のはからたでの敎数であ
り、なかでも又はの敎数が奜たしく、よ
り奜適には又はで、最適にはである。匏
䞭の各はそれぞれ独立しお芏定される。
は又はの敎数であり、最
適にはである。はそれぞれ独立しお
芏定されるが、これらの合蚈は以䞊になるよう
に蚭定される。さらにはからたでの正数で
ある。匏のポリ芳銙族シアネヌトはが
〜たでの化合物類の混合物ずしお芋出だされる
ものであり、はこの混合物の平均の数ずしお芏
定されるものである。 匏のポリ芳銙族シアネヌトの奜たしい実
斜態様は次の匏で衚される。 しかしお、匏のポリ芳銙族シアネヌトか
ら埗られる芳銙族ポリトリアゞンポリ芳銙族シ
アネヌト暹脂は、䜎い誘電率ε2.78前埌、䜎
い誘電正接tanÎŽ0.003前埌及び高い耐熱性
ガラス転移枩床Tg250以䞊、オヌブン耐熱性300
℃皋床を有するずいう、プリント配線板の絶瞁
基板を構成する暹脂ずしお優れた特性を有する。
そこで本発明ではさらに匏で衚される難燃
剀ず匏で衚される難燃剀ずを配合しお、プ
リント配線板においお芁求される難燃特性を付䞎
するようにしたものである。 匏のプノキシ タヌミネヌテツド テ
トラブロモビスプノヌル カヌボネヌテツド
オリゎマヌにおいお、及びR′は掻性氎玠を
含たない芳銙族又は臭玠化芳銙族の眮換基であ
り、䟋えば
[Formula], and D 1 is a C 1-5 alkyl group. ) especially (a)
(b)(c)(d)(e)(f)(g) or (l) are preferred, more preferred are (a)(b)(c)(d)(l), Particularly preferred is (a). D in formula () means all substituents that can be substituted on the organic hydrocarbon group, but substituents containing active hydrogen atoms are excluded. Active hydrogen atom means a hydrogen atom bonded to an oxygen, sulfur, or nitrogen atom. Each D in formula () is defined independently, and includes, for example, alkyl, alkenyl, alkynyl, aryl, alkaryl, aralkyl, halo, alkoxy, nitro,
carboxylate, sulfone, sulfide, carbonate, etc., preferably C1-10 alkyl,
C 1-10 alkenyl, nitro, halo, C 1-3
most preferred are alkyl, C1-3 alkynyl, bromo, chloro. Further, t in formula () is an integer from 0 to 4, preferably an integer of 0, 1 or 2, more preferably 0 or 1, and most preferably 0. Each t in formula () is defined independently.
q, r, s are integers of 0, 1, 2, or 3, and optimally 1. Although q, r, and s are each defined independently, their total is set to be 2 or more. Furthermore, x is a positive number from 0 to 5. The polyaromatic cyanate of formula () has x of 0
It is found as a mixture of up to 5 compounds, where x is defined as the average number of this mixture. A preferred embodiment of the polyaromatic cyanate of formula () is represented by the following formula. Therefore, the aromatic polytriazine (polyaromatic cyanate resin) obtained from the polyaromatic cyanate of formula () has a low dielectric constant (ε2.78 or so), a low dielectric loss tangent (tan Ύ0.003 or so), and high heat resistance. (Glass transition temperature Tg250 or higher, oven heat resistance 300
It has excellent properties as a resin constituting the insulating substrate of a printed wiring board.
Therefore, in the present invention, a flame retardant represented by the formula () and a flame retardant represented by the formula () are further blended to impart flame retardant properties required for printed wiring boards. In the phenoxy-terminated tetrabromobisphenol A carbonated oligomer of formula (), R and R' are aromatic or brominated aromatic substituents containing no active hydrogen, e.g.

【匏】【formula】

【匏】【formula】

【匏】 R1はBrやCH3C2H5などやこれらが組み合
わされたものであり、は又はの敎数
などである。たた匏においおは特に限定
されない正数であるが、珟圚入手するこずができ
るものは10〜20の混合物のものである。が
これ以倖のものでも䜿甚するこずができる。 匏や匏の難燃剀の配合による難燃
効果はBr量に䟝存するものであり、UL芏栌の
94V−のレベルの難燃性を埗るためには、匏
のポリ芳銙族シアネヌトず匏及び匏
の難燃剀の合蚈量に察しお、Brの含有率が
〜10重量になるように匏の難燃剀を、
Brの含有率が〜10重量になるように匏
の難燃剀をそれぞれ配合するようにするのがよ
い。匏の難燃剀をBr含有率が〜10重量
になるように配合するには化合物ずしおの配合
量は10〜20重量に、たた匏の難燃剀を
Br含有率が〜10重量になるように配合する
には化合物ずしおの配合量は〜20重量にそれ
ぞれ蚭定するのが䞀般的である。難燃剀の配合量
が倚すぎるず耐熱性に問題が生じるおそれがある
ので、䞊限は䞊蚘の数倀に蚭定するのがよい。 匏のポリ芳銙族シアネヌトを重合させる
反応觊媒ずしおは、むミダゟヌル類、第䞉玚アミ
ン、ナフテン酞コバルトやオクチル酞コバルトな
ど有機コバルト塩類等の有機金属塩類を甚いるこ
ずができるものであり、特に有機コバルト塩類が
奜たしい。反応觊媒の配合量は特に限定されない
が、䟋えば有機コバルト塩類を反応觊媒ずしお甚
いる堎合には、ワニス埌述の所望するゲルタ
むムに応じお、匏のポリ芳銙族シアネヌト
の重量に察するコバルトむオンの重量比で10〜
700ppm皋床の範囲で配合される。 そしお䞊蚘匏のポリ芳銙族シアネヌト、
匏及び匏の難燃剀、及び反応觊媒等
を有機溶剀に溶解するこずによ぀お、ワニスを調
補する。有機溶剀ずしおは匏のポリ芳銙族
シアネヌトや匏及び匏の難燃剀を溶
解し反応に悪い圱響を䞎えないものであれば芳銙
族炭化氎玠、アルコヌル、ケトンなど特に限定さ
れない。䟋えばトル゚ン、アセトン、メチル゚チ
ルケトン、ゞメチルホルムアミド、メチルセロ゜
ルブなどを䞀皮もしくは二皮以䞊を混合しお甚い
るこずができる。ワニスの濃床は固圢分が50〜70
重量になるように調敎するのが䞀般的である。 しかしおプリプレグを調補するにあた぀おは、
基材ずしおは特に限定されるものではないが、ガ
ラス繊維の織垃あるいは䞍織垃を䜿甚するのが䞀
般的であり、この基材にワニスを含浞させお加熱
也燥する。ガラス繊維を構成するガラスずしおは
ガラスを甚いるのが䞀般的であるが、ガラス
の誘電率は7.23であるのに察しお、ガラスは誘
電率が4.47ず䜎いために誘電率の点ではガラス
のガラス繊維を甚いるのが望たしい。ただ、加工
性やコストの䞊ではガラスのガラス繊維が優䜍
である。尚、ガラスは誘電率が3.89ず極めお䜎
いが、加工性やコストの面で実甚的ではない。基
材ぞのワニスの含浞量は、基材に察する固圢分
匏の化合物ず匏、匏の化合
物の比率が50重量〜70重量になるように蚭
定するのが奜たしい。暹脂分の含有率を高くする
こずによ぀お既述のように誘電率を䜎くするこず
ができるものであり、このように暹脂の含有率を
50重量以䞊に高く蚭定するこずによ぀お、䟋え
ば基材ずしおガラスのガラス垃を甚いた堎合に
は、積局板の誘電率を3.3〜3.6皋床、誘電正接を
0.001〜0.005皋床に、基材ずしおガラスのガラ
ス垃を甚いた堎合には、積局板の誘電率を3.1〜
3.4皋床、誘電正接を0.001〜0.005皋床にするこず
ができる。暹脂の含有率が高すぎるず成圢の際に
暹脂が発泡したりしおむらな状態になり易いため
に、含浞率の䞊限は䞊蚘のように70重量に蚭定
するのが奜たしい。プリプレグを調補する際の加
熱也燥条件は、反応觊媒の配合量などによ぀お圱
響されるが、本発明では連続成圢プレスによ぀お
成圢をおこなうために倚段プレスの堎合よりもプ
リプレグの反応床を若干進行させるようにしおお
くのが奜たしく、䟋えば170℃でのゲルタむムが
45〜70秒皋床になるようにプリプレグの反応床を
蚭定するのが奜たしい。プリプレグの反応床をこ
の皋床に蚭定するには前蚘ワニスの170℃でのゲ
ルタむムは〜分皋床に蚭定するのがよい。 本発明においおは、基材ずしお長尺垯状のもの
を甚いお長尺垯状にプリプレグを䜜成するもので
あり、ロヌル状に巻いお保管に䟛するのがよい。
そしお、䟋えば第図に瀺すようにしお連続成圢
プレスで積局板を補造するこずができる。第図
は䞊䞋䞀察のスチヌルベルトを具備したダ
ブルベルト方匏の連続成圢プレス装眮を瀺すもの
であり、耇数枚のプリプレグ をロヌルか
ら連続しお繰り出しながらこれらを重ねるず共
に、さらにこの䞊䞋の䞡面もしくは片面に長尺垯
状の金属箔を重ね、これらをスチヌルベルト
間に連続しお導入する。スチヌルベルト
には加熱装眮が具備されおおり、スチヌル
ベルト間においおプリプレグは加圧され
ながら加熱され、プリプレグに含浞されたポリ
芳銙族シアネヌトが重合硬化し、耇数枚のプリプ
レグが積局されるず共に倖局に金属箔が接着
された䞡面金属箔匵り若しくは片面金属箔匵りの
積局板が成圢される。そしおこの積局板は冷
华ロヌルによ぀おスチヌルベルト間から
匕き出され぀぀冷华され、さらに切断機によ぀
お所定の長さに裁断される。このように連続成圢
プレスの工法においおは、プリプレグは匕き取
りによる匕匵力が䜜甚した状態でスチヌルベルト
間で加熱加圧成圢されるものであり、各プ
リプレグ 間で滑るような自由な動きが生
じるこずなく成圢がなされる。埓぀おプリプレグ
ずしお暹脂の含有率の高いものを甚いおも倚段
プレスによる堎合のような暹脂の流れに䌎぀おプ
リプレグ間にスリツプが発生するようなおそれ
がなく、暹脂の含浞率の高いプリプレグを甚い
お暹脂の含有率の高い積局板を成圢するこずが
できるのである。ここで、金属箔ずしおはアルミ
ニりムキダリア局付き9Ό厚の銅箔や、18Ό厚、
35Ό厚、70Ό厚、105Ό厚の䞡面粗面化銅箔などを
甚いるこずができる。たたこの連続成圢プレスで
の成圢条件は、成圢枩床170〜230℃、成圢圧力10
〜50Kgcm2、成圢時間スチヌルベルト間
の通過時間〜分間皋床に蚭定するのが䞀般
的である。 䞊蚘のようにしお成圢した䞡面金属箔匵り若し
くは片面金属箔匵りの積局板の金属箔を゚ツ
チング加工等しお回路を圢成するずによ぀お内
局プリント配線板を䜜成するこずができる。そ
しお第図に瀺すようにこの内局プリント配線板
をプリプレグを介しお耇数枚重ねるず共に最
倖局に金属箔を重ね、これを加熱加圧成圢する
こずによ぀お、倚局のプリント配線板を䜜成する
こずができる。成圢条件は、加熱枩床を170℃〜
230℃、圧力を最高圧力で30〜40Kgcm2皋床、時
間を90〜120分皋床に蚭定するのが䞀般的である。
成圢埌に220〜230℃皋床の枩床でアフタヌキナア
ヌする堎合には成圢枩床は170〜180℃皋床で十分
である。
[Formula] (R 1 is Br, CH 3 , C 2 H 5 , etc., or a combination thereof, m is an integer of 1, 2, or 3)
etc. In the formula (), n is a positive number that is not particularly limited, but those currently available are mixtures where n=10 to 20. Other values of n can also be used. The flame retardant effect of formula () or formula () combination of flame retardants depends on the amount of Br, and is based on the UL standard.
In order to obtain flame retardancy at the level of 94V-0, the content of Br must be 5 to 10% by weight relative to the total amount of the polyaromatic cyanate of formula () and the flame retardant of formula () and formula (). % flame retardant of formula (),
Formula () so that the Br content is 5 to 10% by weight
It is best to mix each flame retardant. In order to blend the flame retardant of formula () so that the Br content is 5 to 10% by weight, the compound amount as a compound should be 10 to 20% by weight, and the flame retardant of formula () should be blended at 10 to 20% by weight.
In order to achieve a Br content of 3 to 10% by weight, the amount of each compound is generally set to 6 to 20% by weight. If the amount of flame retardant is too large, problems may arise in heat resistance, so the upper limit is preferably set to the above value. As the reaction catalyst for polymerizing the polyaromatic cyanate of formula (), organic metal salts such as imidazoles, tertiary amines, organic cobalt salts such as cobalt naphthenate and cobalt octylate can be used, and in particular Organic cobalt salts are preferred. Although the amount of the reaction catalyst is not particularly limited, for example, when organic cobalt salts are used as the reaction catalyst, the amount of cobalt ions relative to the weight of the polyaromatic cyanate of formula () may be adjusted depending on the desired gel time of the varnish (described later). Weight ratio: 10~
It is blended in a range of about 700ppm. and polyaromatic cyanate of the above formula (),
A varnish is prepared by dissolving formula (), a flame retardant of formula (), a reaction catalyst, etc. in an organic solvent. The organic solvent is not particularly limited as long as it dissolves the polyaromatic cyanate of formula () and the flame retardant of formula () and formula () and does not adversely affect the reaction, such as aromatic hydrocarbons, alcohols, and ketones. For example, toluene, acetone, methyl ethyl ketone, dimethyl formamide, methyl cellosolve, etc. can be used alone or in combination of two or more. The concentration of varnish is 50 to 70 solids.
It is common to adjust it so that it is % by weight. However, when preparing prepreg,
The base material is not particularly limited, but woven or nonwoven glass fiber fabric is generally used, and this base material is impregnated with varnish and dried by heating. E-glass is generally used as the glass that makes up the glass fibers, but while E-glass has a dielectric constant of 7.23, D-glass has a low dielectric constant of 4.47, so it is inferior in terms of dielectric constant. It is preferable to use D-glass fiberglass. However, E-glass fibers are superior in terms of processability and cost. Although Q glass has an extremely low dielectric constant of 3.89, it is not practical in terms of processability and cost. The amount of varnish impregnated into the base material should be set so that the ratio of solid content (compound of formula () to compound of formula (), formula ()) to the base material is 50% to 70% by weight. preferable. As mentioned above, the dielectric constant can be lowered by increasing the resin content.
By setting the value as high as 50% by weight or more, for example, if E-glass cloth is used as the base material, the dielectric constant of the laminate will be about 3.3 to 3.6, and the dielectric loss tangent will be about 3.3 to 3.6.
When D glass cloth is used as the base material, the dielectric constant of the laminate is 3.1 to 0.005.
It is possible to make the dielectric loss tangent about 3.4 and about 0.001 to 0.005. If the resin content is too high, the resin tends to foam during molding and become uneven, so it is preferable to set the upper limit of the impregnation rate to 70% by weight as described above. The heating and drying conditions when preparing prepreg are influenced by the amount of reaction catalyst blended, etc., but in the present invention, the reactivity of the prepreg is lowered than in the case of multistage press because the molding is performed using a continuous molding press. It is preferable to allow the gel to proceed slightly, for example, the gel time at 170℃ is
It is preferable to set the reactivity of the prepreg to about 45 to 70 seconds. In order to set the reactivity of the prepreg to this level, the gel time of the varnish at 170°C is preferably set to about 3 to 4 minutes. In the present invention, a prepreg is prepared in the form of a long strip using a long strip as a base material, and it is preferable to store it by winding it into a roll.
Then, a laminate can be manufactured using a continuous molding press, for example, as shown in FIG. Fig. 1 shows a double-belt type continuous forming press equipped with a pair of upper and lower steel belts 1, 1, in which a plurality of sheets of prepreg 2, 2... are continuously fed out from a roll and stacked on top of each other. Further, long strip-shaped metal foils 3 are stacked on both or one side of the upper and lower sides, and these are continuously introduced between the steel belts 1, 1. The steel belts 1 and 1 are equipped with a heating device, and the prepreg 2 is heated while being pressurized between the steel belts 1 and 1, and the polyaromatic cyanate impregnated into the prepreg 2 is polymerized and hardened, and the prepreg 2 is heated to form a plurality of sheets. The prepregs 2 are laminated and a metal foil 3 is bonded to the outer layer to form a double-sided metal foil-clad laminate 4 or a single-sided metal foil-clad laminate 4. This laminated plate 4 is cooled while being pulled out from between the steel belts 1 by a cooling roll 5, and further cut into a predetermined length by a cutter 6. In this way, in the continuous forming press method, the prepreg 2 is heated and press-formed between the steel belts 1, 1 under tension due to pulling, and the prepregs 2, 2... The molding is done without free movement. Therefore, even if a prepreg 2 with a high resin content is used, there is no risk of slips occurring between the prepregs 2 due to the flow of resin, unlike in the case of multistage pressing, and the prepreg has a high resin impregnation rate. 2 can be used to form a laminate 4 with a high resin content. Here, the metal foil is 9Ό thick copper foil with aluminum carrier layer, 18Ό thick copper foil,
Double-sided roughened copper foil with a thickness of 35Ό, 70Ό, or 105Ό can be used. The molding conditions for this continuous molding press are a molding temperature of 170 to 230°C and a molding pressure of 10°C.
It is common to set the pressure to ~50 kg/cm 2 and the forming time (passing time between the steel belts 1 and 1) to about 2 to 3 minutes. The inner layer printed wiring board 7 can be prepared by etching the metal foil 3 of the laminated board 4 with metal foil on both sides or one side formed as described above to form the circuit 8. Then, as shown in FIG. 2, a plurality of inner layer printed wiring boards 7 are stacked with prepreg 2 interposed therebetween, and a metal foil 3 is stacked on the outermost layer, which is heated and pressure molded to form a multilayer printed wiring board. can be created. Molding conditions include heating temperature of 170℃~
Generally, the temperature is set at 230°C, the maximum pressure is about 30 to 40 kg/cm 2 , and the time is about 90 to 120 minutes.
When after-curing at a temperature of about 220 to 230°C after molding, a molding temperature of about 170 to 180°C is sufficient.

【実斜䟋】【Example】

以䞋本発明を実斜䟋によ぀お詳述する。 実斜䟋  次匏に瀺されるポリ芳銙族シアネヌトダりケ
ミカル瀟補XU−71787を78重量郚、 匏においお及びR′が(b)匏で、が10
〜20の混合䜓の難燃剀臭玠化カヌボネヌトオリ
ゎマヌグレヌトレむク瀟補BC−58を15重量
郚、匏においおの難燃剀テトラブ
ロモビスプノヌルTBBAを重量郚そ
れぞれ採り党Br含有率は13重量になる、こ
れらをメチル゚チルケトンずN′−ゞメチル
ホルムアミドの混合溶媒に固圢分が60重量
になるように攪拌溶解し、これに反応觊媒ずし
おオクチル酞コバルトをポリ芳銙族シアネヌトに
察するコバルトむオンの重量比で300ppm添加し
お、ワニスを調補した。 このワニスを長尺の2116タむプガラス垃基材
日東玡瞟瀟補116Eに固圢分含量ポリ芳銙族
シアネヌトず難燃剀が63重量になるように含
浞し、160℃、分間の条件で加熱也燥するこず
によ぀おプリプレグを調補した。このプリプレグ
の170℃でのゲルタむムは60秒であ぀た。そしお
このように䜜成した長尺垯状のプリプレグをロヌ
ル状に巻き取぀た。 次にこの枚のプリプレグをロヌルから匕き出
し぀぀重ねるず共にその䞊䞋䞡偎に70Ό厚の長尺
の䞡面粗面化銅箔を重ね、これを第図に瀺すよ
うにしおダブルベルトのスチヌルベルト間に連続
しお通し、冷华ロヌルで匕き取り぀぀加熱加圧成
圢をおこな぀た。成圢条件は、加熱枩床200℃、
成圢圧力25Kgcm2、成圢時間分間送り速床
分であ぀た。このようにしおスチヌルベル
ト間で成圢された積局板を冷华ロヌルによ぀お40
Kgcm2の圧力で140℃で加圧冷华し、次いで切断
装眮で裁断したのちに電気オヌブンにお230℃、
時間の条件でアフタヌキナアヌさせるこずによ
぀お、厚み0.5mmの内局プリント配線板甚の䞡面
銅匵り積局板を埗た。 実斜䟋  基材ずしお2116タむプガラス垃基材の替わり
に2116タむプガラス垃基材日東玡瞟瀟補
WDX−723を甚いおプリプレグを䜜成するよ
うにした他は、実斜䟋ず同様に連続成圢プレス
しお厚み0.5mmの内局プリント配線板甚の䞡面銅
匵り積局板を埗た。 実斜䟋  実斜䟋で埗た䞡面銅匵り積局板の銅箔を゚ツ
チング凊理しお回路圢成するこずによ぀お内局プ
リント配線板を䜜成した。この枚の内局プリン
ト配線板をそれぞれの間に実斜䟋で埗た枚の
プリプレグを介しお重ねるず共にその䞊䞋にさら
に枚のプリプレグを介しお18Ό厚の銅箔を重
ね、これをピンラミネヌシペン法で局間の䜍眮決
めをした状態で倚段プレス成圢によ぀お、成圢枩
床170℃、成圢圧力40Kgcm2、成圢時間90分の条
件で積局成圢をおこない、さらに成圢埌に電気オ
ヌブンにお230℃、時間の条件でアフタヌキナ
アヌしお、厚み2.0mmの局の回路構成の倚局プ
リント配線板を埗た。 実斜䟋  実斜䟋で埗た䞡面銅匵り積局板から䜜成した
内局プリント配線板を甚い、埌は実斜䟋で䜜成
したプリプレグを甚いる他は実斜䟋ず同様にし
お厚み2.0mmの局の回路構成の倚局プリント配
線板を埗た。 比范䟋  ポリアミノビスマレむミド暹脂日本ポリむミ
ド瀟補ケルむミド601を固圢分が60重量にな
るように−メチル−−ピロリドンに溶解しお
ポリむミド暹脂ワニスを調補した。このワニスを
実斜䟋ず同様のガラス垃基材に暹脂含量が45
重量になるように含浞し、実斜䟋ず同様に也
燥しおプリプレグを䜜成した。次にこのプリプレ
グを枚重ねるず共にその䞊䞋䞡偎に70Ό厚の䞡
面粗面化銅箔を重ね、倚段プレス成圢によ぀お成
圢枩床170℃、成圢圧力40Kgcm2、成圢時間90分
の条件で積局成圢をおこない、さらに電気オヌブ
ンにお200℃、時間の条件でアフタヌキナアヌ
しお、厚み0.5mmの内局プリント配線板甚の䞡面
銅匵り積局板を埗た。このようにしお埗た䞡面銅
匵り積局板の銅箔を゚ツチング凊理しお回路圢成
をするこずによ぀お内局プリント配線板を䜜成
し、枚の内局プリント配線板をそれぞれの間に
䞊蚘ず同じ枚のプリプレグを介しお重ねるず共
にその䞊䞋にさらに枚のプリプレグを介しお
18Ό厚の銅箔を重ね、これを䞊蚘ず同じ条件で積
局成圢し、さらに200℃、時間の条件でアフタ
ヌキナアヌするこずによ぀お、厚み2.0mmの局
の回路構成を倚局プリント配線板を埗た。 比范䟋  実斜䟋で甚いたポリ芳銙族シアネヌトダり
ケミカル瀟補XU−71787のみを䜿甚しお実斜
䟋ず同様にしおワニスを調補し難燃剀は配合
せず、埌は実斜䟋ず同様にしおプリプレグを
䜜成するず共に実斜䟋ず同様にしお積局成圢及
びアフタヌキナアヌをおこな぀お、厚み0.5mmの
内局プリント配線板甚の䞡面銅匵り積局板を埗
た。 比范䟋  実斜䟋ず同じ匏のポリ芳銙族シアネヌ
ト、匏及び匏の難燃剀を甚い、匏
のポリ芳銙族シアネヌトを75重量郚、匏
の難燃剀を12.5重量郚、匏の難燃剀
を12.5重量郚それぞれ採り党Br含有率は13重量
になる、これらをメチル゚チルケトンず
N′−ゞメチルホルムアミドの混合溶媒に
固圢分が60重量になるように攪拌溶解し、これ
に反応觊媒ずしおナフテン酞コバルトをポリ芳銙
族シアネヌト暹脂に察するコバルトむオンの重量
比で150ppm添加しお、ワニスを調補した。この
ワニスを2116タむプガラス垃基材に固圢分含量
が45重量になるように含浞し、150℃、分間
の条件で加熱也燥するこずによ぀おプリプレグを
調補した。 次にこのプリプレグを枚重ねるず共にその䞊
䞋䞡偎に70Ό厚の䞡面粗面化銅箔を重ね、成圢枩
床170℃、成圢圧力40Kgcm2、成圢時間90分の条
件で倚段プレスで積局成圢をおこない、さらに成
圢埌に電気オヌブンにお230℃、時間の条件で
アフタヌキナアヌしお、厚み0.5mmの内局プリン
ト配線板甚の䞡面銅匵り積局板を埗た。 䞊蚘のようにしお埗た実斜䟋乃至及び比范
䟋乃至の積局板に぀いお、その電気的特性や
熱的特性などを枬定し、その結果を次衚に瀺す。
次衚においお、誘電率、誘電正接、耐燃性、オヌ
ブン耐熱性はJIS  6481に基づいお枬定をおこ
な぀た。たたガラス転移枩床は粘匟性スペクトル
のチダヌトから蚈枬した。
The present invention will be explained in detail below using examples. Example 1 78 parts by weight of polyaromatic cyanate (XU-71787 manufactured by Dow Chemical Company) represented by the following formula, In formula (), R and R' are formula (b), and n is 10
15 parts by weight of a flame retardant mixture of ~20 (brominated carbonate oligomer; BC-58 manufactured by Great Lakes), 7 parts by weight of a flame retardant (tetrabromobisphenol A: TBBA) with n = 0 in formula () (total Br content is 13% by weight), stirred and dissolved in a 1:1 mixed solvent of methyl ethyl ketone and N,N'-dimethylformamide to a solid content of 60% by weight, and reacted with this. A varnish was prepared by adding cobalt octylate as a catalyst at a weight ratio of 300 ppm of cobalt ion to polyaromatic cyanate. This varnish was impregnated into a long 2116 type E glass cloth substrate (116E manufactured by Nitto Boseki Co., Ltd.) so that the solid content (polyaromatic cyanate and flame retardant) was 63% by weight. A prepreg was prepared by heating and drying under the following conditions. The gel time of this prepreg at 170°C was 60 seconds. The long belt-shaped prepreg thus produced was then wound into a roll. Next, these four prepregs are pulled out from the roll and stacked, and a long double-sided roughened copper foil with a thickness of 70ÎŒ is stacked on both sides of the top and bottom, and this is placed between the steel belts of the double belt as shown in Figure 1. The material was passed through the film continuously, and hot and pressure molding was performed while taking it off with a cooling roll. The molding conditions are heating temperature 200℃,
Molding pressure 25Kg/cm 2 , molding time 2 minutes (feed rate 2
m/min). The laminate formed in this way between the steel belts is cooled for 40 minutes by cooling rolls.
Cooled under pressure at 140℃ with a pressure of Kg/ cm2 , then cut with a cutting device, and then heated in an electric oven at 230℃.
By performing after-curing for 2 hours, a double-sided copper-clad laminate for inner layer printed wiring boards with a thickness of 0.5 mm was obtained. Example 2 A 2116 type D glass cloth base material (manufactured by Nittobo Co., Ltd.) was used instead of a 2116 type E glass cloth base material as a base material.
A double-sided copper-clad laminate for an inner layer printed wiring board having a thickness of 0.5 mm was obtained by continuous molding and pressing in the same manner as in Example 1, except that the prepreg was created using WDX-723). Example 3 An inner layer printed wiring board was prepared by etching the copper foil of the double-sided copper-clad laminate obtained in Example 1 to form a circuit. These two inner-layer printed wiring boards are stacked with the two sheets of prepreg obtained in Example 1 interposed between them, and 18 Ό thick copper foil is layered above and below with two sheets of prepreg interposed between them, and this is pinned. After positioning the layers using the lamination method, multi-stage press molding was performed at a molding temperature of 170°C, a molding pressure of 40 kg/cm 2 , and a molding time of 90 minutes. After molding, the layers were placed in an electric oven for 230 min. C. for 2 hours to obtain a multilayer printed wiring board with a thickness of 2.0 mm and an 8-layer circuit configuration. Example 4 Eight layers with a thickness of 2.0 mm were prepared in the same manner as in Example 3, except that the inner layer printed wiring board made from the double-sided copper-clad laminate obtained in Example 2 was used, and the prepreg prepared in Example 2 was used. A multilayer printed wiring board with the following circuit configuration was obtained. Comparative Example 1 A polyimide resin varnish was prepared by dissolving polyamino bismaleimide resin (Kelimide 601 manufactured by Nippon Polyimide Co., Ltd.) in N-methyl-2-pyrrolidone so that the solid content was 60% by weight. This varnish was applied to the same D glass cloth substrate as in Example 2 with a resin content of 45%.
It was impregnated in an amount of % by weight and dried in the same manner as in Example 2 to prepare a prepreg. Next, 5 sheets of this prepreg were stacked together, and 70 Ό thick double-sided roughened copper foil was stacked on both the top and bottom sides, and multi-stage press molding was performed at a molding temperature of 170°C, a molding pressure of 40 kg/cm 2 , and a molding time of 90 minutes. Laminate molding was performed, and after-curing was carried out in an electric oven at 200° C. for 2 hours to obtain a double-sided copper-clad laminate with a thickness of 0.5 mm for an inner layer printed wiring board. By etching the copper foil of the double-sided copper-clad laminate obtained in this way to form a circuit, an inner layer printed wiring board was created, and two inner layer printed wiring boards were placed between each in the same manner as above. Layered through 3 sheets of prepreg, and layered with 3 more sheets of prepreg above and below.
By stacking 18ÎŒ thick copper foils, laminating them under the same conditions as above, and then post-curing them at 200℃ for 2 hours, we created a 2.0mm thick 8-layer circuit configuration with multilayer printed wiring. Got the board. Comparative Example 2 A varnish was prepared in the same manner as in Example 1 using only the polyaromatic cyanate (XU-71787 manufactured by Dow Chemical Company) used in Example 1 (no flame retardant was added), and the rest was carried out. A prepreg was prepared in the same manner as in Example 1, and laminated molding and after-curing were performed in the same manner as in Example 1 to obtain a double-sided copper-clad laminate having a thickness of 0.5 mm for an inner layer printed wiring board. Comparative Example 3 Using the same polyaromatic cyanate of formula (), formula () and flame retardant of formula () as in Example 1, 75 parts by weight of polyaromatic cyanate of formula () and flame retardant of formula () were used. 12.5 parts by weight of the flame retardant of formula () were taken (total Br content is 13% by weight), and these were mixed with methyl ethyl ketone, N,
A 1:1 mixed solvent of N'-dimethylformamide was stirred and dissolved so that the solid content was 60% by weight, and cobalt naphthenate was added thereto as a reaction catalyst at a weight ratio of 150 ppm of cobalt ions to the polyaromatic cyanate resin. A varnish was prepared. A prepreg was prepared by impregnating a 2116 type E glass cloth substrate with this varnish to a solid content of 45% by weight and drying it by heating at 150° C. for 4 minutes. Next, 5 sheets of this prepreg were stacked together, and 70 Ό thick double-sided roughened copper foil was layered on both the top and bottom sides, and laminated molding was performed in a multistage press at a molding temperature of 170°C, a molding pressure of 40 kg/cm 2 , and a molding time of 90 minutes. After molding, the product was after-cured in an electric oven at 230° C. for 2 hours to obtain a double-sided copper-clad laminate with a thickness of 0.5 mm for an inner layer printed wiring board. The electrical properties, thermal properties, etc. of the laminates of Examples 1 to 4 and Comparative Examples 1 to 3 obtained as described above were measured, and the results are shown in the following table.
In the following table, dielectric constant, dielectric loss tangent, flame resistance, and oven heat resistance were measured based on JIS C 6481. Moreover, the glass transition temperature was measured from the chart of the viscoelastic spectrum.

【衚】【table】

【衚】 衚の結果にみられるように、ポリ芳銙族シアネ
ヌトを重合させた芳銙族ポリトリアゞンポリ芳
銙族シアネヌト暹脂で絶瞁基板を圢成するよう
にした各実斜䟋のものは、ポリむミド暹脂で絶瞁
基板を圢成するようにした比范䟋のものよりも
誘電率や誘電正接が䜎く、しかもガラス転移枩床
や耐熱枩床のレベルも高く保持されおいるこずが
確認されるものであり、たたポリ芳銙族シアネヌ
トに難燃剀を配合した各実斜䟋のものでは、難燃
剀を配合しない比范䟋のHBレベルから94V−
のレベルに難燃性が高たるこずが確認される。
たた実斜䟋ず比范䟋ずの比范から明らかなよ
うに、暹脂の含有率が高くなるように連続成圢プ
レスによ぀お補造した実斜䟋のものは、倚段プ
レスによ぀お補造した暹脂の含有率が䜎い比范䟋
のものよりも誘電率を䜎くできるこずが確認さ
れる。
[Table] As seen in the results in the table, each example in which the insulating substrate was formed using aromatic polytriazine (polyaromatic cyanate resin) obtained by polymerizing polyaromatic cyanate was formed using polyimide resin. It is confirmed that the dielectric constant and dielectric loss tangent are lower than those of Comparative Example 1 in which an insulating substrate is formed, and the glass transition temperature and heat resistance temperature are also maintained at high levels. In each example in which a flame retardant was blended with group cyanate, the HB level was 94V-
It is confirmed that the flame retardancy increases to a level of 0.
Furthermore, as is clear from the comparison between Example 1 and Comparative Example 3, the resin of Example 1, which was manufactured using a continuous molding press to increase the resin content, was lower than the resin manufactured using a multistage press. It is confirmed that the dielectric constant can be lowered than that of Comparative Example 3, which has a lower content.

【発明の効果】【Effect of the invention】

䞊述のように本発明にあ぀おは、匏のポ
リ芳銙族シアネヌトに匏及び匏の難
燃剀を配合しお調補したワニスから䜜成したプリ
プレグを積局成圢するこずによ぀お積局板を補造
するようにしたので、ポリ芳銙族シアネヌトの重
合䜓の䜎い誘電率や誘電正接によ぀お積局板の高
呚波特性を高く確保するこずができるものであ
り、しかも難燃剀の配合によ぀お積局板の難燃グ
レヌドを高めるこずができるず共に、耐熱性のレ
ベルを高く保持するこずができるものである。た
た䞊蚘プリプレグを耇数枚重ねお匕き取りながら
連続しお送り぀぀加熱加圧する連続成圢プレスで
成圢をおこなうようにしたので、プリプレグは匕
き取りによる匕匵力が䜜甚しおプリプレグ間で滑
りが生じるようなこずがない状態で加熱加圧成圢
がされるこずになり、プリプレグずしお暹脂の含
有率の高いものを甚いおもプリプレグ間にスリツ
プが発生するようなおそれなく成圢をおこなうこ
ずがでるものであり、暹脂含浞率の高いプリプレ
グを甚いお暹脂含有率を高くしお誘電率がより䜎
くなるようにした積局板を成圢するこずができる
ものである。
As mentioned above, in the present invention, prepregs prepared from a varnish prepared by blending a polyaromatic cyanate of the formula () with a flame retardant of the formula () and the formula () are laminated by lamination molding. Since the plate was manufactured, the high frequency properties of the laminate can be ensured due to the low dielectric constant and dielectric loss tangent of the polyaromatic cyanate polymer, and the high frequency properties of the laminate can be ensured by adding flame retardants. This makes it possible to increase the flame retardant grade of the laminate and maintain a high level of heat resistance. In addition, since the molding is carried out using a continuous molding press that heats and presses multiple sheets of the prepreg stacked together and continuously fed while being pulled off, the prepregs are prevented from slipping due to the tensile force applied when they are pulled off. This means that even if prepreg with a high resin content is used, molding can be carried out without the risk of slips occurring between the prepregs. It is possible to mold a laminate with a lower dielectric constant by using a prepreg with a high resin content and a higher resin content.

【図面の簡単な説明】[Brief explanation of drawings]

第図はダブルベルト方匏の連続成圢工法を瀺
す抂略図、第図は倚局プリント配線板の補造の
積局構成を瀺す抂略図である。 はスチヌルベルト、はプリプレグ、は金
属箔、は積局板である。
FIG. 1 is a schematic diagram showing a double-belt continuous molding method, and FIG. 2 is a schematic diagram showing a laminated structure for manufacturing a multilayer printed wiring board. 1 is a steel belt, 2 is a prepreg, 3 is a metal foil, and 4 is a laminate.

Claims (1)

【特蚱請求の範囲】  次匏に瀺されるポリ芳銙族シアネヌト
に、 匏䞭Arは芳銙族。はC7〜20の倚環匏脂肪族
基。は各々独立に掻性氎玠を含たない眮換基。
は各々独立に又はの敎数
であり、ただしの合蚈はより倧きい
か又はに等しい。は各々独立にからたで
の敎数。は〜たでの数 次匏に瀺される難燃剀ず、 匏䞭及びR′は掻性氎玠を含たない芳銙族
又は臭玠化芳銙族の眮換基。は正数 次匏に瀺される難燃剀ず、 匏䞭は又はの敎数 ポリ芳銙族シアネヌトの反応觊媒ずを配合しお
ワニスを調補するず共にこのワニスを基材に含浞
しお長尺垯状のプリプレグを䜜成し、このプリプ
レグを耇数枚重ねお匕き取りながら連続しお送り
぀぀加熱加圧しお積局成圢するこずを特城ずする
積局板の補造方法。
[Claims] A polyaromatic cyanate represented by the primary formula (), (In the formula, Ar is aromatic. B is a C7-20 polycyclic aliphatic group. D is each independently a substituent containing no active hydrogen.
q, r, and s are each independently an integer of 0, 1, 2, or 3, provided that the sum of q, r, and s is greater than or equal to 2. t is an integer from 0 to 4, each independently. x is a number from 0 to 5) A flame retardant represented by the following formula (), (In the formula, R and R' are aromatic or brominated aromatic substituents that do not contain active hydrogen. n is a positive number) A flame retardant represented by the following formula (), (In the formula, n is an integer of 0, 1 or 2) A varnish is prepared by blending a polyaromatic cyanate with a reaction catalyst, and a base material is impregnated with this varnish to create a long belt-shaped prepreg. A method for manufacturing a laminate, which comprises stacking a plurality of laminates, continuously feeding them while taking them, heating and pressurizing them to form a laminate.
JP12865888A 1988-05-26 1988-05-26 Production of laminate Granted JPH01299837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12865888A JPH01299837A (en) 1988-05-26 1988-05-26 Production of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12865888A JPH01299837A (en) 1988-05-26 1988-05-26 Production of laminate

Publications (2)

Publication Number Publication Date
JPH01299837A JPH01299837A (en) 1989-12-04
JPH0424373B2 true JPH0424373B2 (en) 1992-04-24

Family

ID=14990249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12865888A Granted JPH01299837A (en) 1988-05-26 1988-05-26 Production of laminate

Country Status (1)

Country Link
JP (1) JPH01299837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053534A (en) * 2018-09-26 2020-04-02 パナ゜ニックマネゞメント株匏䌚瀟 Manufacturing method of laminate, manufacturing method of print circuit board, and laminate manufacturing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194211A (en) * 2001-10-29 2002-07-10 Hitachi Chem Co Ltd Resin composition for printed wiring board, varnish, prepreg, and laminate for printed wiring board, made therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053534A (en) * 2018-09-26 2020-04-02 パナ゜ニックマネゞメント株匏䌚瀟 Manufacturing method of laminate, manufacturing method of print circuit board, and laminate manufacturing equipment
WO2020066792A1 (en) * 2018-09-26 2020-04-02 パナ゜ニックマネゞメント株匏䌚瀟 Method of manufacturing laminated plate, method of manufacturing printed circuit board, and device for manufacturing laminated plate

Also Published As

Publication number Publication date
JPH01299837A (en) 1989-12-04

Similar Documents

Publication Publication Date Title
JP6717202B2 (en) Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board and printed wiring board for millimeter wave radar
EP0581314B1 (en) Modified dicyanate ester resins having enhanced fracture thoughness
WO2018008643A1 (en) Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
JP2016017091A (en) Thermosetting insulation resin composition, and insulation film with support, prepreg, laminate sheet and multilayer printed circuit board each using the same
JP2004002653A (en) Prepreg for printed circuit board and method for manufacturing the same, and printed circuit board
EP0449292B1 (en) Multilayer printed circuit board and production thereof
JPH0424373B2 (en)
US5206074A (en) Adhesives on polymide films and methods of preparing them
JP2654121B2 (en) Glass substrate for laminate and laminate
JPH1160692A (en) Resin composition for printed wiring board and printed wiring board using the same
JP3261061B2 (en) Resin composition for laminate, prepreg and laminate using the composition
JPH0424371B2 (en)
JPH0424370B2 (en)
JPH0424372B2 (en)
JP3261062B2 (en) Resin varnish for printed wiring board and method for producing prepreg and metal-clad laminate using the same
WO2024018946A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JPH02302446A (en) Prepreg and wiring board using the same prepreg
JPH0747637B2 (en) Curable resin composition
JPH0288673A (en) Resin composition for laminated sheet
JPH02214740A (en) Prepreg and circuit board produced by using the same
JPH05311071A (en) Thermosetting resin composition
JP3111389B2 (en) Low dielectric resin sheet and copper-clad laminate using the same
JP4390055B2 (en) Method for producing copper clad laminate
JP2002138199A (en) Resin composition for laminate, prepreg using the same and laminate
JPH0289635A (en) Treating method of glass base material for laminated board