JPH04243505A - Porous glass coated inorganic body and preparation thereof - Google Patents

Porous glass coated inorganic body and preparation thereof

Info

Publication number
JPH04243505A
JPH04243505A JP3005657A JP565791A JPH04243505A JP H04243505 A JPH04243505 A JP H04243505A JP 3005657 A JP3005657 A JP 3005657A JP 565791 A JP565791 A JP 565791A JP H04243505 A JPH04243505 A JP H04243505A
Authority
JP
Japan
Prior art keywords
porous glass
gel
coating layer
porous
coated inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3005657A
Other languages
Japanese (ja)
Inventor
Tatsuo Hara
龍雄 原
Akiko Miyake
明子 三宅
Shigeo Kamigaki
上垣 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP3005657A priority Critical patent/JPH04243505A/en
Publication of JPH04243505A publication Critical patent/JPH04243505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prepare a porous glass coated inorg. body excellent in resistance to corrosion, abrasion and heat, having higher strength as compared with porous glass obtained by a conventional sol.gel method, having both of excellent contact efficiency and pressure loss resistance and capable of developing physiochemical function such as adsorbing function over a long period of time. CONSTITUTION:A porous glass coated inorg. body wherein a porous glass coating layer is provided to the surface of an inorg. support by a sol.gel method is prepared by a method wherein a mixture of an organometallic compound- containing solution and an org. polymer is applied to the surface of the inorg. support and the coated support is heated to 500-800 deg.C not only to vetrify the dried gel but also to remove the org. polymer in said gel to form a porous glass coating layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、多孔質ガラス被覆無機
質体及びその製造方法に関し、詳細には、微細孔を多数
有して吸着機能、クロマト機能、触媒機能、触媒担体機
能、イオン交換機能等の物理化学的機能を発揮すると共
に、耐食性、耐摩耗性、耐熱性に優れて苛酷な条件下で
の使用に好適な多孔質ガラス被覆無機質体及びその製造
方法に関する。
[Industrial Application Field] The present invention relates to a porous glass-coated inorganic body and a method for producing the same, and more particularly, the present invention relates to a porous glass-coated inorganic body and a method for manufacturing the same. The present invention relates to a porous glass-coated inorganic body that exhibits such physicochemical functions as well as excellent corrosion resistance, abrasion resistance, and heat resistance and is suitable for use under severe conditions, and a method for producing the same.

【0002】0002

【従来の技術】吸着機能等の物理化学的機能を発揮する
多孔質材料は、微細な孔、例えば細孔半径:5〜10Å
程度の微細孔を多数有することが必要である。従来かか
る材料としては、有機系の樹脂からなる有機多孔質材、
及び、活性炭、ゼオライト、シリカゲル等の如く無機質
体よりなる無機多孔質材がよく知られている。尚、これ
らは、粒状や小片状のものが製造し易くて複雑な形状に
は製造し難いので、粒状や小片状の形状のものが多い。
[Prior Art] Porous materials that exhibit physicochemical functions such as adsorption functions have fine pores, for example, pore radius: 5 to 10 Å.
It is necessary to have a large number of minute pores. Conventionally, such materials include organic porous materials made of organic resins,
Inorganic porous materials made of inorganic substances such as activated carbon, zeolite, and silica gel are also well known. Incidentally, since it is easy to manufacture these in the form of granules or small pieces, and it is difficult to manufacture them into complex shapes, many of these are in the form of granules or small pieces.

【0003】0003

【発明が解決しようとする課題】ところが、前記従来の
有機多孔質材は、耐食性、耐摩耗性及び耐熱性に劣って
いるため、工業用プロセスには好適に使用し得えない。 一方、前記従来の無機多孔質材は、上記有機多孔質材に
比して耐食性、耐摩耗性及び耐熱性に優れているが、強
度が低く、気体や液体との接触効率を高めるため粉粒状
体にすると、圧損が大きく、且つ取扱い難いという難点
を有している。尚、塊状体のものにすると、圧損し難く
なると共に取扱い易くなるが、上記接触効率が悪くなっ
て機能低下を来すという問題点がある。
[Problems to be Solved by the Invention] However, the conventional organic porous materials described above are inferior in corrosion resistance, abrasion resistance, and heat resistance, and therefore cannot be suitably used in industrial processes. On the other hand, the conventional inorganic porous materials have superior corrosion resistance, abrasion resistance, and heat resistance compared to the organic porous materials, but they have low strength and are made into powder or granular materials to increase contact efficiency with gases and liquids. When used as a body, it suffers from large pressure loss and is difficult to handle. Incidentally, if the material is made into a lump, it becomes difficult to cause pressure loss and becomes easier to handle, but there is a problem that the above-mentioned contact efficiency deteriorates and the function deteriorates.

【0004】上記難点を改善し得る多孔質材料として分
相法やゾル・ゲル法により得られる多孔質ガラスが考え
られる。前者の分相法は、種々の金属酸化物を含むガラ
スを軟化点以下の温度で長時間熱処理して、骨格となる
金属酸化物相と可溶性の金属酸化物相とに分相させ、可
溶相を酸溶出することにより多孔質ガラスを製造するも
のである。後者のゾル・ゲル法は、有機金属化合物含有
溶液を乾燥ゲル化した後、加熱焼成してガラスを合成す
る方法であって、多孔質ガラスを製造し得る。尚、上記
加熱焼成温度を高くし過ぎると、焼結反応によりガラス
が緻密化して細孔が消失するため、多孔質ガラスは得ら
れない。
Porous glass obtained by a phase separation method or a sol-gel method can be considered as a porous material capable of improving the above-mentioned difficulties. The former phase separation method heat-treats glasses containing various metal oxides at temperatures below their softening point for a long time to separate them into a skeleton metal oxide phase and a soluble metal oxide phase. Porous glass is produced by eluting the phase with acid. The latter sol-gel method is a method in which glass is synthesized by drying and gelling an organometallic compound-containing solution and then heating and baking the solution, and can produce porous glass. Note that if the heating and firing temperature is set too high, the glass becomes dense due to the sintering reaction and the pores disappear, so that porous glass cannot be obtained.

【0005】かかる多孔質ガラスは、上記無機多孔質材
よりも耐摩耗性に優れると共に強度が高い。しかし、接
触効率及び耐圧損性がまだ不充分であって、優れた接触
効率及び耐圧損性を同時に有し得ない。即ち、接触効率
の高い粉粒状体にすると耐圧損性が不充分となり、耐圧
損性を高めるため粒径を大きくすると接触効率が不充分
となる。
[0005] Such porous glass has better wear resistance and strength than the above-mentioned inorganic porous materials. However, contact efficiency and pressure loss resistance are still insufficient, and it is not possible to have excellent contact efficiency and pressure loss resistance at the same time. That is, if the powder or granular material has a high contact efficiency, the pressure loss resistance becomes insufficient, and if the particle size is increased to increase the pressure loss resistance, the contact efficiency becomes insufficient.

【0006】又、上記従来の分相法では細孔半径:20
Å以下の微細孔を有するものを製造し得ないという問題
点がある。上記従来のゾル・ゲル法では、細孔半径:1
0Å程度の微細孔を有するものを容易に製造し得ず、又
、重要な細孔の比表面積(細孔半径及び細孔の大きさと
数等により定まるガラスの単位重量当りの細孔の表面積
)の再現性に欠けるという問題点がある。
[0006] In addition, in the conventional phase separation method described above, the pore radius: 20
There is a problem in that it is not possible to manufacture products with micropores of Å or less. In the above conventional sol-gel method, pore radius: 1
It is not easy to manufacture products with micropores of about 0 Å, and the specific surface area of the pores is important (the surface area of the pores per unit weight of glass determined by the pore radius, pore size, number, etc.) There is a problem with the lack of reproducibility.

【0007】本発明はこの様な事情に着目してなされた
ものであって、その目的は前記従来技術の有する問題点
を解消し、優れた耐食性、耐摩耗性及び耐熱性を有する
と共に、前記従来のゾル・ゲル法により得られる多孔質
ガラスに比して強度が高く、優れた接触効率及び耐圧損
性を同時に有し得る多孔質ガラス被覆無機質体及びその
製造方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to solve the problems of the prior art, provide excellent corrosion resistance, abrasion resistance, and heat resistance, and achieve the above-mentioned properties. The purpose of the present invention is to provide a porous glass-coated inorganic body that has higher strength than porous glass obtained by the conventional sol-gel method and can simultaneously have excellent contact efficiency and pressure loss resistance, and a method for producing the same. be.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る多孔質ガラス被覆無機質体及びその製
造方法は、次のような構成としている。
Means for Solving the Problems In order to achieve the above object, a porous glass-coated inorganic body and a method for producing the same according to the present invention have the following configuration.

【0009】即ち、請求項1に記載の多孔質ガラス被覆
無機質体は、無機質支持体と、該支持体の表面に有機金
属化合物含有溶液を塗布し焼成してなる多孔質ガラス被
覆層とからなることを特徴とする多孔質ガラス被覆無機
質体である。請求項2に記載の多孔質ガラス被覆無機質
体は、前記多孔質ガラス被覆層の孔の半径が10Å以下
である請求項1に記載の多孔質ガラス被覆無機質体であ
る。
That is, the porous glass-coated inorganic body according to claim 1 comprises an inorganic support and a porous glass coating layer formed by applying an organic metal compound-containing solution to the surface of the support and firing the coating. This is a porous glass-coated inorganic body characterized by the following. The porous glass-coated inorganic body according to claim 2 is the porous glass-coated inorganic body according to claim 1, wherein the radius of the pores of the porous glass coating layer is 10 Å or less.

【0010】請求項3に記載の多孔質ガラス被覆無機質
体の製造方法は、無機質支持体の表面に、有機金属化合
物含有溶液と有機高分子とを含む混合体を塗布し乾燥ゲ
ル化した後、 500〜800 ℃の温度で加熱してガ
ラス化すると共に該乾燥ゲル中の有機高分子を除去して
多孔質ガラス被覆層を形成せしめることを特徴とする多
孔質ガラス被覆無機質体の製造方法である。
The method for producing a porous glass-coated inorganic body according to claim 3 includes applying a mixture containing an organometallic compound-containing solution and an organic polymer to the surface of an inorganic support, drying and gelling the mixture, and then drying and gelling the mixture. A method for producing a porous glass-coated inorganic body, which comprises vitrifying it by heating at a temperature of 500 to 800°C and removing organic polymers in the dried gel to form a porous glass coating layer. .

【0011】[0011]

【作用】本発明に係る多孔質ガラス被覆無機質体は、前
記の如く、無機質支持体と、該支持体の表面に有機金属
化合物含有溶液を塗布し焼成してなる多孔質ガラス被覆
層とからなる。このように上記多孔質ガラス被覆層は、
有機金属化合物含有溶液を塗布し焼成してなるので、所
謂ゾル・ゲル法により得られる多孔質ガラスと同様の性
質を有し得る。又、上記無機質支持体としては例えばア
ルミナ、炭化物、セラミックス、ガラス等の如き材料で
構成し得るので、優れた耐食性及び耐熱性を有し得、又
、高強度及び高硬度を有し得ると共に優れた耐圧損性を
有し得る。
[Function] As described above, the porous glass-coated inorganic body of the present invention consists of an inorganic support and a porous glass coating layer formed by applying an organic metal compound-containing solution to the surface of the support and baking it. . In this way, the porous glass coating layer is
Since it is formed by coating and firing a solution containing an organic metal compound, it can have properties similar to porous glass obtained by the so-called sol-gel method. In addition, the inorganic support can be made of materials such as alumina, carbide, ceramics, glass, etc., so it can have excellent corrosion resistance and heat resistance, as well as high strength and hardness. It can have high pressure loss resistance.

【0012】従って、本発明に係る多孔質ガラス被覆無
機質体は、前記従来のゾル・ゲル法により得られる多孔
質ガラスと同様に優れた耐食性、耐摩耗性及び耐熱性を
有すると共に、前記従来のゾル・ゲル法により得られる
多孔質ガラスに比して強度が高く、優れた接触効率及び
耐圧損性を同時に有し得る。即ち、多孔質ガラス被覆層
が耐圧損性に優れた無機質支持体により支持されている
ので、全体として耐圧損性に優れており、そのため接触
効率の高い寸法形状にしても充分な高水準の耐圧損性を
確保し得て、優れた接触効率及び耐圧損性を同時に有し
得る。
[0012] Therefore, the porous glass-coated inorganic body according to the present invention has excellent corrosion resistance, abrasion resistance, and heat resistance similar to the porous glass obtained by the conventional sol-gel method, and also It has higher strength than porous glass obtained by the sol-gel method, and can have excellent contact efficiency and pressure loss resistance at the same time. In other words, since the porous glass coating layer is supported by an inorganic support with excellent pressure loss resistance, the overall pressure loss resistance is excellent, and therefore, even if the dimensions and shape have high contact efficiency, a sufficiently high level of pressure resistance can be achieved. It is possible to ensure loss resistance, and simultaneously have excellent contact efficiency and pressure loss resistance.

【0013】前記多孔質ガラス被覆層の孔の半径を10
Å以下にすると、物理化学的機能がより良く発揮される
ため、より高水準に優れた接触効率及び耐圧損性を同時
に有し得るようになる。これに対し、10Å超では細孔
の比表面積の低下に伴って接触効率が低下する。従って
、孔の半径を上記の如く10Å以下にすることが望まし
い。
[0013] The radius of the pores in the porous glass coating layer is 10
When the thickness is less than Å, physicochemical functions are better exhibited, so that a higher level of excellent contact efficiency and pressure loss resistance can be achieved at the same time. On the other hand, if it exceeds 10 Å, the contact efficiency decreases as the specific surface area of the pores decreases. Therefore, it is desirable that the radius of the hole be 10 Å or less as described above.

【0014】前記無機質支持体の形状は限定されず、粒
状や小片状のものの他、粉状、ビーズ状、板状、網状、
格子状、特殊形状のものを使用できる。無機質支持体の
構成材料は限定されず、耐食性及び耐熱性に優れると共
に強度及び硬度が高いものであればよく、例えばアルミ
ナ、炭化物、窒化物、セラミックス、ガラス、窯業原料
、窯業用無機顔料、無機質繊維材料、非酸化物系無機質
材料、金属、炭素系材料、又は、これらの混合体或いは
複合体を使用できる。
[0014] The shape of the inorganic support is not limited, and may be in the form of particles or small pieces, as well as powder, beads, plates, nets, etc.
You can use grid-like or special-shaped ones. The constituent material of the inorganic support is not limited and may be any material as long as it has excellent corrosion resistance and heat resistance as well as high strength and hardness, such as alumina, carbides, nitrides, ceramics, glass, ceramic raw materials, inorganic pigments for ceramics, and inorganic materials. Fibrous materials, non-oxide-based inorganic materials, metals, carbon-based materials, or mixtures or composites thereof can be used.

【0015】尚、前記多孔質ガラス被覆層は有機金属化
合物含有溶液の塗布及び焼成により得られるので、支持
体上にその形状にかかわらず密着良く設けることができ
、又、前記の如く支持体として種々の形状のものが使用
でき、従って、本発明に係る多孔質ガラス被覆無機質体
は、活性炭等の従来の無機多孔質材の場合の如き粒状や
小片状のものに限られず、種々の形状にして使用し得る
という利点がある。更には、上記焼成温度は比較的低い
ので、少ない加熱エネルギで製造し得るという利点もあ
る。
[0015] Since the porous glass coating layer is obtained by coating and baking a solution containing an organic metal compound, it can be provided on the support with good adhesion regardless of its shape. Various shapes can be used, and therefore, the porous glass-coated inorganic body according to the present invention is not limited to the granular or flaky shape as in the case of conventional inorganic porous materials such as activated carbon, but can be used in various shapes. It has the advantage that it can be used as Furthermore, since the above-mentioned firing temperature is relatively low, there is also the advantage that production can be performed with less heating energy.

【0016】前述の有機金属化合物含有溶液は、有機金
属化合物を必ず含有する溶液であって、更に無機塩を含
有せることができる。溶媒としてはアルコール及び/又
は水を使用できる。上記有機金属化合物としては金属ア
ルコキシドが代表的であるが、特に限定されるものでは
ない。金属アルコキシドには、例えばナトリウムエトキ
シド、カルシウムエトキシド、シリコンエトキシド等が
ある。
The above-mentioned organometallic compound-containing solution is a solution that necessarily contains an organometallic compound, and may further contain an inorganic salt. Alcohol and/or water can be used as a solvent. The organometallic compound is typically a metal alkoxide, but is not particularly limited. Examples of metal alkoxides include sodium ethoxide, calcium ethoxide, and silicon ethoxide.

【0017】本発明に係る多孔質ガラス被覆無機質体を
製造するには、無機質支持体の表面に有機金属化合物含
有溶液を塗布し乾燥ゲル化させた後、加熱焼成して多孔
質ガラス被覆層を形成させればよい。このとき、加熱焼
成温度等を調節することにより、多孔質ガラス被覆層の
孔径を変化させ得るが、前述の如く孔半径:10Å以下
にするのは比較的難しく、又、細孔の比表面積の再現性
に欠けることがある。
In order to produce the porous glass-coated inorganic body according to the present invention, an organic metal compound-containing solution is applied to the surface of the inorganic support, dried and gelled, and then heated and baked to form a porous glass coating layer. Just let it form. At this time, the pore diameter of the porous glass coating layer can be changed by adjusting the heating and firing temperature, etc., but as mentioned above, it is relatively difficult to reduce the pore radius to 10 Å or less, and the specific surface area of the pores Reproducibility may be lacking.

【0018】そこで、これらの点を改善べく種々検討し
たところ、請求項3に記載の多孔質ガラス被覆無機質体
の製造方法、即ち、無機質支持体の表面に、有機金属化
合物含有溶液と有機高分子とを含む混合体を塗布し乾燥
ゲル化した後、500〜800 ℃の温度で加熱してガ
ラス化すると共に該乾燥ゲル中の有機高分子を除去して
多孔質ガラス被覆層を形成せしめることを特徴とする多
孔質ガラス被覆無機質体の製造方法が有効であって、か
かる方法によれば確実に且つ容易に孔半径:10Å以下
にし得、又、細孔の比表面積の再現性を向上し得るよう
になることが判った。このようになる理由を以下記述す
る。
Therefore, various studies were conducted to improve these points, and the method for producing a porous glass-coated inorganic body according to claim 3, that is, a method for producing a porous glass-coated inorganic body, in which an organic metal compound-containing solution and an organic polymer are coated on the surface of an inorganic support. After applying a mixture containing the above and drying it into a gel, heating it at a temperature of 500 to 800°C to vitrify it and removing the organic polymer in the dried gel to form a porous glass coating layer. The characteristic method for producing a porous glass-coated inorganic body is effective, and according to this method, the pore radius can be reliably and easily reduced to 10 Å or less, and the reproducibility of the specific surface area of the pores can be improved. It turned out to be like this. The reason for this will be described below.

【0019】上記有機高分子は一般的に長さ:5〜20
Å程度の細長状の極小物質であり、有機金属化合物含有
溶液中に均一分散し得る。従って、上記混合体はかかる
有機高分子を含む有機金属化合物含有溶液であり、これ
を塗布し乾燥ゲル化させると、有機高分子が均一分散し
た乾燥ゲルとなる。
[0019] The above organic polymer generally has a length of 5 to 20
It is an extremely small substance with an elongated shape on the order of Å, and can be uniformly dispersed in a solution containing an organometallic compound. Therefore, the above-mentioned mixture is an organometallic compound-containing solution containing such an organic polymer, and when this is applied and dried to form a gel, it becomes a dry gel in which the organic polymer is uniformly dispersed.

【0020】該乾燥ゲルを 500〜800 ℃の温度
で加熱してガラス化すると共に該乾燥ゲル中の有機高分
子を除去すると、微細孔が形成される。即ち、乾燥ゲル
は有機高分子を含んだ多孔質であり、有機高分子はゲル
自体の細孔と共存しているため、上記加熱により有機高
分子は、先ずゲルの細孔表面近傍のものからガス化して
ゲル外に排出されると共にガラス化過程のゲル中にガス
通路を形成し、それを介して有機高分子は順次ガラス外
へ排出(除去)され、除去された部分自体が細長状極小
の空孔として残留し、細長状の微細孔が形成される他、
乾燥ゲル自体の微細孔も無孔化することなく残留し、よ
り多くの微細孔が形成されるので、細孔半径は5〜10
Å程度にし得る。ここで、乾燥ゲルの加熱温度を 50
0〜800 ℃としているのは、 500℃未満ではガ
ラス化が不充分となって強度や耐食性が悪くなり、80
0 ℃超では有機高分子の除去後、微細孔が塞がれ、多
孔質性が悪くなるからである。
[0020] When the dried gel is vitrified by heating at a temperature of 500 to 800°C and the organic polymer in the dried gel is removed, micropores are formed. In other words, the dry gel is porous and contains organic polymers, and since the organic polymers coexist with the pores of the gel itself, the heating described above first removes the organic polymers from those near the pore surface of the gel. The organic polymer is gasified and discharged from the gel, and a gas passage is formed in the gel during the vitrification process, and through this, the organic polymer is sequentially discharged (removed) from the glass, and the removed part itself becomes an elongated, extremely small In addition to remaining as pores and forming elongated micropores,
The micropores of the dry gel itself remain without becoming porous, and more micropores are formed, so the pore radius is 5 to 10.
It can be about Å. Here, the heating temperature of the dry gel is 50
The reason why the temperature is 0 to 800°C is that if it is less than 500°C, vitrification will be insufficient and the strength and corrosion resistance will deteriorate.
This is because if the temperature exceeds 0°C, the micropores will be blocked after the organic polymer is removed, resulting in poor porosity.

【0021】微細孔の状態は、乾燥ゲルの加熱条件及び
有機高分子の量、種類に応じて変化させられるので、極
めて制御し易くてその再現性に優れている。特に、有機
高分子添加量を変えることにより容易に細孔の径及び数
をほぼ一定に調節し得る。従って、細孔の比表面積の再
現性を大幅に向上し得て良好にし得る。故に、請求項3
に記載の方法によれば、確実に且つ容易に孔半径:10
Å以下にし得、又、細孔の比表面積の再現性を向上し得
るようになる。
Since the state of the micropores can be changed depending on the heating conditions of the dry gel and the amount and type of organic polymer, it is extremely easy to control and has excellent reproducibility. In particular, the diameter and number of pores can be easily controlled to be approximately constant by changing the amount of organic polymer added. Therefore, the reproducibility of the specific surface area of the pores can be greatly improved and improved. Therefore, claim 3
According to the method described in , hole radius: 10 can be reliably and easily
Å or less, and the reproducibility of the specific surface area of the pores can be improved.

【0022】尚、前記有機高分子としては、例えばポリ
エチレングリコール等のポリプロピレングリコールやポ
リアクリル酸、ポリビニルピロリドン、ポリビニルアル
コール等を使用すればよく、有機金属化合物含有溶液に
均一に混合でき、加熱除去し易いものであれば、その他
種々のものが使用でき、限定されるものではない。
[0022] As the organic polymer, for example, polypropylene glycol such as polyethylene glycol, polyacrylic acid, polyvinylpyrrolidone, polyvinyl alcohol, etc. may be used, and they can be uniformly mixed into a solution containing an organometallic compound and can be removed by heating. Various other materials can be used as long as they are easy to use, and there are no limitations.

【0023】[0023]

【実施例】(実施例1)シリコンエトキシド:25gr
、85%リン酸:1gr、エタノール:20gr、水:
20grを含む溶液を25℃で1時間攪拌して混合した
後、この混合溶液に直径:1mmのジルコニア球を浸漬
した。次いで、これを濾過した後、混合溶液の付着した
状態のジルコニア球をメッシュ上にて風乾して該混合溶
液をゲル化することにより、乾燥ゲルで被覆されたジル
コニア球を得た。次に、これを 500℃で加熱して乾
燥ゲルを多孔質ガラス化することにより、ジルコニア球
を無機質支持体とし、その表面に多孔質シリカガラス被
覆層を有してなる多孔質ガラス被覆無機質体を得た。
[Example] (Example 1) Silicon ethoxide: 25 gr
, 85% phosphoric acid: 1gr, ethanol: 20gr, water:
After stirring and mixing a solution containing 20 gr at 25° C. for 1 hour, a zirconia sphere having a diameter of 1 mm was immersed in this mixed solution. Next, after filtering this, the zirconia spheres to which the mixed solution had adhered were air-dried on a mesh to gel the mixed solution, thereby obtaining zirconia spheres covered with a dry gel. Next, this is heated at 500°C to turn the dry gel into porous vitrification, thereby producing a porous glass-coated inorganic body having a zirconia sphere as an inorganic support and a porous silica glass coating layer on its surface. I got it.

【0024】この多孔質ガラス被覆無機質体は、優れた
水分吸着機能及び耐圧損性を兼ね備え、又、耐食性、耐
摩耗性及び耐熱性に優れたものであった。
[0024] This porous glass-coated inorganic body had excellent moisture adsorption function and pressure loss resistance, and was also excellent in corrosion resistance, abrasion resistance, and heat resistance.

【0025】(実施例2)シリコンエトキシド:10g
r、ジルコニウムプロポキシド:2gr、エタノール:
20gr、水:0.1gr を含む溶液を25℃で1時
間攪拌して混合した後、該溶液にΦ:1.2mm のア
ルミナ球を浸漬した。次いで、実施例1と同様の方法に
より濾過、風乾、加熱して、アルミナ球(無機質支持体
)の表面に多孔質シリカ・ジルコニアガラス被覆層を有
してなる多孔質ガラス被覆無機質体を得た。但し、上記
加熱温度は 600℃とした。ガラス被覆層の孔径は1
.3 nmであった。
(Example 2) Silicon ethoxide: 10g
r, zirconium propoxide: 2gr, ethanol:
After stirring and mixing a solution containing 20gr of water and 0.1gr of water at 25°C for 1 hour, an alumina sphere having a diameter of 1.2mm was immersed in the solution. Next, it was filtered, air-dried, and heated in the same manner as in Example 1 to obtain a porous glass-coated inorganic body having a porous silica-zirconia glass coating layer on the surface of an alumina sphere (inorganic support). . However, the above heating temperature was 600°C. The pore size of the glass coating layer is 1
.. It was 3 nm.

【0026】上記多孔質ガラス被覆無機質体は、特に圧
壊強度に極めて優れていて、無機質支持体を有さずに全
体が多孔質シリカ・ジルコニアガラスからなるΦ:1.
2mm の粒子に比べて、圧壊強度が1桁高く、そのた
め極めて優れた接触効率及び耐圧損性を同時に有し得る
ものであった。又、上記多孔質ガラス被覆無機質体をパ
イレックスカラムに充填し、n−ブタンとi−ブタン異
性体の分離を行ったところ、分離性能が良くて、かかる
異性体分離に好適に使用し得ることが確認された。
The above-mentioned porous glass-coated inorganic body has particularly excellent crushing strength, and is entirely made of porous silica-zirconia glass without having an inorganic support.
The crushing strength was one order of magnitude higher than that of 2 mm 2 particles, and therefore it was possible to have extremely excellent contact efficiency and pressure loss resistance at the same time. In addition, when the above porous glass-coated inorganic material was packed in a Pyrex column and the n-butane and i-butane isomers were separated, it was found that the separation performance was good and it could be suitably used for such isomer separation. confirmed.

【0027】[0027]

【発明の効果】本発明は前述の如き構成を有し作用を成
すものであって、本発明に係る多孔質ガラス被覆無機質
体は、従来のゾル・ゲル法により得られる多孔質ガラス
と同様に優れた耐食性、耐摩耗性及び耐熱性を有すると
共に、従来のゾル・ゲル法により得られる多孔質ガラス
に比して強度が高く、優れた接触効率及び耐圧損性を同
時に有し得る。従って、本発明に係る多孔質ガラス被覆
無機質体は、苛酷な条件下の工業用プロセスにも好適に
使用し得、かかるプロセスにおいて吸着機能等の物理化
学的機能を長期間にわたって発揮し得るという効果を奏
するものである。
Effects of the Invention The present invention has the structure and functions as described above, and the porous glass-coated inorganic body according to the present invention is similar to the porous glass obtained by the conventional sol-gel method. In addition to having excellent corrosion resistance, abrasion resistance, and heat resistance, it has higher strength than porous glass obtained by conventional sol-gel methods, and can also have excellent contact efficiency and pressure loss resistance. Therefore, the porous glass-coated inorganic body according to the present invention can be suitably used in industrial processes under harsh conditions, and has the advantage of being able to exhibit physicochemical functions such as adsorption functions over a long period of time in such processes. It is something that plays.

【0028】上記多孔質ガラス被覆無機質体においてガ
ラス被覆層の孔半径を10Å以下にすると、物理化学的
機能を極めて高くし得るため、上記効果をより高水準に
発揮し得るようになる。本発明に係る多孔質ガラス被覆
無機質体の製造方法によれば、多孔質ガラス被覆層の孔
半径を確実に且つ容易に10Å以下にし得、又、細孔の
比表面積の再現性を向上し得るようになり、従って、上
記効果をより高水準に奏し得る多孔質ガラス被覆無機質
体が確実に得られるようになる。
[0028] When the pore radius of the glass coating layer in the porous glass-coated inorganic body is set to 10 Å or less, the physicochemical function can be extremely improved, and the above-mentioned effects can be exhibited to a higher level. According to the method for producing a porous glass-coated inorganic body according to the present invention, the pore radius of the porous glass coating layer can be reliably and easily reduced to 10 Å or less, and the reproducibility of the specific surface area of the pores can be improved. Therefore, it is possible to reliably obtain a porous glass-coated inorganic body that can exhibit the above-mentioned effects to a higher level.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  無機質支持体と、該支持体の表面に有
機金属化合物含有溶液を塗布し焼成してなる多孔質ガラ
ス被覆層とからなることを特徴とする多孔質ガラス被覆
無機質体。
1. A porous glass-coated inorganic body comprising an inorganic support and a porous glass coating layer formed by applying an organic metal compound-containing solution to the surface of the support and firing the coated layer.
【請求項2】  前記多孔質ガラス被覆層の孔の半径が
10Å以下である請求項1に記載の多孔質ガラス被覆無
機質体。
2. The porous glass-coated inorganic body according to claim 1, wherein the pore radius of the porous glass coating layer is 10 Å or less.
【請求項3】  無機質支持体の表面に、有機金属化合
物含有溶液と有機高分子とを含む混合体を塗布し乾燥ゲ
ル化した後、 500〜800 ℃の温度で加熱してガ
ラス化すると共に該乾燥ゲル中の有機高分子を除去して
多孔質ガラス被覆層を形成せしめることを特徴とする多
孔質ガラス被覆無機質体の製造方法。
3. A mixture containing an organometallic compound-containing solution and an organic polymer is applied to the surface of an inorganic support, dried and gelled, and then heated at a temperature of 500 to 800°C to vitrify and remove the organic polymer. 1. A method for producing a porous glass-coated inorganic body, which comprises forming a porous glass coating layer by removing an organic polymer in a dried gel.
JP3005657A 1991-01-22 1991-01-22 Porous glass coated inorganic body and preparation thereof Pending JPH04243505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005657A JPH04243505A (en) 1991-01-22 1991-01-22 Porous glass coated inorganic body and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005657A JPH04243505A (en) 1991-01-22 1991-01-22 Porous glass coated inorganic body and preparation thereof

Publications (1)

Publication Number Publication Date
JPH04243505A true JPH04243505A (en) 1992-08-31

Family

ID=11617188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005657A Pending JPH04243505A (en) 1991-01-22 1991-01-22 Porous glass coated inorganic body and preparation thereof

Country Status (1)

Country Link
JP (1) JPH04243505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639544A3 (en) * 1993-08-17 1997-07-09 Rohm & Haas Reticulated ceramic particles.
WO2002045848A1 (en) * 2000-12-07 2002-06-13 Sun Plastics Co., Ltd. Material for capturing chemical substance and method for producing the same, and chemical substance-capturing tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639544A3 (en) * 1993-08-17 1997-07-09 Rohm & Haas Reticulated ceramic particles.
WO2002045848A1 (en) * 2000-12-07 2002-06-13 Sun Plastics Co., Ltd. Material for capturing chemical substance and method for producing the same, and chemical substance-capturing tube
JPWO2002045848A1 (en) * 2000-12-07 2004-04-08 津田 孝雄 Chemical substance collector, method for producing the same, and chemical substance collection tube
US6723157B2 (en) 2000-12-07 2004-04-20 Takao Tsuda Material for capturing chemical substance, method for producing the same, and chemical substance-capturing tube
JP4670112B2 (en) * 2000-12-07 2011-04-13 孝雄 津田 Chemical substance collector, production method thereof, and chemical substance collection tube

Similar Documents

Publication Publication Date Title
US4039480A (en) Hollow ceramic balls as automotive catalysts supports
KR930005311B1 (en) Preparation of monolithic support structure containing high surface area agglomerates
JPH07187846A (en) Reticular ceramic article
JPS61212331A (en) Preparation of monolithic catalyst carrier having integratedhigh surface area phase
CN108261928A (en) Pure silicon carbide ceramics membrane component and preparation method thereof
CN102712539B (en) Method for producing hollow bodies having enclosed freely displaceable particles
CN112321270A (en) Photocatalytic anion ceramic tile containing modified porous material and preparation process thereof
JPH04243505A (en) Porous glass coated inorganic body and preparation thereof
JP4524425B2 (en) Ceramic nanoparticle-coated organic resin sphere particles, molded body thereof, porous ceramics, and production method thereof
JPH111318A (en) Production of zeolite granule with controlled pore size
JP4784719B2 (en) Method for producing inorganic porous composite containing dispersed particles
JPS5833017B2 (en) Functional material protection structure
JPH10258228A (en) Granular sintered body and its manufacture
JP4810003B2 (en) Removal of harmful ions in water
JPH06171977A (en) Production of porous glass
KR102333629B1 (en) Moisture adsorption filter for gas sensor based on anodic aluminum oxide substrate using ultrasonic spray method and method of manufacturing the same
CN115611606B (en) One-time fired TiO 2 Photocatalytic ceramic and preparation method thereof
JPH07144127A (en) Production of adsorption formed body
AU598734B2 (en) Improved monolithic catalyst supports incorporating a mixture of alumina and silica as a high surface area catalyst support material
JPH1085611A (en) Production of honeycomb carrier made of boria-silica-alumina composition
RU2352544C1 (en) Method for production of highly porous cellular glass-ceramic material
JPH0640955B2 (en) An improved monolithic catalyst support incorporating a mixture of alumina and silica as a high surface area catalyst support material.
JPS61118114A (en) Production of filter medium
JPH03215375A (en) Production of porous silicon carbide having low density
JPH03202116A (en) Silica glass filter