JPH03202116A - Silica glass filter - Google Patents

Silica glass filter

Info

Publication number
JPH03202116A
JPH03202116A JP34370989A JP34370989A JPH03202116A JP H03202116 A JPH03202116 A JP H03202116A JP 34370989 A JP34370989 A JP 34370989A JP 34370989 A JP34370989 A JP 34370989A JP H03202116 A JPH03202116 A JP H03202116A
Authority
JP
Japan
Prior art keywords
particle size
intermediate layer
silica powder
silica glass
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34370989A
Other languages
Japanese (ja)
Other versions
JP2934866B2 (en
Inventor
Kuniko Andou
安藤 久爾子
Koichi Shiraishi
耕一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP1343709A priority Critical patent/JP2934866B2/en
Publication of JPH03202116A publication Critical patent/JPH03202116A/en
Application granted granted Critical
Publication of JP2934866B2 publication Critical patent/JP2934866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles

Abstract

PURPOSE:To enhance chemical resistance and permeability by laminating an intermediate layer and a filter layer to a porous support composed of a non- crystalline silica powder sintered body with purity of 99.9% or more to form a silica glass filter. CONSTITUTION:A non-crystalline silica powder having purity of 99.9% or more and a mean particle size of 5-100mum and containing 150ppm or less of alkali, alkali metal, heavy metals and an element of the Group BIII in the total amount is subjected to press molding and the obtained molded body is baked at about 1500 deg.C to obtain a support being the sintered body of the non-crystalline silica powder. A slurry containing a non-crystalline silica powder having a mean particle size of 1-25mum is cast on the support to bond silica particles thereto and baked at about 300 deg.C to form an intermediate layer. Subsequently, a slurry containing a non-crystalline silica powder having a mean particle size of 0.1-1mum is cast on the intermediate layer and baked at about 1200 deg.C to laminate a filter layer thereto to obtain a silica glass filter.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体製造プロセス等で使用される反応ガス
等のガスの濾過に使用するシリカガラスガスフィルター
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silica glass gas filter used for filtering gases such as reaction gases used in semiconductor manufacturing processes and the like.

E従来の技術〕 従来、この種のガスフィルターとしては、アルミナ、炭
化けい素、ムライト等のセラミックスからなるセラミッ
クフィルター、又はバイコール方式によるガラスフィル
ターが知られている。
E. Prior Art Conventionally, as this type of gas filter, ceramic filters made of ceramics such as alumina, silicon carbide, and mullite, and glass filters based on the Vycor system are known.

[発明が解決しようとする課題」 しかしながら、上記従来のセラミックフィルターにおい
ては、その構成粒子が結晶質で多面体で絡み合った構造
となるため、濾過ガスの流れが複雑となって圧力損失が
大きくなると共に、透過率が低下する。又、焼結した粒
子間の境界に明瞭な粒界を生じ、この粒界には、粒界偏
析により粒子内の不純物等が集まって粒子間物が形成さ
れやすく、この粒子間物が腐食性ガスによって侵される
ことによって不純物を溶出すると共に、強度が低下する
問題がある。
[Problem to be solved by the invention] However, in the conventional ceramic filter described above, the constituent particles are crystalline and have a polyhedral entangled structure, which complicates the flow of filtered gas and increases pressure loss. , the transmittance decreases. In addition, clear grain boundaries are formed at the boundaries between sintered particles, and at these grain boundaries, impurities within the grains gather due to grain boundary segregation and intergranular substances are likely to be formed, and these intergranular substances are corrosive. There is a problem that impurities are eluted by being attacked by gas and the strength is reduced.

又、バイコール方式のガラスフィルターにおいては、そ
の中に含まれるふっ素、アルカリイオン等の溶出により
、不純物の混入が起こる問題がある。
Further, in the Vycor type glass filter, there is a problem that impurities are mixed in due to the elution of fluorine, alkali ions, etc. contained therein.

そこで、本発明は、高純度で、耐薬品性に優れ、かつ高
透過率で、有効濾過面積を向上し得るシリカガラスガス
フィルターの提供を目的とする。
Therefore, an object of the present invention is to provide a silica glass gas filter that has high purity, excellent chemical resistance, high transmittance, and can improve the effective filtration area.

[課題を解決するための手段] 前記課題を解決するため、本発明のシリカガラスガスフ
ィルターは、純度が99.9%以上で、アルカリ、アル
カリ金属、重金属類及びBIII属の元素の総量が15
0ppm以゛下の非晶質シリカ粉末の焼結体からなる多
孔質の支持体、中間層及び濾過層を順次積層して構成さ
れ、支持体の構成粒子の平均粒径の5〜100μm、中
間層の構成粒子の平均粒径を1〜25μm、及び濾過層
の構成粒子の平均粒径を0.1〜1μmとしたものであ
る。
[Means for Solving the Problems] In order to solve the above problems, the silica glass gas filter of the present invention has a purity of 99.9% or more and a total amount of alkali, alkali metals, heavy metals, and elements of group BIII of 15%.
It is constructed by sequentially laminating a porous support made of a sintered body of amorphous silica powder of 0 ppm or less, an intermediate layer, and a filtration layer, and the average particle diameter of the constituent particles of the support is 5 to 100 μm. The average particle size of the particles constituting the layer is 1 to 25 μm, and the average particle size of the particles constituting the filtration layer is 0.1 to 1 μm.

〔作 用〕[For production]

上記手段においては、支持体、中間層及び濾過層により
、いわゆる非対称膜の構造となると共に、構成粒子が非
晶質であるため、結晶質のもののように粒界に粒子同相
が形成されるようなことはなく、均一な連続構造を有し
、かつ固着粒子が球状に近くなり、その表面が平滑とな
る。又、負の静電チャージが非常に大きくなる。
In the above method, the support, the intermediate layer, and the filtration layer form a so-called asymmetric membrane structure, and since the constituent particles are amorphous, the same phase of particles is formed at the grain boundaries as in crystalline particles. Instead, it has a uniform continuous structure, and the fixed particles have a nearly spherical shape and have a smooth surface. Also, the negative electrostatic charge becomes very large.

中間層は、支持体と濾過層との結合を強化する一方−1
有効濾過面積を増大する。
While the intermediate layer strengthens the bond between the support and the filtration layer-1
Increases effective filtration area.

支持体の構成粒子の平均粒径が、5μm未満であるとガ
スの透過が悪くなり、100μmを超えると気孔径が大
きくなって中間層及び濾過層が欠落しやすくなる。
If the average particle size of the constituent particles of the support is less than 5 μm, gas permeation will be poor, and if it exceeds 100 μm, the pore size will become large and the intermediate layer and filtration layer will be likely to be missing.

中間層の構成粒子の平均粒径が、1μm未満であると支
持体の気孔中に入り込んで目詰まりを起こし、ガスの透
過性が悪くなり、25μmを超えると支持体及び濾過層
との結合力が弱まって濾過層の強度が低下し、かつ有効
濾過面積の向上に付与しない。
If the average particle size of the constituent particles of the intermediate layer is less than 1 μm, they will enter the pores of the support and cause clogging, resulting in poor gas permeability, and if it exceeds 25 μm, the bonding strength between the support and the filtration layer will be reduced. This weakens the strength of the filtration layer, and does not improve the effective filtration area.

又、濾過層の構成粒子の平均粒径が、0.1tLm未満
であると中間層の気孔中に入り込んでガスの透過率が低
下すると共に、腐食性気体に対する耐性が低下し、1μ
mを超えるとフィルターの平均気孔径が大きくなって半
導体製造プロセスで問題となる微小ダスト等を捕集する
ことが難しい。
In addition, if the average particle size of the particles constituting the filtration layer is less than 0.1 tLm, they will enter the pores of the intermediate layer, reducing gas permeability and reducing resistance to corrosive gases.
If it exceeds m, the average pore diameter of the filter becomes large, making it difficult to collect microscopic dust and the like that cause problems in semiconductor manufacturing processes.

[実施例〕 以下、本発明の実施例を詳細に説明する。[Example〕 Examples of the present invention will be described in detail below.

実施例1 火炎法(四塩化けい素(SiC1−1を酸素−水素炎中
で熱分解してシリカ(SiO□)を得る方法、以下同じ
)で合成した合成シリカガラスカレットをシリカガラス
製ボールミル中で乾式粉砕し、平均粒径40μmのシリ
カ粉末を得た。
Example 1 A synthetic silica glass cullet synthesized by a flame method (method of thermally decomposing silicon tetrachloride (SiC1-1 in an oxygen-hydrogen flame to obtain silica (SiO□), the same applies hereinafter) was placed in a silica glass ball mill. The powder was dry-pulverized to obtain silica powder with an average particle size of 40 μm.

この粉末に水を添加し、スリップ・キャスティングによ
り直径15mm5厚さ2mmの円板に成形した。
Water was added to this powder and it was molded into a disc with a diameter of 15 mm and a thickness of 2 mm by slip casting.

成形体を1500℃の温度で焼成し、非晶質シリカ粉末
の焼結体からなる多孔質の支持体を作製した。
The molded body was fired at a temperature of 1500° C. to produce a porous support made of a sintered body of amorphous silica powder.

一方、火炎法で合成した合成シリカガラスカレットをシ
リカガラス製ボールミル中で湿式粉砕し、平均粒径5μ
mのシリカ粉末を含むスラリーを得た。このスラリーを
上記支持体の上面に流し、シリカ粒子を付着させた後、
1300℃の温度で焼成し、支持体上に非晶質シリカ粉
末の焼結体からなる多孔質の中間層を積層した。
On the other hand, synthetic silica glass cullet synthesized by the flame method was wet-pulverized in a silica glass ball mill, and the average particle size was 5μ.
A slurry containing m silica powder was obtained. After pouring this slurry onto the top surface of the support and attaching silica particles,
It was fired at a temperature of 1300° C., and a porous intermediate layer made of a sintered body of amorphous silica powder was laminated on the support.

次いで、火炎法で合成した合成シリカガラスカレットを
シリカガラス製ボールミル中で湿式粉砕し、平均粒径1
μmのシリカ粉末を含むスラリーを得た。このスラリー
を上記中間層の上面に流し、シリカ粒子を付着させた後
、1200℃の温度で焼成し、中間層上に非晶質シリカ
粉末の焼結体からなる微細な多孔質の濾過層を積層し、
支持体、中間層及び濾過層により、いわゆる非対称膜の
構造を有するシリカガラスフィルターを得た。
Next, the synthetic silica glass cullet synthesized by the flame method was wet-pulverized in a silica glass ball mill to give an average particle size of 1.
A slurry containing micrometer silica powder was obtained. This slurry is poured onto the upper surface of the intermediate layer to adhere silica particles, and then fired at a temperature of 1200°C to form a fine porous filtration layer made of a sintered body of amorphous silica powder on the intermediate layer. Laminated,
A silica glass filter having a so-called asymmetric membrane structure was obtained by the support, the intermediate layer, and the filtration layer.

このシリカガラスフィルターの平均気孔径は、0.5μ
mであった。
The average pore diameter of this silica glass filter is 0.5μ
It was m.

実施例2 実施例1と同様な方法によって得た平均粒径20μmの
シリカ粉末を火炎中で球状化した。
Example 2 Silica powder having an average particle size of 20 μm obtained by the same method as in Example 1 was spheroidized in a flame.

この球状粉末をプレス成形により直径15mm、厚さ2
mmの円板に成形した。成形体を1500℃の温度で焼
成し、非晶質シリカ粉末の焼結体からなる多孔質の支持
体を作成した。
This spherical powder is press-molded into a diameter of 15 mm and a thickness of 2.
It was molded into a disk of mm. The molded body was fired at a temperature of 1500° C. to produce a porous support made of a sintered body of amorphous silica powder.

一方、St″fiber法により、すなわち撹拌機付き
のシリカガラス製反応容器に、エタノール1500ml
On the other hand, by the St" fiber method, 1500 ml of ethanol was added to a silica glass reaction vessel equipped with a stirrer.
.

29%アンモニア水300m1を加えて混合して反応溶
液とする一方、エタノールlo00mlとテトラエトキ
ジシラン220m1を混合して原料溶液とし、これを1
0℃の温度に調整して反応溶液中に滴下し、8時間撹拌
した後乾燥して平均粒径1.5μmの球状単分散シリカ
粉末を得た。この粉末に水を添加して得たスラリーを上
記支持体の上面に流し、シリカ粒子を付着させた後、1
300℃の温度で焼成して支持体上に非晶質シリカ粉末
の焼結体からなる多孔質の中間層を積層した。
Add and mix 300 ml of 29% ammonia water to obtain a reaction solution, and mix 00 ml of ethanol and 220 ml of tetraethoxydisilane to obtain a raw material solution.
The mixture was added dropwise to the reaction solution at a temperature of 0° C., stirred for 8 hours, and then dried to obtain spherical monodisperse silica powder with an average particle size of 1.5 μm. A slurry obtained by adding water to this powder was poured onto the upper surface of the support, and silica particles were attached thereto.
A porous intermediate layer made of a sintered body of amorphous silica powder was laminated on the support by firing at a temperature of 300°C.

次いで、撹拌機付きのシリカガラス製反応容器に、エタ
ノール1500ml、29%アンモニア水200m1を
加えて混合して反応溶液とする一方、エタノール101
00Oとテトラエトキシシラン200m1を混合して原
料溶液とし、これを10℃の温度に調整した反応溶液中
に滴下し、8時間撹拌した後乾燥して平均粒径が05μ
mの球状単分散シリカ粉末を得た。この粉末に水を添加
して得たスラリーを上記中間層の上面に流し、シリカ粒
子を付着させた後、1200℃の温度で焼成して中間層
上に非晶質シリカ粉末の焼結体からなる微細な多孔質の
濾過層を積層し、支持体、中間層及び濾過層により、い
わゆる非対称膜の構造を有するシリカガラスフィルター
を得た。
Next, 1500 ml of ethanol and 200 ml of 29% aqueous ammonia were added to a silica glass reaction container equipped with a stirrer and mixed to prepare a reaction solution.
A raw material solution was prepared by mixing 00O and 200ml of tetraethoxysilane, which was dropped into a reaction solution adjusted to a temperature of 10°C, stirred for 8 hours, and then dried to obtain an average particle size of 05μ.
A spherical monodisperse silica powder of m was obtained. A slurry obtained by adding water to this powder is poured onto the upper surface of the intermediate layer to adhere silica particles, and then fired at a temperature of 1200°C to form a sintered body of amorphous silica powder on the intermediate layer. A silica glass filter having a so-called asymmetric membrane structure was obtained by laminating fine porous filtration layers such as the following: a support, an intermediate layer, and a filtration layer.

このシリカガラスフィルターの平均気孔径は、0.2μ
mであった。
The average pore diameter of this silica glass filter is 0.2μ
It was m.

上述した各シリカガラスフィルターは、その中に含まれ
る不純物の濃度が第1表に示すように小さく、かつシリ
カの純度が99.9%以上と非常に高いものであった。
Each of the above-mentioned silica glass filters contained a small concentration of impurities as shown in Table 1, and had a very high silica purity of 99.9% or more.

第  1  表 又、上記各シリカガラスフィルターによって窒素ガスを
濾過した際のガス透過量、気孔率は、アルミナ質セラミ
ックフィルター及びバイコール方式のガラスフィルター
のそれらを併記する第2第  3  表 従って、各シリカガラスフィルターのガス透過量及び気
孔率は、アルミナ質セラミックフィルター等のそれらよ
りよいことがわかる。
Table 1 also shows the amount of gas permeation and porosity when nitrogen gas is filtered through each of the silica glass filters mentioned above. It can be seen that the gas permeation amount and porosity of the glass filter are better than those of the alumina ceramic filter and the like.

更に、各シリカガラスフィルターを用いて各種のガスを
濾過し、耐薬品性を調べたところ、アルミナ質セラミッ
クフィルターのそれを併記する第4表に示すようになっ
た。
Furthermore, when various gases were filtered using each silica glass filter and the chemical resistance was examined, the results were shown in Table 4, which also includes that of the alumina ceramic filter.

表中○は良、△は可、×は不可を意味する。In the table, ○ means good, △ means good, and × means bad.

従って、各シリカガラスフィルターは、アルミナ質セラ
ミックフィルターより耐薬品性に優れていることがわか
る。
Therefore, it can be seen that each silica glass filter has better chemical resistance than an alumina ceramic filter.

〔発明の効果] 以上のように本発明によれば、支持体、中間層及び濾過
層により、いわゆる非対称膜の構造となるので、濾過面
積を極めて大きくすることができる。
[Effects of the Invention] As described above, according to the present invention, the support, the intermediate layer, and the filtration layer form a so-called asymmetric membrane structure, so that the filtration area can be extremely large.

又、構成粒子が非晶質であるため、セラミックフィルタ
ーのように粒界に偏析不純物を含む粒子同相が形成され
るようなことはなく、均一な連続構造を有するので、耐
薬品性及び強度を向上することができる。
In addition, since the constituent particles are amorphous, unlike ceramic filters, particles with the same phase containing segregated impurities are not formed at the grain boundaries, and have a uniform continuous structure, which improves chemical resistance and strength. can be improved.

更に、固着粒子が球状に近くなり、その表面が平滑にな
るので、濾過流体の流れが滑らかとなり、圧力損失を小
さくし得、かつ透過率を高めることができる。
Furthermore, since the fixed particles become nearly spherical and their surfaces become smooth, the flow of the filtration fluid becomes smooth, pressure loss can be reduced, and the permeability can be increased.

更に又、ガスの濾過に際し、フィルターの負のの静電チ
ャージが非常に大きくなるので、小さな粒子、特に正に
帯電した粒子を捕獲することができる。
Furthermore, during gas filtration, the negative electrostatic charge of the filter is so large that small particles, especially positively charged particles, can be captured.

又、中間層が支持体と濾過層との結合を強化するので、
フィルターの強度を向上することができる。
In addition, since the intermediate layer strengthens the bond between the support and the filtration layer,
The strength of the filter can be improved.

特に、支持体、中間層及び濾過層の構成粒子の平均粒径
をそれぞれ所要の範囲とすることにより、ガスの濾過に
最適なガスフィルターを得ることができる。
In particular, by adjusting the average particle diameters of the particles constituting the support, intermediate layer, and filtration layer within required ranges, a gas filter optimal for gas filtration can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)純度が99.9%以上で、アルカリ、アルカリ金
属、重金属類及びBIII属の元素の総量が150ppm
以下の非晶質シリカ粉末の焼結体からなる多孔質の支持
体、中間層及び濾過層を順次積層して構成され、支持体
の構成粒子の平均粒径を5〜100μm、中間層の構成
粒子の平均粒径が1〜25μm、及び濾過層の構成粒子
の平均粒径を0.1〜1μmとしたことを特徴とするシ
リカガラスガスフィルター。
(1) The purity is 99.9% or more, and the total amount of alkali, alkali metals, heavy metals, and BIII group elements is 150 ppm.
It is constructed by sequentially laminating a porous support made of a sintered body of amorphous silica powder, an intermediate layer, and a filtration layer as shown below, and the average particle size of the constituent particles of the support is 5 to 100 μm. A silica glass gas filter characterized in that the particles have an average particle size of 1 to 25 μm, and the particles constituting the filtration layer have an average particle size of 0.1 to 1 μm.
JP1343709A 1989-12-28 1989-12-28 Silica glass gas filter Expired - Fee Related JP2934866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343709A JP2934866B2 (en) 1989-12-28 1989-12-28 Silica glass gas filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343709A JP2934866B2 (en) 1989-12-28 1989-12-28 Silica glass gas filter

Publications (2)

Publication Number Publication Date
JPH03202116A true JPH03202116A (en) 1991-09-03
JP2934866B2 JP2934866B2 (en) 1999-08-16

Family

ID=18363645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343709A Expired - Fee Related JP2934866B2 (en) 1989-12-28 1989-12-28 Silica glass gas filter

Country Status (1)

Country Link
JP (1) JP2934866B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195612A (en) * 2009-02-23 2010-09-09 Toshinori Kokubu High purity silicic acid porous glass, method for producing the same, silicon raw material, high purity silica raw material, gas separation membrane, fuel cell material and method for concentrating solution
EP3173386A1 (en) * 2015-11-25 2017-05-31 Heraeus Quarzglas GmbH & Co. KG Method for producing a composite body from a material with a high silica content
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195612A (en) * 2009-02-23 2010-09-09 Toshinori Kokubu High purity silicic acid porous glass, method for producing the same, silicon raw material, high purity silica raw material, gas separation membrane, fuel cell material and method for concentrating solution
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter
EP3173386A1 (en) * 2015-11-25 2017-05-31 Heraeus Quarzglas GmbH & Co. KG Method for producing a composite body from a material with a high silica content
US10106453B2 (en) 2015-11-25 2018-10-23 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a composite body of a material with a high silicic acid content

Also Published As

Publication number Publication date
JP2934866B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
CA1196873A (en) Filtration structure of ceramic material
EP0857702A1 (en) Method for producing ceramic substrate
JPH02504124A (en) Method for producing a porous inorganic membrane containing a heat-reactive inorganic binder
CN107619296A (en) A kind of preparation method of the full silicon carbide filter film of dish-style
JP5118345B2 (en) Method for producing ceramic porous body
CA1219441A (en) Porous ceramic filter body and a method to fabricate such a body
US5824220A (en) Inorganic porous support for a filter membrane, and method of manufacture
JPH075396B2 (en) Alumina particle-bonded porous body and method for producing the same
US5089134A (en) Silica glass filter
JP2934866B2 (en) Silica glass gas filter
JP2934864B2 (en) Method for producing silica glass filter
JPH04110007A (en) Ceramic filter and its production
JP2934865B2 (en) Silica glass filter
CA2402550A1 (en) Method for producing monolithic, porous, ceramic shaped bodies and the shaped bodies produced according to this method
JP2934863B2 (en) Size separation unit
JPH03202112A (en) Preparation of silica glass filter
JP2934862B2 (en) Silica glass filter
JP3194016B2 (en) Silica glass filter
JPH03202113A (en) Preparation of silica glass filter
JP2847550B2 (en) Silica glass filter
JPH03202117A (en) Silica glass filter and its preparation
JP3481962B2 (en) Method for manufacturing porous metal filter
JPH03202110A (en) Silica glass filter and its preparation
JP3057312B2 (en) Ceramic porous body for filtration and separation
JP3057313B2 (en) Ceramic porous membrane and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees