JP4810003B2 - Removal of harmful ions in water - Google Patents

Removal of harmful ions in water Download PDF

Info

Publication number
JP4810003B2
JP4810003B2 JP2001167006A JP2001167006A JP4810003B2 JP 4810003 B2 JP4810003 B2 JP 4810003B2 JP 2001167006 A JP2001167006 A JP 2001167006A JP 2001167006 A JP2001167006 A JP 2001167006A JP 4810003 B2 JP4810003 B2 JP 4810003B2
Authority
JP
Japan
Prior art keywords
activated alumina
particles
water
ions
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001167006A
Other languages
Japanese (ja)
Other versions
JP2002361238A (en
Inventor
俊夫 蘆谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001167006A priority Critical patent/JP4810003B2/en
Publication of JP2002361238A publication Critical patent/JP2002361238A/en
Application granted granted Critical
Publication of JP4810003B2 publication Critical patent/JP4810003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水中有害物イオンの除去方法に関する。更に詳細には、活性アルミナ粒子を吸着材として使用する水中有害物イオンの除去方法に関する。
【0002】
【従来の技術】
近年の都市化や産業活動の活発化により、水質汚染が問題となっている。特に、砒素、燐、弗素等の有害物による水質汚染は、低濃度でも生物等にとって深刻な問題が生じる場合がある。しかし、水中の有害物を有効に除去する方法は、未だ確立されていないのが現状である。
【0003】
これらの有害物は、水系では金属酸化物イオン、弗素イオンの形態で陰イオンとして溶解している。このような水中有害物イオンの除去方法の1つとして、活性アルミナ粒子による吸着法が注目されている。安価で大量供給が可能なバイヤー法由来の活性アルミナ粒子は、微量のNa2 Oを不純物として含有するため、水中でアルカリ性を示す。そのため、活性アルミナ粒子表面の酸素が水酸化イオンを吸着して負に荷電すると、活性アルミナ粒子の有害物イオンに対する吸着容量が低下する。
【0004】
活性アルミナ粒子を酸処理すると、有害物イオンを始めとする水中陰イオンに対する粒子の吸着容量が向上することが知られている。
【0005】
堀ノ内和夫と蘆谷俊夫(住友化学誌1998−II、p4−11)は、活性アルミナ粒子に酸成分を被着してNa2 Oを中和すると、酸処理後の活性アルミナ粒子は、砒酸や弗素等の陰イオンに対する吸着容量及び吸着速度が向上することを報告している。Na2 O中和による吸着特性の向上は、活性アルミナ粒子を含む水のpHが陰イオンの吸着に不利なアルカリ性から吸着に有利な中性から弱酸性に改質されるためである。
【0006】
酸処理に際し、硫酸や塩酸のような鉱酸に代えて硫酸アルミニウムや硫酸チタン溶液のような酸性金属塩溶液を使用すると、酸成分被着によるpHの低下効果だけでなく、被着した金属塩水和物のイオン交換作用により吸着容量が向上することが知られている。
【0007】
真島美智雄、田口洋治、小柳聡、小松聡[水質汚濁研究 Vol.10,No.8, p503−510(1987)]は、活性アルミナ粒子に硫酸チタン溶液を被着させて焼成すると弗素イオンに対する吸着容量が増加することを報告している。また、浦野紘平、亀屋隆志、高梨啓和等[月間地球環境、p56−59, No. 10 (1998)及び第33回日本水環境学会年会講演集、p50−51 (1999)]は、活性アルミナ粒子に硫酸アルミニウムを被着させると燐酸イオンに対する吸着容量が大幅に向上することを報告している。
【0008】
浦野と立川[用水と廃水 Vol. 29, No. 5, p3−12(1987)]によれば、硫酸アルミニウム被着活性アルミナ粒子の燐酸イオン吸着機構は、アルミナ表面のOH基及び硫酸基と燐酸イオンとのイオン交換反応である。
【0009】
Al23 ・3H2 O+2H2 PO4 - →2AlPO4 +2OH- +4H2 O (水和したアルミナ表面)
Al4 (OH)6 (SO43 +4H2 PO4 - →4AlPO4 +3SO4 2-+2H+ +6H2 O(アルミナ表面に被着した硫酸アルミニウム)
前記イオン交換反応により吸着容量を向上させる方法は、Na2 O成分を中和する方法に比べて、燐酸イオンの吸着量が通常一桁多い。
【0010】
次に、従来技術の問題点について記す。
【0011】
酸性金属塩被着活性アルミナ粒子を水中有害物イオンの吸着除去に適用するに際しては、有害物イオンに対する吸着容量及び吸着速度が水処理費に大きな影響を与える重要因子である。しかし、従来の酸性金属塩の被着方法は、成形した活性アルミナ粒子を酸性金属塩溶液に浸漬し、粒子内部に酸成分を浸透拡散させることにより被着させる方法(以下、浸漬法と記す)であり、被着による細孔容積の減少や粒子表面の細孔の閉塞が生じる。得られた粒子は、酸成分の粒子内濃度分布が不均一となって、粒子表面が高く粒子内部が低いM型分布になる。
【0012】
浦野と立川[Ind.Eng.Chem.Res.,Vol . 30 1893−1896(1991)]によれば、硫酸アルミニウム被着量を増加させると粒子の細孔容積が減少(有効吸着面積の減少)するため、酸被着量が活性アルミナ1g当たり0.2mmolに達すると吸着容量は上限に達し、0.6mmol以上になると吸着容量が減少する。すなわち、0.2mmol/gを超えて硫酸アルミニウムを被着させても吸着容量が増加せず、細孔容積の減少が生じるので、吸着速度を向上させることが困難であるという問題があった。
【0013】
【発明が解決しようとする課題】
そこで、本発明の目的は、コストが低く、水中の有害物イオンを効率的に除去する方法を提供することにある。
【0014】
【課題を解決するための手段】
本発明者らは、再水和性を有する粉末活性アルミナに酸性金属塩溶液を添加して成形するという酸処理操作と成形操作との一体化により、有害物イオンに対する吸着性能が向上した活性アルミナ粒子が得られることを発見し、本発明を完成するに至った。
【0015】
すなわち、本発明は、吸着材を用いて水中有害物イオンを除去する方法において、前記吸着材は酸性金属塩成分を粒子の表面から内部に至るまで均一な濃度分布となるように被着させた、平均粒子径0.3mm〜8mmの活性アルミナ粒子であることを特徴とする水中有害物イオンの除去方法に関する。
【0016】
本発明の除去方法に用いられる吸着材は、酸性金属塩成分を粒子の表面から内部に至るまで均一な濃度分布となるように被着させた活性アルミナ粒子である。
【0017】
ここで、「粒子の表面から内部に至るまで均一な濃度分布となるように被着させた」とは、酸性金属塩成分を被着させた活性アルミナ粒子の表面から内部まで、被着成分に由来する元素濃度を測定し、その濃度分布が均一であることを指標にする。前記元素濃度は、実施例に記載のように測定することができ、その濃度分布が均一であることは、例えば図1に記載のような方形型分布により示される。
【0018】
本発明において酸性金属塩とは、原料の活性アルミナに含まれるNa2 Oを中和しうるものであれば特に制限されないが、イオン交換反応による有害物イオンの吸着容量の増加という観点から、酸根としては硫酸根が好ましい。硫酸根を有する酸性金属塩としては、硫酸アルミニウム、硫酸チタン、硫酸ジルコニウム、硫酸ハフニウム、硫酸鉄、硫酸イットリウム、硫酸ランタン、硫酸セリウム等が好ましい具体例として挙げられ、安価で処理水が着色しないという観点から硫酸アルミニウムがより好ましい。
【0019】
本発明において活性アルミナに被着させた酸性金属塩成分の量は、除去目的に応じて適宜設定することができるが、硫酸アルミニウムを例にとると、活性アルミナ1グラム当たり0.2mmol以上であることが好ましく、より好ましくは0.3〜0.4mmolである。
【0020】
前記活性アルミナ粒子は、平均粒子径0.3mm〜8mmの球状であり、中でも0.5mm〜2mmの球状であることが好ましい。平均粒子径0.3mm未満の活性アルミナ粒子を用いると、活性アルミナ粒子を固定床に充填して吸着除去する場合、固定床の通水抵抗が高くなったり、原水中の濁質により固定床の目詰まりが生じ易くなることがあり、また移動床または回分式の吸着除去を行う場合には、吸着除去後に吸着剤である活性アルミナ粒子を水中から容易に分離することができなくなる。一方、平均粒子径8mmを超える活性アルミナ粒子を用いると、吸着量が減少したり、吸着速度が小さくなる。
【0021】
また、前記活性アルミナ粒子において、水銀圧入法で測定した細孔半径1.8nm〜100μm間の粒子の細孔容積は、有害物イオンの吸着性能を高めるという観点から、0.15ml/g以上であることが好ましく、0.2ml/g以上がより好ましい。
【0022】
前記水銀圧入法による測定方法は、実施例に記載されている。
【0023】
本発明の水中有害物イオンの除去方法は、前記活性アルミナ粒子を吸着材として用いることを特徴とする。本発明においては、前記活性アルミナ粒子を固定床に充填し、この固定床に有害物イオンを含有する原水を通水する方法が推奨される。本発明の方法を行うに際しては、通水前、原水のpHを調整しておくことが好ましい。原水のpHを予め調整することにより、有害物イオンを効率的に除去することができる。pHは、水中から除去する有害物イオンの種類、またこの有害物以外の他の元素のイオンなどが共存するときには、これらのイオンの種類、濃度に応じて適宜設定することが好ましい。例えば、原水中の炭酸イオン、珪酸イオンが存在するときは、原水のpHを7以下に調整することにより、有害物イオンを効率的に除去することができる。
【0024】
さらに、本発明では、通水前、原水の温度を調整しておくことが好ましい。温度は、通常5℃以上、さらには10℃以上、または40℃以下、さらには30℃以下が適当である。
【0025】
本発明において除去対象となる有害物としては、水中で陰イオンの形態で存在しているものが挙げられ、中性から弱酸性領域の水中で陰イオンに解離するものが好ましい。好ましい具体例としては、弗素、燐酸又は砒素の酸化物等が挙げられる。
【0026】
[作用効果]
本発明の有害物イオンの除去方法によると、酸性金属塩成分が粒子の表面から内部まで均一に被着して細孔容積の減少や粒子表面の細孔閉塞がほとんどない活性アルミナ粒子を吸着材として用いることにより、水中の有害物イオンを効率的に除去することができる。
【0027】
【発明の実施の形態】
以下、本発明を実施する際の詳細条件を説明する。
【0028】
本発明の有害物イオンの除去方法に用いられる吸着材は、以下のようにして製造することができる。すなわち、再水和性を有する粉末活性アルミナに酸性金属塩溶液を添加し、続いて活性アルミナ粒子に成形するという酸処理と粒子成形を同一工程で行う。
【0029】
前記再水和性を有する粉末活性アルミナとは、バイヤー法から得られた活性アルミナ又は市販の粉末水酸化アルミニウムを仮焼したものをいう。
【0030】
仮焼は、例えば、粉末水酸化アルミニウムを約500℃〜約700℃の熱ガス中に投入し、瞬間的に活性アルミナへ相転移させた後、回収する方法で行うことができる。
【0031】
前記再水和性を有する粉末活性アルミナの平均粒子径は、特に制限されるものではないが、造粒の容易さという観点から0.3〜200μmが好ましく、1〜20μmがより好ましい。平均粒子径を所望の範囲にするために、仮焼後の活性アルミナを粉砕してもよい。
【0032】
前記酸処理と粒子成形を同一工程で行う方法は、後述のように通常の造粒機を用いて行うことができる。本発明においては、再水和性を有する粉末状の活性アルミナが酸性金属塩溶液により再水和して硬化することを利用する。すなわち、粉末活性アルミナと酸性金属塩溶液との量比を、酸性金属塩溶液の蒸発乾涸を必要とせず、混練後そのまま造粒ができるような範囲とする。
【0033】
所定重量比の再水和性を有する粉末活性アルミナと酸性金属塩溶液とを造粒機に仕込み、常法で造粒して活性アルミナ粒子に成形する。造粒時に酸性金属塩溶液と再水和性を有する粉末活性アルミナが均一に混合するように、造粒操作を行う。造粒機の機種は特に制限を設けないが、球状の成形粒子を安価に製造したい場合は皿型造粒機又は撹拌造粒機が好ましい。
【0034】
撹拌造粒機のように一挙に粒子形成が行われるタイプの造粒機では、造粒機に仕込んだ酸性金属塩溶液と再水和性を有する粉末活性アルミナを低速撹拌で数分間混錬して両者を均一に混合し、かつ粉末微粒子に酸成分を被着させた後、撹拌速度を変化させて所定径の粒子に一挙に造粒するという手法を用いるのが好ましい。
【0035】
皿型造粒機のように核の表面に順次成形層を積み重ねて粒子を徐々に成長させるタイプの造粒機では、所定重量比の再水和性を有する粉末活性アルミナと酸性金属塩溶液とを造粒機に同時供給し、粉末活性アルミナに酸成分を被着させる操作と造粒操作を同時に行わせる。粉末と酸溶液の同時供給により核表面に形成される成形層の酸成分濃度は、皿型造粒期間中のどの時点でも同じとなり、方形の粒子内濃度分布を示す酸成分被着活性アルミナ粒子が得られる。
【0036】
再水和性を有する粉末活性アルミナと酸性金属塩溶液との重量比は、造粒成形が容易に行える重量比の範囲を選ぶ必要がある。前記重量比は、通常の場合、粉末重量100部に対し酸性金属塩溶液重量30〜80部の範囲である。
【0037】
造粒機に仕込む際の酸性金属塩溶液の濃度は、活性アルミナ粉末単位重量当たりに被着する酸成分量の設定値と、造粒成形が容易に行える活性アルミナ粉末重量/酸性金属塩溶液重量比の範囲から計算で求める。
【0038】
本発明においては、粉末活性アルミナは酸性金属塩溶液と再水和反応して硬化するので、成形用のバインダーを特に必要としない。粒子の強度を更に高くしたい場合は、有機又は無機のバインダー又は無機繊維体等を添加してもよい。
【0039】
本発明における酸成分被着量の定量的制御は、酸性金属塩溶液量を粉末活性アルミナの吸水率の範囲内に設定し、仕込んだ酸成分を全量被着させることにより行う。蒸発乾涸操作を要する浸漬法と比較して、定量的制御が容易である。また、活性アルミナ粒子のBET比表面積の低下という問題も生じない。
【0040】
このようにして得られた活性アルミナ粒子は、加熱乾燥をしない状態でも粒子は濡れておらず、外観は乾燥品と同等である。
【0041】
成形した粒子の耐圧強度を向上させる目的で、加熱熟成工程を付加して再水和反応を完結させたり、焼成工程を付加することもできる。
【0042】
多孔質の成形粒子を得る目的で、粒度分布の狭い粒の揃った再水和性を有する粉末活性アルミナを原料として用いたり、成形時に気孔材を添加することもできる。したがって、成形条件を最適化すれば浸漬法より大きい細孔容積が得られる。
【0043】
【実施例】
以下実施例等により更に詳細に説明するが、本発明はかかる実施例等によりその範囲を制限されるものではない。
【0044】
[実施例]
(1)再水和性粉末活性アルミナの調製
バイヤー法により得られたNa2 O含有量0.16重量%のギブサイト(アルミナ3水和物)を、約700℃の熱ガス中に投入して瞬間仮焼した。その結果、灼熱減量は5%、平均粒子径15μmの主としてχ及びρの結晶形態よりなる再水和性粉末アルミナを得た。
【0045】
(2)硫酸アルミニウム被着球状活性アルミナ粒子の調製
前記(1)で得た再水和性粉末活性アルミナを撹拌造粒機(カワタ製スーパーミキサー20L−TO−75型)に仕込み、前記粉末活性アルミナ1g当たり0.3mmolに相当する硫酸アルミニウム溶液を添加した後、低速撹拌(180rpm)を行って、粉末活性アルミナと硫酸アルミニウム溶液を均一に混錬してから撹拌速度を高速に変えて造粒し(360〜1050rpm)、球状粒子に成形した。
【0046】
次に、撹拌造粒機から球状粒子を取出し、8mesh及び14meshの篩で篩別し、直径1〜2mmの球状粒子を得た。次いで、前記球状粒子を105℃で4時間加熱して再水和せしめ、平均粒子径1.8mmの硫酸アルミニウム被着活性アルミナ粒子を得た。
【0047】
得られた活性アルミナ粒子の物性を、表1に示す。
【0048】
BET比表面積(BET・Sw)は、直読式比表面積測定装置(カンタクローム製モノソーブ)を用い、窒素吸着法により測定した。
【0049】
硫黄含有量は、後述の粒子内硫黄濃度分布の結果から求めた。
【0050】
細孔容積は、水銀圧入式細孔計(マイクロメトリックス製オートポア・III 9420)を用いて測定した。
【0051】
(3)粒子内硫黄濃度分布の測定
前記(2)で得られた活性アルミナ粒子の被着硫酸アルミニウムの粒子内濃度分布は、粒子内の硫黄元素の濃度分布を測定することにより調べた。
【0052】
すなわち、前記活性アルミナ粒子を樹脂に埋め込み、1500番のサンドペーパーで乾式研磨して粒子断面を露出させ、線分析用試料を作成した。波長分散型電子線マイクロアナライザー(島津製EPM−810、PET分光結晶使用)の電子線を、加速電圧20KV,吸収電流0.05μA、ビーム径100μmφの条件で前記試料の粒子断面端部から中心部を経て他端部まで照射し、硫黄濃度の線分析を行った。
【0053】
得られた結果を図1に示す。硫酸アルミニウム被着活性アルミナ粒子の硫黄濃度分布は、粒子表面から粒子中心部まで濃度の均一な方形型分布であった。
【0054】
(4)燐酸イオン吸着速度の測定
有害物イオンの吸着実験として、回分式振とう実験による水中燐酸イオン吸着速度の測定を行った。2L三角フラスコに、pH7に調整した燐濃度0.50mg/lの燐酸水溶液1Lと前記(2)で得られた硫酸アルミニウム被着活性アルミナ粒子(有姿品)0.25gを入れ、25℃の恒温振とう器内で所定時間(24〜246時間)振とうした。次いで、吸着処理液を0.45μmメンブレンフィルターで濾過し、濾液の燐濃度をJIS K 0102モリブデンブルー吸光光度法により分析した。各吸着時間に対応する液中燐濃度の値を表1に示す。
【0055】
[比較例]
(5)浸漬法による硫酸アルミニウム被着球状活性アルミナ粒子の調製
バイヤー法由来の市販球状活性アルミナ粒子(住友化学工業株式会社製、KHD−12:平均粒子径は1.8mm、Na2 O含有量は0.26%、、BET比表面積は270m2 /g、細孔容積は0.37cm3 /g)に、活性アルミナ1g当たりの硫酸アルミニウム被着量が0.23mmolとなるように硫酸アルミニウム被着を行い、M型分布の試料を調製した。
【0056】
すなわち、KHD−12の粒子300gを樹脂製網に入れ、pH2の硫酸2500gを張った酸浸漬槽中に浸潰し、液を撹拌させながら2時間接触させた後、槽から球状活性アルミナ粒子の入った樹脂製網を引上げた。次いで、酸浸漬槽中の硫酸を排出し、濃度0.14mol/lの硫酸アルミニウム溶液500mlに入れ替えた。前記硫酸アルミニウム溶液の入った槽中に、前記球状活性アルミナ粒子入りの樹脂製網を入れ、液を撹拌させながら25℃で24時間接触させた後、槽から樹脂製網を引上げて液切りした。球状活性アルミナ粒子を乾燥機に入れ、110℃で約1日乾燥し、硫酸アルミニウム被着球状活性アルミナ粒子337gを得た。
【0057】
前記浸漬法による硫酸アルミニウム被着活性アルミナ粒子の物性を表1に示す。各測定値は、実施例と同様に測定した値である。
【0058】
粒子内の硫黄濃度分布を実施例と同様の方法で測定し、結果を図1に示す。粒子内硫黄濃度分布は、粒子表面が高く粒子中心部が低いM形分布であった。
【0059】
前記(5)で得られた硫酸アルミニウム被着活性アルミナ粒子を用いて、前記(4)と同様の方法で燐酸イオン吸着速度を測定した。その結果を表1に示す。
【0060】
【表1】

Figure 0004810003
表1より、実施例で得られた硫酸アルミニウム被着球状活性アルミナ粒子(実施例品)は、硫黄含有量が仕込み硫黄量にほぼ等しい0.29mmolの硫酸アルミニウムに該当する値(2.9%)を示した。一方、比較例で得られた硫酸アルミニウム被着球状活性アルミナ粒子(比較例品)は、実施例品よりも硫酸アルミニウムの被着量が23%少なかった。また、実施例品は、BET比表面積や細孔容積も比較例品より大きい値を示した。燐酸イオンの吸着速度については、実施例品は比較例品よりも大きい吸着速度を示した。
【0061】
また、実施例品を用いる回分式の燐酸イオン吸着実験では、濾過により、吸着処理液から吸着剤である活性アルミナ粒子を容易に回収することができた。
【0062】
したがって、実施例品を用いる本発明の水中有害物イオンの除去方法は、比較例品を用いる従来法よりも有害物イオンに対する吸着速度が速く、水中の有害物を効率的に除去することができ、吸着剤の回収も容易であった。
【図面の簡単な説明】
【図1】硫酸アルミニウム被着活性アルミナ粒子断面の硫黄濃度分布を示すグラフ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing harmful substance ions in water. More specifically, the present invention relates to a method for removing harmful ions in water using activated alumina particles as an adsorbent.
[0002]
[Prior art]
Water pollution has become a problem due to recent urbanization and industrial activity. In particular, water pollution caused by harmful substances such as arsenic, phosphorus, and fluorine may cause serious problems for living organisms even at low concentrations. However, a method for effectively removing harmful substances in water has not been established yet.
[0003]
These harmful substances are dissolved as anions in the form of metal oxide ions and fluorine ions in the aqueous system. As one of the methods for removing such harmful ions in water, an adsorption method using activated alumina particles has attracted attention. The activated alumina particles derived from the Bayer method, which are inexpensive and can be supplied in large quantities, are alkaline in water since they contain a trace amount of Na 2 O as an impurity. Therefore, when oxygen on the surface of the activated alumina particles adsorbs hydroxide ions and is negatively charged, the adsorption capacity of activated alumina particles for harmful ions decreases.
[0004]
It is known that when the activated alumina particles are acid-treated, the adsorption capacity of the particles with respect to anions in water such as harmful ions is improved.
[0005]
Kazuo Horinouchi and Toshio Shibuya (Sumitomo Chemical Journal 1998-II, p4-11) showed that when activated acid particles were coated with an acid component to neutralize Na 2 O, the activated alumina particles after acid treatment were treated with arsenic acid or It has been reported that the adsorption capacity and adsorption rate for anions such as fluorine are improved. The improvement of the adsorption characteristics by Na 2 O neutralization is because the pH of the water containing the activated alumina particles is modified from an alkaline that is disadvantageous for adsorption of anions to a neutral acid that is advantageous for adsorption to weakly acidic.
[0006]
In the acid treatment, when an acidic metal salt solution such as aluminum sulfate or titanium sulfate solution is used instead of a mineral acid such as sulfuric acid or hydrochloric acid, not only the pH lowering effect due to the acid component deposition but also the deposited metal salt water It is known that the adsorption capacity is improved by the ion exchange action of the Japanese product.
[0007]
Michio Mashima, Yoji Taguchi, Satoshi Koyanagi, Satoshi Komatsu [Water Pollution Research Vol.10, No.8, p503-510 (1987)] adsorbs a titanium sulfate solution on activated alumina particles and adsorbs them to fluorine ions. Reports increased capacity. Also, Kohei Urano, Takashi Kameya, Keikazu Takanashi, etc. [Monthly Global Environment, p56-59, No. 10 (1998) and 33rd Annual Meeting of Japan Society on Water Environment, p50-51 (1999)] are active. It has been reported that the adsorption capacity for phosphate ions is greatly improved when aluminum sulfate is deposited on alumina particles.
[0008]
According to Urano and Tachikawa [Water and Wastewater Vol. 29, No. 5, p3-12 (1987)], the phosphate ion adsorption mechanism of the aluminum sulfate-coated activated alumina particles is based on the OH groups, sulfate groups and phosphates on the alumina surface. It is an ion exchange reaction with ions.
[0009]
Al 2 O 3 .3H 2 O + 2H 2 PO 4 → 2AlPO 4 + 2OH + 4H 2 O (hydrated alumina surface)
Al 4 (OH) 6 (SO 4 ) 3 + 4H 2 PO 4 → 4AlPO 4 + 3SO 4 2− + 2H + + 6H 2 O (aluminum sulfate deposited on the alumina surface)
Compared with the method of neutralizing the Na 2 O component, the method for improving the adsorption capacity by the ion exchange reaction usually has an amount of phosphate ions adsorbed by an order of magnitude.
[0010]
Next, problems of the prior art will be described.
[0011]
When the acidic metal salt-deposited activated alumina particles are applied to the adsorption removal of harmful substance ions in water, the adsorption capacity and adsorption rate for the harmful substance ions are important factors that greatly affect the water treatment cost. However, the conventional method for depositing an acidic metal salt is a method in which the formed active alumina particles are immersed in an acidic metal salt solution and the acid component is permeated and diffused inside the particles (hereinafter referred to as an immersion method). Therefore, the pore volume is reduced and the pores on the particle surface are blocked by the deposition. In the obtained particles, the concentration distribution of the acid component in the particles becomes non-uniform, and the particle surface is high and the inside of the particles is low.
[0012]
Urano and Tachikawa [Ind. Eng. Chem. Res. , Vol. 30 1893-1896 (1991)], increasing the aluminum sulfate deposition amount decreases the pore volume of the particles (decreases the effective adsorption area), so that the acid deposition amount per 1 g of activated alumina. When reaching 0.2 mmol, the adsorption capacity reaches the upper limit, and when it reaches 0.6 mmol or more, the adsorption capacity decreases. That is, even when aluminum sulfate is deposited at a rate exceeding 0.2 mmol / g, the adsorption capacity does not increase, and the pore volume decreases, so that it is difficult to improve the adsorption rate.
[0013]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a method for efficiently removing harmful ions in water at low cost.
[0014]
[Means for Solving the Problems]
The inventors of the present invention have made active alumina with improved adsorption performance against harmful ions by integrating acid treatment operation and forming operation in which an acidic metal salt solution is added to powder activated alumina having rehydration property. It was discovered that particles can be obtained, and the present invention has been completed.
[0015]
That is, according to the present invention, in the method for removing harmful ions in water using an adsorbent, the adsorbent is applied so that the acidic metal salt component has a uniform concentration distribution from the surface to the inside of the particles. The present invention relates to a method for removing harmful ions in water, wherein the particles are activated alumina particles having an average particle diameter of 0.3 mm to 8 mm.
[0016]
The adsorbent used in the removal method of the present invention is activated alumina particles on which an acidic metal salt component is deposited so as to have a uniform concentration distribution from the surface to the inside of the particles.
[0017]
Here, “deposited so as to have a uniform concentration distribution from the surface to the inside of the particle” means that the activated alumina particles to which the acidic metal salt component has been deposited are adhered to the deposited component from the surface to the inside. The concentration of the derived element is measured, and the concentration distribution is used as an index. The element concentration can be measured as described in the examples, and the fact that the concentration distribution is uniform is shown by, for example, a rectangular distribution as shown in FIG.
[0018]
In the present invention, the acidic metal salt is not particularly limited as long as it can neutralize Na 2 O contained in the activated alumina as a raw material, but from the viewpoint of increasing the adsorption capacity of harmful ions by ion exchange reaction, Is preferably a sulfate group. Specific examples of the acidic metal salt having a sulfate group include aluminum sulfate, titanium sulfate, zirconium sulfate, hafnium sulfate, iron sulfate, yttrium sulfate, lanthanum sulfate, and cerium sulfate, which are inexpensive and do not color treated water. Aluminum sulfate is more preferable from the viewpoint.
[0019]
In the present invention, the amount of the acidic metal salt component deposited on the activated alumina can be appropriately set according to the purpose of removal, but when aluminum sulfate is taken as an example, it is 0.2 mmol or more per gram of activated alumina. Is more preferable, and 0.3 to 0.4 mmol is more preferable.
[0020]
The activated alumina particles have a spherical shape with an average particle diameter of 0.3 mm to 8 mm, and preferably have a spherical shape of 0.5 mm to 2 mm. When activated alumina particles having an average particle diameter of less than 0.3 mm are used, when the activated alumina particles are filled into the fixed bed and removed by adsorption, the water flow resistance of the fixed bed is increased or the fixed bed is not allowed to flow due to turbidity in the raw water. In some cases, clogging is likely to occur, and in the case of moving bed or batch-type adsorption removal, the activated alumina particles as the adsorbent cannot be easily separated from the water after the adsorption removal. On the other hand, when activated alumina particles having an average particle diameter of more than 8 mm are used, the amount of adsorption decreases and the adsorption rate decreases.
[0021]
Further, in the activated alumina particles, the pore volume of the particles having a pore radius of 1.8 nm to 100 μm measured by mercury porosimetry is 0.15 ml / g or more from the viewpoint of enhancing the adsorption performance of harmful ions. It is preferable that it is 0.2 ml / g or more.
[0022]
The measuring method by the mercury intrusion method is described in Examples.
[0023]
The method for removing harmful ions in water according to the present invention is characterized in that the activated alumina particles are used as an adsorbent. In the present invention, a method is recommended in which the activated alumina particles are packed in a fixed bed and raw water containing harmful ions is passed through the fixed bed. In carrying out the method of the present invention, it is preferable to adjust the pH of the raw water before water flow. By adjusting the pH of the raw water in advance, harmful ions can be efficiently removed. The pH is preferably set appropriately according to the type and concentration of these ions when the types of harmful ions to be removed from water and ions of other elements other than the harmful materials coexist. For example, when carbonate ions and silicate ions in the raw water are present, the harmful ions can be efficiently removed by adjusting the pH of the raw water to 7 or less.
[0024]
Furthermore, in this invention, it is preferable to adjust the temperature of raw | natural water before water flow. The temperature is usually 5 ° C or higher, more preferably 10 ° C or higher, or 40 ° C or lower, and further 30 ° C or lower.
[0025]
Examples of harmful substances to be removed in the present invention include those that exist in the form of anions in water, and those that dissociate into anions in neutral to weakly acidic water. Preferable specific examples include oxides of fluorine, phosphoric acid or arsenic.
[0026]
[Function and effect]
According to the method for removing harmful ions of the present invention, the active metal particles having the acidic metal salt component uniformly deposited from the surface to the inside of the particles so that the pore volume is not reduced and the pores on the particle surface are hardly blocked are adsorbents. By using as, harmful ion in water can be efficiently removed.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, detailed conditions for carrying out the present invention will be described.
[0028]
The adsorbent used in the harmful ion removal method of the present invention can be produced as follows. That is, acid treatment and particle shaping, in which an acidic metal salt solution is added to powdered activated alumina having rehydration properties and subsequently shaped into activated alumina particles, are performed in the same step.
[0029]
The powder activated alumina having rehydratability means a product obtained by calcining activated alumina obtained from the Bayer method or commercially available powdered aluminum hydroxide.
[0030]
The calcination can be performed by, for example, a method in which powdered aluminum hydroxide is put into a hot gas at about 500 ° C. to about 700 ° C., and the phase is instantaneously changed to activated alumina and then recovered.
[0031]
The average particle diameter of the powdered activated alumina having rehydratability is not particularly limited, but is preferably 0.3 to 200 μm, more preferably 1 to 20 μm from the viewpoint of easy granulation. In order to make the average particle diameter within a desired range, the activated alumina after calcination may be pulverized.
[0032]
The method for performing the acid treatment and the particle forming in the same step can be performed using a normal granulator as described later. In the present invention, it is utilized that powdered activated alumina having rehydration property is rehydrated and hardened with an acidic metal salt solution. That is, the quantity ratio between the powdered activated alumina and the acidic metal salt solution is set to a range in which granulation can be performed as it is after kneading without requiring evaporation of the acidic metal salt solution.
[0033]
Powder activated alumina having rehydratability at a predetermined weight ratio and acidic metal salt solution are charged into a granulator, granulated by a conventional method, and formed into activated alumina particles. The granulation operation is carried out so that the acidic metal salt solution and the powdered active alumina having rehydration properties are uniformly mixed during granulation. The type of granulator is not particularly limited, but a dish granulator or a stirring granulator is preferable when it is desired to produce spherical shaped particles at a low cost.
[0034]
In the type of granulator where particles are formed all at once, such as an agitation granulator, the acidic metal salt solution charged in the granulator and the powdered activated alumina having rehydration properties are kneaded for several minutes with low-speed agitation. It is preferable to use a technique in which both are uniformly mixed, and after the acid component is deposited on the fine powder particles, the agitation speed is changed to granulate particles of a predetermined diameter all at once.
[0035]
In a granulator of a type in which particles are gradually grown by sequentially stacking forming layers on the surface of the core, such as a dish-type granulator, powder activated alumina having a predetermined weight ratio and an acidic metal salt solution Are simultaneously supplied to the granulator, and the operation of depositing the acid component on the powder activated alumina and the granulation operation are performed simultaneously. The acid component concentration of the molding layer formed on the core surface by simultaneous supply of powder and acid solution is the same at any point during the dish-type granulation period, and the acid component-deposited activated alumina particles exhibiting a rectangular intraparticle concentration distribution Is obtained.
[0036]
The weight ratio between the powder activated alumina having rehydration property and the acidic metal salt solution needs to be selected within the range of the weight ratio at which granulation molding can be easily performed. The weight ratio is usually in the range of 30 to 80 parts by weight of the acidic metal salt solution with respect to 100 parts by weight of the powder.
[0037]
The concentration of the acidic metal salt solution when charging into the granulator is the set value of the amount of the acid component deposited per unit weight of the activated alumina powder, and the weight of the activated alumina powder / acid metal salt solution weight that allows easy granulation molding. Calculate from the ratio range.
[0038]
In the present invention, the powdered activated alumina is cured by rehydration reaction with an acidic metal salt solution, so that a molding binder is not particularly required. In order to further increase the strength of the particles, an organic or inorganic binder or an inorganic fiber body may be added.
[0039]
Quantitative control of the acid component deposition amount in the present invention is performed by setting the amount of the acidic metal salt solution within the range of the water absorption rate of the powder activated alumina and depositing all of the charged acid component. Quantitative control is easier compared to the dipping method requiring evaporation and drying operations. Moreover, the problem of a reduction in the BET specific surface area of the activated alumina particles does not occur.
[0040]
The activated alumina particles thus obtained are not wet even when not heated and dried, and the appearance is the same as that of the dried product.
[0041]
For the purpose of improving the pressure resistance of the molded particles, a heat aging step can be added to complete the rehydration reaction, or a baking step can be added.
[0042]
For the purpose of obtaining porous molded particles, powdered active alumina having rehydration properties with a uniform particle size distribution can be used as a raw material, or a pore material can be added during molding. Therefore, if the molding conditions are optimized, a pore volume larger than the immersion method can be obtained.
[0043]
【Example】
Hereinafter, the present invention will be described in more detail by examples, but the scope of the present invention is not limited by such examples.
[0044]
[Example]
(1) Preparation of rehydratable powder activated alumina Gibbsite (alumina trihydrate) having a Na 2 O content of 0.16% by weight obtained by the Bayer method was put into a hot gas at about 700 ° C. It was calcined for a moment. As a result, rehydratable powdered alumina consisting mainly of χ and ρ crystal forms with a loss on ignition of 5% and an average particle size of 15 μm was obtained.
[0045]
(2) Preparation of aluminum sulfate-coated spherical activated alumina particles The rehydratable powder activated alumina obtained in (1) above was charged into a stirring granulator (Kawata Super Mixer 20L-TO-75 type), and the powder activity After adding an aluminum sulfate solution equivalent to 0.3 mmol per 1 g of alumina, the mixture is stirred at a low speed (180 rpm), and the powder activated alumina and the aluminum sulfate solution are uniformly kneaded, and then the stirring speed is changed to a high speed and granulated. (360 to 1050 rpm) and molded into spherical particles.
[0046]
Next, spherical particles were taken out from the stirring granulator and sieved with 8 mesh and 14 mesh sieves to obtain spherical particles having a diameter of 1 to 2 mm. Subsequently, the spherical particles were rehydrated by heating at 105 ° C. for 4 hours to obtain aluminum sulfate-coated activated alumina particles having an average particle diameter of 1.8 mm.
[0047]
Table 1 shows the physical properties of the obtained activated alumina particles.
[0048]
The BET specific surface area (BET · Sw) was measured by a nitrogen adsorption method using a direct reading specific surface area measurement device (Montasorb manufactured by Cantachrome).
[0049]
The sulfur content was determined from the results of intraparticle sulfur concentration distribution described below.
[0050]
The pore volume was measured using a mercury intrusion pore meter (Micropores Autopore III 9420).
[0051]
(3) Measurement of intra-particle sulfur concentration distribution The intra-particle concentration distribution of the deposited aluminum sulfate of the activated alumina particles obtained in the above (2) was examined by measuring the concentration distribution of sulfur element in the particles.
[0052]
That is, the activated alumina particles were embedded in a resin and dry-polished with a 1500 sandpaper to expose the cross section of the particles, thereby preparing a sample for line analysis. An electron beam of a wavelength dispersive electron beam microanalyzer (EPM-810 manufactured by Shimadzu, using PET spectral crystal) is centered from the end of the particle cross section of the sample under the conditions of an acceleration voltage of 20 KV, an absorption current of 0.05 μA, and a beam diameter of 100 μmφ. Then, the other end was irradiated to perform a line analysis of the sulfur concentration.
[0053]
The obtained results are shown in FIG. The sulfur concentration distribution of the aluminum sulfate-deposited activated alumina particles was a rectangular distribution with a uniform concentration from the particle surface to the particle center.
[0054]
(4) Measurement of phosphate ion adsorption rate As an adsorption experiment for harmful ions, the phosphate ion adsorption rate in water was measured by a batch-type shaking experiment. Into a 2 L Erlenmeyer flask, 1 L of phosphoric acid aqueous solution having a phosphorous concentration of 0.50 mg / l adjusted to pH 7 and 0.25 g of aluminum sulfate-coated activated alumina particles (solid product) obtained in the above (2) were placed, The mixture was shaken for a predetermined time (24 to 246 hours) in a constant temperature shaker. Next, the adsorption treatment solution was filtered through a 0.45 μm membrane filter, and the phosphorus concentration of the filtrate was analyzed by JIS K 0102 molybdenum blue spectrophotometry. Table 1 shows the value of phosphorus concentration in the liquid corresponding to each adsorption time.
[0055]
[Comparative example]
(5) Preparation of aluminum sulfate-coated spherical activated alumina particles by dipping method Commercially available spherical activated alumina particles derived from the buyer method (manufactured by Sumitomo Chemical Co., Ltd., KHD-12: average particle size is 1.8 mm, Na 2 O content) 0.26%, the BET specific surface area is 270 m 2 / g, the pore volume is 0.37 cm 3 / g), and the aluminum sulfate coating amount is 0.23 mmol per 1 g of activated alumina. A sample with an M-type distribution was prepared.
[0056]
That is, 300 g of KHD-12 particles were placed in a resin net, crushed in an acid immersion tank filled with 2500 g of sulfuric acid having a pH of 2, and contacted for 2 hours while stirring the liquid. Pulled up the resin net. Subsequently, the sulfuric acid in the acid immersion tank was discharged and replaced with 500 ml of an aluminum sulfate solution having a concentration of 0.14 mol / l. The resin net containing the spherical activated alumina particles was placed in the tank containing the aluminum sulfate solution, and the liquid was stirred for 24 hours at 25 ° C. Then, the resin net was pulled up from the tank and drained. . The spherical activated alumina particles were put in a dryer and dried at 110 ° C. for about 1 day to obtain 337 g of aluminum sulfate-coated spherical activated alumina particles.
[0057]
Table 1 shows the physical properties of the aluminum sulfate-coated activated alumina particles by the above immersion method. Each measured value is a value measured in the same manner as in the example.
[0058]
The sulfur concentration distribution in the particles was measured by the same method as in the example, and the results are shown in FIG. The intra-particle sulfur concentration distribution was an M-shaped distribution with a high particle surface and a low particle center.
[0059]
Using the aluminum sulfate-coated activated alumina particles obtained in (5) above, the phosphate ion adsorption rate was measured by the same method as in (4) above. The results are shown in Table 1.
[0060]
[Table 1]
Figure 0004810003
From Table 1, the aluminum sulfate-coated spherical activated alumina particles obtained in the examples (example products) correspond to 0.29 mmol aluminum sulfate having a sulfur content almost equal to the charged sulfur content (2.9%). )showed that. On the other hand, the aluminum sulfate-coated spherical activated alumina particles (comparative example product) obtained in the comparative example had an aluminum sulfate deposition amount of 23% less than the example product. In addition, the example product showed a BET specific surface area and pore volume larger than the comparative example product. Regarding the adsorption rate of phosphate ions, the example product showed a higher adsorption rate than the comparative example product.
[0061]
Moreover, in the batch-type phosphate ion adsorption experiment using the example product, the activated alumina particles as the adsorbent could be easily recovered from the adsorption treatment liquid by filtration.
[0062]
Therefore, the method for removing harmful ions in water of the present invention using the example product has a higher adsorption rate for harmful ions than the conventional method using the comparative example product, and can efficiently remove harmful substances in water. Also, the recovery of the adsorbent was easy.
[Brief description of the drawings]
FIG. 1 is a graph showing a sulfur concentration distribution in a cross section of activated alumina particles coated with aluminum sulfate.

Claims (1)

吸着材を用いて水中有害物イオンを除去する方法において、前記吸着材は酸性金属塩成分を被着させた平均粒子径0.3mm〜8mmの活性アルミナ粒子であり、前記活性アルミナ粒子の一端部から対向端部まで被着成分に由来する元素濃度を測定した際の当該元素濃度分布が方形型分布であることを特徴とする水中有害物イオンの除去方法。  In the method for removing harmful ions in water using an adsorbent, the adsorbent is an activated alumina particle having an average particle diameter of 0.3 mm to 8 mm to which an acidic metal salt component is deposited, and one end of the activated alumina particle. A method for removing harmful ions in water, wherein the element concentration distribution when measuring the element concentration derived from the deposition component from the first to the opposite end is a square distribution.
JP2001167006A 2001-06-01 2001-06-01 Removal of harmful ions in water Expired - Fee Related JP4810003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167006A JP4810003B2 (en) 2001-06-01 2001-06-01 Removal of harmful ions in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167006A JP4810003B2 (en) 2001-06-01 2001-06-01 Removal of harmful ions in water

Publications (2)

Publication Number Publication Date
JP2002361238A JP2002361238A (en) 2002-12-17
JP4810003B2 true JP4810003B2 (en) 2011-11-09

Family

ID=19009454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167006A Expired - Fee Related JP4810003B2 (en) 2001-06-01 2001-06-01 Removal of harmful ions in water

Country Status (1)

Country Link
JP (1) JP4810003B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425336C (en) * 2003-11-19 2008-10-15 吉林大学 Nanometer water purifying material for organic removal, its preparation method and uses
US20070114179A1 (en) * 2005-09-07 2007-05-24 Badger Timothy J Removal of fluoride ions from aqueous solutions
CN109939662B (en) * 2019-03-28 2021-11-16 广东石油化工学院 Dealkalized nitrogen adsorbent for light fraction obtained by sump oil rectification in ethylene production process

Also Published As

Publication number Publication date
JP2002361238A (en) 2002-12-17

Similar Documents

Publication Publication Date Title
CN111135790B (en) Dephosphorization composite adsorbent, preparation method thereof and application thereof in sewage treatment
Deng et al. Mn–Ce oxide as a high-capacity adsorbent for fluoride removal from water
US6200483B1 (en) Structured materials for purification of liquid streams and method of making and using same
JP4423645B2 (en) Hydroxyapatite silica composite porous material adsorbent and method for producing the same
Ciobanu et al. Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent
CN103402624A (en) Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof
CN109731575A (en) The Fenton sludge catalyst of catalytic ozonation nbsCOD and its preparation, application method
JPS61245842A (en) Manufacture of catalyst supporter having narrow small hole
JP4537713B2 (en) Method for producing hydrorefining catalyst
JP2005046732A (en) Method for manufacturing phosphorus adsorbent
CN110508264A (en) A kind of lanthanum iron compound oxide modified steel scoria haydite and its application
KR20210000079A (en) Composite comprising biochar based rice husk and layered double oxides and method for fabricating the same
CN111203190B (en) Preparation method of high-unsaturation coordination system trivalent cerium phosphorus removal adsorbent
CN113396129B (en) Pseudo-boehmite, manufacturing method and application thereof
Buelna et al. Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol–gel granulation process
JP4810003B2 (en) Removal of harmful ions in water
US11273427B2 (en) Fabrication of hydroxyapatite based hybrid sorbent media for removal of fluoride and other contaminants
CN109908860B (en) Phosphorus adsorbent prepared from water supply plant sludge and application thereof
JP4959874B2 (en) Active alumina particles for removing harmful ions in water and method for producing the same
JP4809986B2 (en) Method for removing phosphate ions in water
CN112808247A (en) Composite mercury removal material and preparation method and application thereof
JP5354577B2 (en) Phosphorous adsorbent and production method
JP5665891B2 (en) Phosphorus recovery agent and method for producing the same
KR20000049200A (en) Porous inorganic composition and method for separating metal element using the same
JP3412455B2 (en) Activated alumina for arsenate ion adsorption and method for adsorbing arsenate ions from aqueous solution using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees