JPH04243116A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH04243116A
JPH04243116A JP3003729A JP372991A JPH04243116A JP H04243116 A JPH04243116 A JP H04243116A JP 3003729 A JP3003729 A JP 3003729A JP 372991 A JP372991 A JP 372991A JP H04243116 A JPH04243116 A JP H04243116A
Authority
JP
Japan
Prior art keywords
comb
anode
capacitor
layer
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3003729A
Other languages
Japanese (ja)
Other versions
JP3128831B2 (en
Inventor
Hiromichi Yamamoto
山本 博通
Kazuo Sekiya
関谷 和生
Masayuki Taniguchi
雅幸 谷口
Kenji Kawamura
賢二 川村
Hideo Nakajima
秀郎 中島
Minoru Yamashita
実 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03003729A priority Critical patent/JP3128831B2/en
Publication of JPH04243116A publication Critical patent/JPH04243116A/en
Application granted granted Critical
Publication of JP3128831B2 publication Critical patent/JP3128831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To provide a highly reliable manufacturing method of a solid electrolytic capacitor by a method wherein a plurality of capacitor elements are laminated together by laser welding under appropriate joint conditions. CONSTITUTION:A plurality of capacitor elements 33 are laminated on the positive mounting part 36 of a comb 34 and, further, the tip part 37 of the anode mounting part 36 of the comb 34 is bent 180 degrees to hold the anode parts 25 of the plurality of capacitor elements 33 tightly. The tightly held anode parts 25 and the comb 34 are jointed together by laser welding to realize an ideal welding state as shown in the Figure (a).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高周波領域において低イ
ンピーダンスで、容量の体積効率の良い固体電解コンデ
ンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solid electrolytic capacitor which has low impedance in a high frequency range and has good volumetric efficiency.

【0002】0002

【従来の技術】近年、電子機器のデジタル化に伴って電
子回路に使用されるコンデンサも高周波領域における低
インピーダンス、小形大容量が厳しく要求されるように
なってきた。小形大容量を特徴とする電解コンデンサの
分野においても、従来の乾式アルミ電解コンデンサや二
酸化マンガンを固体電解質とするタンタル固体電解コン
デンサおよびアルミ固体電解コンデンサなどに対し、複
素環式化合物の重合物である導電性高分子を固体電解質
とする固体電解コンデンサが、この要求に応え得るコン
デンサとして数多く提案され、一部で商品化されるよう
になってきた。
2. Description of the Related Art In recent years, with the digitalization of electronic equipment, capacitors used in electronic circuits are required to have low impedance, small size, and large capacity in the high frequency range. In the field of electrolytic capacitors, which are characterized by their small size and large capacity, in contrast to conventional dry-type aluminum electrolytic capacitors, tantalum solid electrolytic capacitors, and aluminum solid electrolytic capacitors that use manganese dioxide as a solid electrolyte, we are using polymers of heterocyclic compounds. Many solid electrolytic capacitors that use conductive polymers as solid electrolytes have been proposed as capacitors that can meet this demand, and some have come to be commercialized.

【0003】高周波領域における低インピーダンスは複
素環式化合物の重合物である導電性高分子を固体電解質
とすることにより達成されるが、固体電解質である特質
から定格電圧よりかなり高い化成電圧を余儀なくされる
ことにより、乾式アルミ電解コンデンサに比べ容量の容
積効率は低く、したがって、この容積効率を上げるため
には積層構造をとる必要がある。積層構造をとる方法は
、以前より公知であるが、導電性高分子を固体電解質と
して用いる例としては、特開昭63−239917号公
報がある。
[0003] Low impedance in the high frequency range is achieved by using a conductive polymer, which is a polymer of a heterocyclic compound, as a solid electrolyte, but due to the characteristics of a solid electrolyte, a formation voltage considerably higher than the rated voltage is forced. As a result, the volumetric efficiency of capacitance is lower than that of dry aluminum electrolytic capacitors, and therefore, in order to increase this volumetric efficiency, it is necessary to adopt a laminated structure. Methods for forming a laminated structure have been known for some time, and an example of using a conductive polymer as a solid electrolyte is disclosed in Japanese Patent Laid-Open No. 63-239917.

【0004】この一例のものは、図10および図11に
示すように、帯状のアルミニウムエッチド箔1の一側部
に複数の突起部2を形成し、この複数の突起部2の所定
位置の全面にレジスト層3を形成することにより、突起
部2を二つの部分に区分している。そして前記レジスト
層3により区分された一方の部分(陰極部)に誘電体と
して酸化アルミニウム皮膜層4を、電解質となる複素環
式化合物のポリマー層としてピロールよりなるポリマー
層5を、端子取り出し用の導体層としてグラファイト層
6および銀ペースト層7を順次形成してコンデンサ素子
板8を構成している。
In this example, as shown in FIGS. 10 and 11, a plurality of protrusions 2 are formed on one side of a band-shaped aluminum etched foil 1, and the predetermined positions of the plurality of protrusions 2 are By forming a resist layer 3 over the entire surface, the protrusion 2 is divided into two parts. Then, on one part (cathode part) divided by the resist layer 3, an aluminum oxide film layer 4 is applied as a dielectric, and a polymer layer 5 made of pyrrole is applied as a polymer layer of a heterocyclic compound that becomes an electrolyte. A graphite layer 6 and a silver paste layer 7 are sequentially formed as conductor layers to constitute a capacitor element plate 8.

【0005】上記のように構成したコンデンサ素子板8
を図12(a)に示すように複数枚積み重ねる。この場
合、複数枚のコンデンサ素子板8の突起部2と突起部2
とが互いに対応するように積み重ね、そして突起部2を
高温下で加圧し、レジスト層3で区分された一方の部分
(陰極部)9の銀ペースト層7を仮乾燥させてコンデン
サ素子板8の一方の部分9を互いに固着させて一体化す
るとともに、レジスト層3で区分された他方の部分に当
たるアルミニウムエッチド箔1の部分(図11の×印で
示す陽極部)10を溶接等により互いに接合させてコン
デンサ素子本体11を構成する。次に、このコンデンサ
素子本体11のレジスト層3で区分された一方の部分(
陰極部)9の仮乾燥させている銀ペースト層7に板状の
陰極端子12の外表面を圧設し、そして銀ペースト層7
を本乾燥させて硬化させることにより、一方の部分(陰
極部)9に板状の陰極端子12を取り付けるとともに、
レジスト層3で区分された他の部分(陽極部)10に同
じく板状の陽極端子13をスポット溶接または超音波溶
接あるいはシーマ溶接等により取り付けてコンデンサ素
子とし、このコンデンサ素子に樹脂外装を施し、積層型
の固体電解コンデンサを構成していた。
Capacitor element plate 8 configured as described above
A plurality of sheets are stacked as shown in FIG. 12(a). In this case, the protrusions 2 of the plurality of capacitor element plates 8 and the protrusions 2
are stacked so that they correspond to each other, and the projections 2 are pressed under high temperature to temporarily dry the silver paste layer 7 on one part (cathode part) 9 separated by the resist layer 3 to form a capacitor element plate 8. One part 9 is fixed to each other and integrated, and the part 10 of the aluminum etched foil 1 corresponding to the other part separated by the resist layer 3 (the anode part shown by the x mark in FIG. 11) is joined together by welding or the like. In this way, the capacitor element body 11 is constructed. Next, one portion (
The outer surface of the plate-shaped cathode terminal 12 is pressed onto the temporarily dried silver paste layer 7 of the cathode part) 9, and the silver paste layer 7
By drying and curing, a plate-shaped cathode terminal 12 is attached to one part (cathode part) 9, and
A similarly plate-shaped anode terminal 13 is attached to the other part (anode part) 10 divided by the resist layer 3 by spot welding, ultrasonic welding, seamer welding, etc. to form a capacitor element, and this capacitor element is covered with a resin exterior. It comprised a multilayer solid electrolytic capacitor.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記した
従来の構成方法では、いくつかの欠点があり、特に陽極
部の接続方法に信頼性が乏しいという大きな欠点があっ
た。
However, the above-described conventional construction method has several drawbacks, particularly the major drawback of poor reliability in the method of connecting the anode portion.

【0007】すなわち、アルミニウムのような弁金属の
表面には化成皮膜が存在しない場合でも、空気中での酸
化による強固な酸化皮膜が存在するため、従来例に挙げ
られたような抵抗溶接や超音波溶接では、複数枚の積層
された箔における何重もの酸化皮膜を突き破っての信頼
性のある溶接を行うことは極めて至難のことである。ま
た、見かけ上接合されていても接触抵抗が大きく、使用
中に剥離するなどの危険があった。
In other words, even if there is no chemical conversion coating on the surface of valve metals such as aluminum, there is a strong oxide coating due to oxidation in the air, so resistance welding and In sonic welding, it is extremely difficult to perform reliable welding by penetrating the multiple layers of oxide film in multiple laminated foils. Furthermore, even if they are apparently bonded, the contact resistance is high and there is a risk that they may peel off during use.

【0008】これは、従来の溶接法ではエネルギーが小
さいために、隣り合った箔間の酸化皮膜を突き破った個
所のみで溶接されているためで、溶接の基本である溶接
部が一体に合金化された状態とかけ離れているためと考
えられる。
[0008] This is because the conventional welding method requires only a small amount of energy and welds only where the oxide film between adjacent foils is penetrated, and the welded parts, which are the basics of welding, are alloyed together. This is thought to be because the situation is far different from the actual state.

【0009】また、従来例のような抵抗溶接では、溶接
時に溶接電流以外の電流が流れ、酸化皮膜や導電性高分
子膜の破壊をきたすことがしばしばあった。
Furthermore, in conventional resistance welding, a current other than the welding current flows during welding, often causing destruction of the oxide film or conductive polymer film.

【0010】本発明は上記従来例の問題点を解決するも
ので、特に積層した複数枚のコンデンサ素子の陽極部の
接合条件を適正化してレーザ溶接することにより、信頼
性の高い固体電解コンデンサの製造方法を提供すること
を目的とする。
The present invention solves the above-mentioned problems of the conventional method. In particular, by optimizing the bonding conditions of the anode parts of a plurality of laminated capacitor elements and performing laser welding, a highly reliable solid electrolytic capacitor can be manufactured. The purpose is to provide a manufacturing method.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の固体電解コンデンサの製造方法は、酸化皮
膜を形成した弁金属よりなる箔を絶縁体層で区分し、こ
の区分された一方の部分(陰極部)に導電物質層,導電
性高分子膜、グラファイト層と銀ペイント層からなる導
体層を順次形成してコンデンサ素子を構成し、かつこの
コンデンサ素子を複数枚積層するとともに、この複数枚
のコンデンサ素子における一方の部分(陰極部)を引出
し端子を兼ねるコムの一部分に積層して接続し、さらに
前記複数枚のコンデンサ素子における他方の部分(陽極
部)を前記コムの別の部分に積層するとともに、このコ
ムの別の部分の先端部を180度折り曲げて、複数枚の
コンデンサ素子における他方の部分(陽極部)を密着さ
せた状態で挾み込み、この挾み込んだ状態の前記複数枚
のコンデンサ素子における他方の部分(陽極部)とコム
とをレーザ溶接により接続するとともに、全体をモール
ド樹脂で外装するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a solid electrolytic capacitor of the present invention involves dividing a foil made of valve metal on which an oxide film is formed with an insulating layer, and A conductive layer consisting of a conductive material layer, a conductive polymer film, a graphite layer, and a silver paint layer is sequentially formed on one part (cathode part) to constitute a capacitor element, and a plurality of these capacitor elements are laminated, One part (cathode part) of the plurality of capacitor elements is laminated and connected to a part of the comb that also serves as an extraction terminal, and the other part (anode part) of the plurality of capacitor elements is connected to another part of the comb. At the same time, the tip of another part of this comb is bent 180 degrees, and the other part (anode part) of the multiple capacitor elements is sandwiched in close contact with each other, and this sandwiched state The other part (anode part) of the plurality of capacitor elements and the comb are connected by laser welding, and the whole is covered with molded resin.

【0012】0012

【作用】上記した製造方法によれば、複数枚積層された
弁金属よりなるコンデンサ素子における他方の部分(陽
極部)を引出し端子を兼ねるコムの別の部分に積層する
とともに、このコムの別の部分の先端部を180度折り
曲げて、複数枚のコンデンサ素子における他方の部分(
陽極部)を密着させた状態で挾み込んでいるため、複数
枚の弁金属よりなるコンデンサ素子における他方の部分
(陽極部)間に空間ギャップが生じることはなくなり、
その結果、複数枚の弁金属よりなるコンデンサ素子の陽
極部と引出し端子を兼ねるコムとをレーザ溶接により接
続する場合、理想的な溶接状態を実現することができる
ため、信頼性の高い溶接法が得られ、これにより、高周
波領域において低インピーダンスで小形大容量の固体電
解コンデンサを提供することができるものである。
[Function] According to the manufacturing method described above, the other part (anode part) of the capacitor element made of a plurality of laminated valve metals is laminated on another part of the comb that also serves as the lead terminal, and Bend the tip of the part 180 degrees and attach it to the other part of the multiple capacitor elements (
Since the two parts (anode part) are sandwiched in close contact with each other, there is no space gap between the other part (anode part) in the capacitor element made of multiple valve metals.
As a result, when laser welding is used to connect the anode part of a capacitor element made of multiple valve metals to a comb that also serves as a lead-out terminal, it is possible to achieve an ideal welding condition, making it possible to use a highly reliable welding method. This makes it possible to provide a compact, large-capacity solid electrolytic capacitor with low impedance in a high frequency region.

【0013】[0013]

【実施例】以下、本発明の各実施例を添付図面にもとづ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings.

【0014】(実施例1)厚さ100μmの弁金属であ
るアルミニウム箔を公知の方法でエッチング処理して多
孔質化した後、化成処理によりその表面に酸化皮膜を形
成し、そしてこのアルミニウム化成箔を図1に示すよう
な突起部21を有する櫛形電極22に打ち抜く。また前
記突起部21の所定の位置には絶縁体層23を設け、陰
極部24と陽極部25に区分する。なお、前記アルミニ
ウム箔の打ち抜きは、金属箔の状態で行った後、エッチ
ング、化成処理を行っても良いが、生産性を考えると、
広い幅の化成済みの箔で行うのが得策である。また、絶
縁体層23はアルミニウム化成箔を打ち抜いた後、絶縁
塗料を塗布することにより設けても良いが、アルミニウ
ム化成箔の所定の位置に予め接着剤を塗布した絶縁テー
プ、たとえば耐熱性のポリイミドテープを貼り付けてお
き、その後、打ち抜いて図1に示すような櫛形電極22
を構成しても良い。
(Example 1) After etching a 100 μm thick aluminum foil, which is a valve metal, by a known method to make it porous, an oxide film is formed on its surface by a chemical conversion treatment, and this chemically converted aluminum foil is A comb-shaped electrode 22 having a protrusion 21 as shown in FIG. 1 is punched out. Further, an insulating layer 23 is provided at a predetermined position of the projection 21 to divide it into a cathode section 24 and an anode section 25. Note that the aluminum foil may be punched out in the metal foil state and then subjected to etching and chemical conversion treatment, but considering productivity,
It is best to use a wide coated foil. Further, the insulating layer 23 may be provided by punching out a chemically formed aluminum foil and then applying an insulating paint, but it is also possible to provide the insulating layer 23 by applying an insulating paint to a predetermined position of the chemically formed aluminum foil. The tape is pasted and then punched out to form a comb-shaped electrode 22 as shown in FIG.
may also be configured.

【0015】次いで、少なくとも陰極部24の全面以上
を化成液中に浸漬して切断面及び酸化皮膜の修復化成を
行ってから、櫛形電極22の陰極部24の部分を硝酸マ
ンガンの水溶液中に浸漬した後、約300℃で10分間
熱処理し、図2(b)に示すように二酸化マンガンより
なる導電物質層26を形成する。この後、熱処理により
劣化した酸化皮膜を修復するため、再化成を行った方が
万全ではあるが、この再化成は省略しても良い。
Next, at least the entire surface of the cathode section 24 is immersed in a chemical solution to repair the cut surface and the oxide film, and then the cathode section 24 of the comb-shaped electrode 22 is immersed in an aqueous solution of manganese nitrate. After that, heat treatment is performed at about 300° C. for 10 minutes to form a conductive material layer 26 made of manganese dioxide as shown in FIG. 2(b). After this, in order to repair the oxide film deteriorated by the heat treatment, it is better to carry out re-forming, but this re-forming may be omitted.

【0016】次に、図3に示すように、電解重合して導
電性高分子を形成するピロールと支持電解質としてのト
リイソプロピルナフタレンスルフォン酸とを水に溶解し
た電解重合液27を、対極を兼用するステンレス製の容
器28内に入れ、そしてこの容器28内に、櫛形電極2
2を絶縁体層23の中途まで浸漬し、さらに櫛形電極2
2に対応した形のステンレス電極29の先端が陰極部2
4の導電物質層26に極力近い絶縁体層23の部分に接
触した状態で、ステンレス電極29を陽極、かつ容器2
8を陰極として電圧を印加することにより電解重合を行
い、図2(b)に示すように導電性高分子膜30を導電
物質層26の上に形成する。
Next, as shown in FIG. 3, an electrolytic polymerization solution 27 in which pyrrole, which is electrolytically polymerized to form a conductive polymer, and triisopropylnaphthalene sulfonic acid as a supporting electrolyte are dissolved in water, is used also as a counter electrode. The comb-shaped electrode 2 is placed in a container 28 made of stainless steel.
2 to the middle of the insulator layer 23, and then comb-shaped electrode 2.
The tip of the stainless steel electrode 29 with a shape corresponding to 2 is the cathode part 2.
The stainless steel electrode 29 is used as an anode and the container 2 is in contact with a portion of the insulating layer 23 as close as possible to the conductive material layer 26 of the container 2.
Electrolytic polymerization is performed by applying a voltage using 8 as a cathode, and a conductive polymer film 30 is formed on the conductive material layer 26 as shown in FIG. 2(b).

【0017】さらにこの導電性高分子膜30の上に図2
(b)に示すように、公知の方法でグラファイト層31
と銀ペイント層32を順次形成する。この場合、グラフ
ァイト層31は薄いため、通常の浸漬して焼き付ける方
法で良いが、銀ペイント層32の場合は浸漬方式では下
部が厚くなって積層時の弊害となるため、印刷方式など
の均一な塗布方法が好ましい。こうして完成した櫛形電
極22において、図1および図2(a),(b)のC−
C線の部分で突起部21を切断し、単一のコンデンサ素
子33を構成する。この場合、櫛形電極22の状態でそ
のまま積層する手段もあるが、生産上の歩留まりと後の
組立工程との関連からすれば、この手段は得策ではない
。例えば、単一のコンデンサ素子33で90%の歩留ま
りとすると、5枚の単一のコンデンサ素子33を櫛形電
極22の状態で積層した場合、それだけで59%の歩留
まりの確率となる。したがって、単一のコンデンサ素子
33の状態で良否の判別を行い、それらを積層した方が
有利なことは自明の理である。
Further, on top of this conductive polymer film 30, as shown in FIG.
As shown in (b), the graphite layer 31 is
and a silver paint layer 32 are sequentially formed. In this case, since the graphite layer 31 is thin, a normal dipping and baking method is sufficient, but in the case of the silver paint layer 32, the dipping method thickens the bottom part, which is detrimental to lamination, so a uniform method such as a printing method is not suitable. Application methods are preferred. In the comb-shaped electrode 22 thus completed, C-
The protrusion 21 is cut along the C line to form a single capacitor element 33. In this case, there is a method of stacking the comb-shaped electrodes 22 as they are, but this method is not advisable in terms of production yield and subsequent assembly steps. For example, if a single capacitor element 33 has a yield of 90%, if five single capacitor elements 33 are laminated in the form of a comb-shaped electrode 22, the yield will be 59%. Therefore, it is obvious that it is more advantageous to judge whether a single capacitor element 33 is good or bad and to stack them.

【0018】次に、図4および図5(a),(b)に示
すような引出し端子を兼ねるコム(金属枠)34上に単
一のコンデンサ素子33を積層して設置するが、ここで
は、引出し端子を兼ねるコム34としては、厚さ0.1
mmの平板を打ち抜いた鉄基材に銅3μm,錫1μmの
メッキを施して使用した。そしてこのコム34はあらか
じめ図5(a)の陰極搭載部35および陽極搭載部36
の破線で示す部分を直角に曲げておき、そしてコンデン
サ素子33の陰極部24間とコム34の間に接着剤とし
て少量の銀ペイントを塗布し、単一のコンデンサ素子3
3を複数枚積層して装填する。さらに、コム34の陽極
搭載部36の先端部37をさらに90度折り曲げ、すな
わち、陽極搭載部36は全体で180度折り曲げて図5
(b)および図6に示すように複数枚積層したコンデン
サ素子33の陽極部25を密着させた状態でコム34に
より挾み込んだ形としている。そしてこの状態でコム3
4の陽極搭載部36における先端部37の上部からレー
ザ溶接を行った。この場合、溶接点は2点または3点と
した。
Next, a single capacitor element 33 is stacked and installed on a comb (metal frame) 34 which also serves as a lead-out terminal as shown in FIGS. 4 and 5(a) and 5(b). , the thickness of the comb 34 which also serves as a lead-out terminal is 0.1.
An iron base material obtained by punching out a flat plate of mm in thickness was plated with 3 μm of copper and 1 μm of tin. This comb 34 is connected in advance to the cathode mounting portion 35 and the anode mounting portion 36 in FIG. 5(a).
The part indicated by the broken line is bent at a right angle, and a small amount of silver paint is applied as an adhesive between the cathode part 24 of the capacitor element 33 and the comb 34, and a single capacitor element 3 is assembled.
3 are stacked and loaded. Furthermore, the tip 37 of the anode mounting part 36 of the comb 34 is further bent by 90 degrees, that is, the anode mounting part 36 is bent by 180 degrees as a whole, as shown in FIG.
As shown in FIG. 6B and FIG. 6, the anode portions 25 of a plurality of laminated capacitor elements 33 are sandwiched between combs 34 in close contact with each other. And in this state com 3
Laser welding was performed from the upper part of the tip portion 37 of the anode mounting portion 36 of No. 4. In this case, two or three welding points were used.

【0019】このレーザ溶接を良好に行うためには、レ
ーザ光を当てたスポット部分の複数枚のアルミニウム箔
を構成する弁金属と引出し端子を兼ねるコム34を構成
する金属を溶融し、均一に混合または合金化された状態
とする必要がある。前記引出し端子を兼ねるコム34は
一般に鉄を基材とし、これに半田と合金化し易い金属、
例えば銅,ニッケル,錫などのメッキが施されたもので
、鉄の融点が1535℃であるのに対し、弁金属はアル
ミニウムの融点が660℃、タンタルの融点が2996
℃、ニオブの融点が2468℃という具合に鉄と弁金属
の融点がかけ離れているため、両者を同時に溶融しよう
とすると融点の低い金属が蒸発して失われ、孔が空くな
どの現象を生じ易い。また、これに加え、複数枚のアル
ミニウム箔の表面に施された酸化皮膜を突き破るエネル
ギーが同時に必要となるものである。
In order to perform this laser welding well, the valve metal that makes up the plurality of aluminum foils at the spot where the laser beam is irradiated and the metal that makes up the comb 34 that also serves as the lead-out terminal are melted and mixed uniformly. Or it needs to be in an alloyed state. The comb 34, which also serves as the lead-out terminal, is generally made of iron as a base material, and is made of a metal that easily alloys with solder.
For example, valve metals are plated with copper, nickel, tin, etc., and the melting point of iron is 1535°C, while the melting point of aluminum is 660°C and the melting point of tantalum is 2996°C.
The melting points of iron and valve metal are far different, as the melting point of niobium is 2468°C, so if you try to melt them both at the same time, the metal with a lower melting point will evaporate and be lost, causing phenomena such as holes to occur. . In addition to this, energy is also required to break through the oxide films formed on the surfaces of the plurality of aluminum foils.

【0020】さらに、コンデンサ素子33を積層したと
きに陽極部25の厚さは例えば100μmのアルミニウ
ム箔を5枚重ねたとすると計500μmとなるのに対し
、陰極部24の厚さは導電性高分子膜30および導電体
層31,32の厚さを加えて1枚当たり約0.5mmで
、5枚では2.5mmにも達するため、溶接される陽極
部25を構成するアルミニウム箔間ではそのまま重ねた
だけでは約0.4mmの空間が存在することになる。
Furthermore, when the capacitor elements 33 are laminated, the thickness of the anode part 25 is 500 μm in total if, for example, five sheets of 100 μm aluminum foil are stacked, whereas the thickness of the cathode part 24 is made of conductive polymer. Including the thickness of the membrane 30 and the conductive layers 31 and 32, each sheet has a thickness of approximately 0.5 mm, and for five sheets the thickness reaches 2.5 mm, so the aluminum foils constituting the anode section 25 to be welded are stacked as they are. If only there is a space of about 0.4 mm, there will be a space of about 0.4 mm.

【0021】しかるに、本発明の一実施例においては、
上記したように、引出し端子を兼ねるコム34の陽極搭
載部36の先端部37をさらに90度折り曲げ、すなわ
ち、陽極搭載部36を全体で180度折り曲げて図5(
b)および図6に示すように複数枚積層したコンデンサ
素子33の陽極部25を密着させた状態でコム34によ
り挾み込んだ形としているため、この状態で、コム34
の陽極搭載部36における先端部37の上部からレーザ
溶接を行うと、理想的な溶接の状態が得られる。すなわ
ち、図7(a)に示すように、コム34の陽極搭載部3
6における金属とコンデンサ素子33における陽極部(
この例の場合はアルミニウム箔)25が溶融して一体3
8となっており、しかもレーザの入射側のみならず、裏
面からも溶解痕が認められるものである。この溶解部の
X線マイクロアナライザによる成分分析図を図8に示し
たが、この図8からもAl,Fe,Cu,Snが一様に
溶解していることがわかる。また、レーザ光が強すぎる
と、図7(b)のように低融点金属が主に蒸発して孔3
9があいた状態となる。例えば、SI(ステップ・イン
デックス)方式の光学ファイバーを使用すると、広く浅
く溶解しやすいため、底まで溶解しようとすると、図7
(b)のようになりやすい。また、複数枚積層したコン
デンサ素子33の陽極部25のアルミニウム箔間に空間
ギャップが存在すると、均一に溶解させることができな
いため、溶接できないかまたは似たような状態となる。 一方、レーザ光が弱すぎると、底まで溶解できないこと
は勿論のこと、溶接の是非が確認できない。
However, in one embodiment of the present invention,
As described above, the tip portion 37 of the anode mounting portion 36 of the comb 34 which also serves as a lead-out terminal is further bent 90 degrees, that is, the anode mounting portion 36 is bent 180 degrees as a whole, as shown in FIG.
b) and as shown in FIG.
When laser welding is performed from the upper part of the tip part 37 of the anode mounting part 36, an ideal welding state can be obtained. That is, as shown in FIG. 7(a), the anode mounting portion 3 of the comb 34
6 and the anode part of the capacitor element 33 (
In this example, the aluminum foil) 25 is melted and integrated into 3
8, and dissolution traces can be seen not only from the laser incident side but also from the back surface. FIG. 8 shows a component analysis diagram of this dissolved portion using an X-ray microanalyzer, and it can be seen from FIG. 8 that Al, Fe, Cu, and Sn are uniformly dissolved. In addition, if the laser beam is too strong, the low melting point metal will mainly evaporate and the hole 3
9 becomes open. For example, when using an SI (step index) type optical fiber, it tends to dissolve widely and shallowly, so if you try to dissolve it all the way to the bottom, as shown in Figure 7.
(b) is likely to occur. Moreover, if a space gap exists between the aluminum foils of the anode part 25 of the capacitor element 33 stacked in plurality, it is impossible to uniformly melt the aluminum foils, so that welding cannot be performed or a similar state occurs. On the other hand, if the laser beam is too weak, not only will it not be possible to melt all the way to the bottom, but it will also be impossible to confirm whether welding is appropriate.

【0022】また、本発明の一実施例におけるレーザ溶
接の溶接条件については、まず発振方式は炭酸ガスレー
ザ方式に比べ、YAGレーザ方式が小エネルギーに適し
ているため、YAGレーザ方式を選択した。そしてレー
ザ光のモードを微小エネルギーで小スポットに集中して
連続して供給し、小さな面積で深く複数枚の金属を溶融
させるために、SI(ステップ・インデックス)方式の
光学ファイバーではなく、GI(グレーテッド・インデ
ックス)方式の光学ファイバーを用いた。
Regarding the welding conditions for laser welding in one embodiment of the present invention, first, the YAG laser method was selected as the oscillation method because the YAG laser method is more suitable for low energy than the carbon dioxide laser method. In order to continuously supply the laser beam mode with minute energy to a small spot and to melt multiple pieces of metal deeply in a small area, instead of using SI (step index) type optical fiber, we used GI ( A graded index) type optical fiber was used.

【0023】そして本発明の一実施例においては、コム
34の陽極搭載部36における金属とコンデンサ素子3
3における陽極部25をレーザ溶接した後、陰極部を構
成する銀ペイント層32を硬化させ、さらに成形用金型
にコム34を設置し、エポキシ樹脂でモールド成形した
後、端子部を切断し、固体電解コンデンサを取り出した
。この固体電解コンデンサの外観を図9に示す。この固
体電解コンデンサ40における陽極端子41および陰極
端子42は上記コム34をそのまま利用しているもので
、この場合、モールド樹脂に沿って陽極端子41と陰極
端子42を折り曲げれば、チップ形固体電解コンデンサ
を得ることができる。
In one embodiment of the present invention, the metal in the anode mounting portion 36 of the comb 34 and the capacitor element 3
After laser welding the anode part 25 in 3, the silver paint layer 32 constituting the cathode part is cured, and the comb 34 is installed in a molding die, and after molding with epoxy resin, the terminal part is cut, I took out the solid electrolytic capacitor. Figure 9 shows the appearance of this solid electrolytic capacitor. The anode terminal 41 and the cathode terminal 42 in this solid electrolytic capacitor 40 utilize the above-mentioned comb 34 as they are.In this case, if the anode terminal 41 and the cathode terminal 42 are bent along the molding resin, You can get a capacitor.

【0024】(実施例2)コム34の陽極搭載部36に
おける金属とコンデンサ素子33における陽極部25の
溶接をレーザ溶接で行う。この場合、レーザ溶接はSI
(ステップ・インデックス)方式の光学ファイバーを用
い、その他は実施例1と同じ条件で固体電解コンデンサ
を製作した。
(Embodiment 2) The metal in the anode mounting portion 36 of the comb 34 and the anode portion 25 in the capacitor element 33 are welded by laser welding. In this case, laser welding is SI
A solid electrolytic capacitor was manufactured under the same conditions as in Example 1 except that a (step index) type optical fiber was used.

【0025】(比較例)コム34の陽極搭載部36にお
ける金属とコンデンサ素子33における陽極部25の溶
接を抵抗溶接で行い、その他は実施例1と同じ条件で固
体電解コンデンサを製作しようとしたが、陽極部25を
構成する複数枚のアルミニウム箔の溶接を抵抗溶接で行
うのは困難で固体電解コンデンサを構成することはでき
なかった。
(Comparative Example) An attempt was made to manufacture a solid electrolytic capacitor under the same conditions as in Example 1, except that the metal in the anode mounting portion 36 of the comb 34 and the anode portion 25 in the capacitor element 33 were welded by resistance welding. However, it was difficult to weld the plurality of aluminum foils constituting the anode section 25 by resistance welding, and it was not possible to construct a solid electrolytic capacitor.

【0026】なお、化成電圧28Vで突起部21の寸法
が3×7mmのアルミニウム箔を5枚積層して製作した
実施例1および実施例2の固体電解コンデンサ各10個
の初期特性と熱衝撃試験(−40℃30分間保持,10
5℃30分間保持を交互に100回繰り返す試験)によ
る信頼性試験をした結果は(表1)と(表2)に示す通
りであった。
Initial characteristics and thermal shock tests were conducted for 10 solid electrolytic capacitors each of Example 1 and Example 2, which were manufactured by laminating five sheets of aluminum foil with protrusions 21 having dimensions of 3 x 7 mm at a formation voltage of 28 V. (Hold at -40℃ for 30 minutes, 10
The results of a reliability test (a test in which holding at 5° C. for 30 minutes was alternately repeated 100 times) were as shown in (Table 1) and (Table 2).

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【表2】[Table 2]

【0029】上記(表1),(表2)から明らかなよう
に、(表1)に示す実施例1においては、高周波領域(
500kHz)におけるインピーダンスはほとんど変化
していなかったが、(表2)に示す実施例2においては
、試験後におけるインピーダンスが大幅に高くなってい
るのが見受けられた。
As is clear from the above (Table 1) and (Table 2), in Example 1 shown in (Table 1), the high frequency region (
500kHz), but in Example 2 shown in (Table 2), the impedance after the test was seen to be significantly higher.

【0030】なお、上記実施例においては、陽極部25
をアルミニウム箔で構成したものについて説明したが、
これに限定されるものではなく、他の弁金属箔、例えば
タンタル,ニオブなどで構成しても良い。また導電性高
分子膜30はポリピロールよりなる導電性高分子で構成
したものについて説明したが、他の導電性高分子、例え
ばポリフラン,ポリチオフェンよりなる導電性高分子で
構成しても、製造条件が異なるだけで本発明の要件を損
うものではない。
Note that in the above embodiment, the anode portion 25
I explained about the one made of aluminum foil,
The valve metal foil is not limited to this, and may be made of other valve metal foils, such as tantalum or niobium. Furthermore, although the conductive polymer film 30 has been described as being made of a conductive polymer made of polypyrrole, it may also be made of other conductive polymers such as polyfuran or polythiophene, depending on the manufacturing conditions. The mere difference does not impair the requirements of the present invention.

【0031】[0031]

【発明の効果】以上のように本発明の固体電解コンデン
サの製造方法によれば、複数枚積層された弁金属よりな
るコンデンサ素子における他方の部分(陽極部)を引出
し端子を兼ねるコムの別の部分に積層するとともに、こ
のコムの別の部分の先端部を180度折り曲げて、複数
枚のコンデンサ素子における他方の部分(陽極部)を密
着させた状態で挾み込んでいるため、複数枚の弁金属よ
りなるコンデンサ素子における他方の部分(陽極部)間
に空間ギャップが生じることはなくなり、その結果、複
数枚の弁金属よりなるコンデンサ素子の陽極部と引出し
端子を兼ねるコムとをレーザ溶接により接続する場合、
理想的な溶接状態を実現することができるため、信頼性
の高い溶接法が得られ、これにより、高周波領域におい
て低インピーダンスで小形大容量の固体電解コンデンサ
を提供することができるものである。
[Effects of the Invention] As described above, according to the method of manufacturing a solid electrolytic capacitor of the present invention, the other part (anode part) of the capacitor element made of a plurality of laminated valve metals is connected to another part of the comb which also serves as a lead terminal. At the same time, the tip of another part of this comb is bent 180 degrees and the other part (anode part) of the multiple capacitor elements is sandwiched in close contact with each other. There is no longer a space gap between the other part (anode part) of the capacitor element made of valve metal, and as a result, the anode part of the capacitor element made of multiple valve metals and the comb that also serves as the lead-out terminal can be connected by laser welding. When connecting,
Since ideal welding conditions can be achieved, a highly reliable welding method can be obtained, and thereby a small, large-capacity solid electrolytic capacitor with low impedance in a high frequency region can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に使用した複数の突起部を有す
る櫛形電極の平面図
FIG. 1 is a plan view of a comb-shaped electrode having a plurality of protrusions used in an example of the present invention.

【図2】(a)導電性高分子膜や導体層を形成してコン
デンサ素子を完成させた櫛形電極の突起部の拡大図(b
)(a)におけるA−A線断面図
[Figure 2] (a) An enlarged view of the protrusion of a comb-shaped electrode that forms a capacitor element by forming a conductive polymer film or a conductor layer (b)
) A-A cross-sectional view in (a)

【図3】本発明の実施例における導電性高分子膜を形成
する電解重合層の概略図
FIG. 3 is a schematic diagram of an electrolytically polymerized layer forming a conductive polymer film in an example of the present invention.

【図4】本発明の実施例に使用した引出し端子を兼ねる
コム(金属枠)の横断面図
[Fig. 4] A cross-sectional view of a comb (metal frame) that also serves as a pull-out terminal used in an example of the present invention.

【図5】(a)図4のB−B線で示されるコムの部分拡
大図 (b)(a)におけるコム部にコンデンサ素子を積層し
て充填した状態を示す概要図
FIG. 5: (a) A partially enlarged view of the comb shown by line B-B in FIG. 4; (b) A schematic diagram showing a state in which capacitor elements are laminated and filled in the comb portion in (a).

【図6】図5(b)におけるD−D線で示す本発明の実
施例のコンデンサ素子を複数枚積層した状態の側断面図
FIG. 6 is a side cross-sectional view of a state in which a plurality of capacitor elements according to the embodiment of the present invention are stacked together, as shown by line D-D in FIG. 5(b).

【図7】(a)本発明のレーザ溶接による陽極部の理想
的な溶融溶接状態を示す断面図 (b)本発明の実施例2の不満足な溶接状態を示す断面
FIG. 7: (a) A cross-sectional view showing an ideal fusion welding state of the anode part by laser welding of the present invention; (b) A cross-sectional view showing an unsatisfactory welding state of Example 2 of the present invention.

【図8】本発明のレーザ溶接における溶解部のX線マイ
クロアナライザによる成分分析を示すグラフ
[Figure 8] Graph showing component analysis of the melted part in laser welding of the present invention using an X-ray microanalyzer

【図9】本
発明の実施例で製作した固体電解コンデンサの外観を示
す斜視図
[Fig. 9] A perspective view showing the appearance of a solid electrolytic capacitor manufactured in an example of the present invention.

【図10】(a)従来例を示すアルミニウムエッチド箔
の側部に設けた突起部の拡大図 (b)(a)におけるE−E線断面図
FIG. 10 (a) Enlarged view of a protrusion provided on the side of an aluminum etched foil showing a conventional example (b) A sectional view taken along the line E-E in (a)

【図11】従来例を示す複数の突起部を設けたアルミニ
ウムエッチド箔の平面図
[Fig. 11] A plan view of an aluminum etched foil with multiple protrusions, showing a conventional example.

【図12】(a)従来例を示す複数枚のコンデンサ素子
を積層した状態の側面図 (b)同平面図
[Fig. 12] (a) Side view of a state in which multiple capacitor elements are stacked, showing a conventional example. (b) A plan view of the same.

【符号の説明】[Explanation of symbols]

22  櫛形電極 23  絶縁体層 24  陰極部 25  陽極部 26  導電物質層 30  導電性高分子膜 31  グラファイト層 32  銀ペイント層 33  コンデンサ素子 34  コム 36  陽極搭載部 37  陽極搭載部の先端部 22 Comb-shaped electrode 23 Insulator layer 24 Cathode part 25 Anode part 26 Conductive material layer 30 Conductive polymer membrane 31 Graphite layer 32 Silver paint layer 33 Capacitor element 34 com 36 Anode mounting part 37 Tip of anode mounting part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化皮膜を形成した弁金属よりなる箔を絶
縁体層で区分し、この区分された一方の部分(陰極部)
に導電物質層,導電性高分子膜、グラファイト層と銀ペ
イント層からなる導体層を順次形成してコンデンサ素子
を構成し、かつこのコンデンサ素子を複数枚積層すると
ともに、この複数枚のコンデンサ素子における一方の部
分(陰極部)を引出し端子を兼ねるコムの一部分に積層
して接続し、さらに前記複数枚のコンデンサ素子におけ
る他方の部分(陽極部)を前記コムの別の部分に積層す
るとともに、このコムの別の部分の先端部を180度折
り曲げて、複数枚のコンデンサ素子における他方の部分
(陽極部)を密着させた状態で挾み込み、この挾み込ん
だ状態の前記複数枚のコンデンサ素子における他方の部
分(陽極部)とコムとをレーザ溶接により接続するとと
もに、全体をモールド樹脂で外装するようにした固体電
解コンデンサの製造方法。
Claim 1: A foil made of valve metal on which an oxide film is formed is divided by an insulating layer, and one of the divided parts (cathode part)
A conductive layer consisting of a conductive material layer, a conductive polymer film, a graphite layer, and a silver paint layer is sequentially formed on the capacitor element to form a capacitor element. One part (cathode part) is laminated and connected to a part of the comb that also serves as an extraction terminal, and the other part (anode part) of the plurality of capacitor elements is laminated to another part of the comb. The tip of another part of the comb is bent 180 degrees, and the other part (anode part) of the plurality of capacitor elements is sandwiched in a state in which they are in close contact with each other, and the plurality of capacitor elements in this sandwiched state are A method of manufacturing a solid electrolytic capacitor in which the other part (anode part) and the comb are connected by laser welding, and the whole is covered with molded resin.
JP03003729A 1991-01-17 1991-01-17 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3128831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03003729A JP3128831B2 (en) 1991-01-17 1991-01-17 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03003729A JP3128831B2 (en) 1991-01-17 1991-01-17 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH04243116A true JPH04243116A (en) 1992-08-31
JP3128831B2 JP3128831B2 (en) 2001-01-29

Family

ID=11565358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03003729A Expired - Fee Related JP3128831B2 (en) 1991-01-17 1991-01-17 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3128831B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218384A (en) * 1999-02-01 2000-08-08 Matsushita Electric Ind Co Ltd Checking devide for laser welding
WO2000067267A1 (en) * 1999-04-30 2000-11-09 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6473293B2 (en) 2000-10-12 2002-10-29 Matsushita Electric Industrial Co., Ltd. Capacitor unit, method for producing the same, and solid electrolytic capacitor
US6680841B2 (en) 2001-07-30 2004-01-20 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and its manufacturing method
US6890363B1 (en) 1999-05-24 2005-05-10 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6992880B2 (en) 2002-08-28 2006-01-31 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and its manufacturing method
JP2006108183A (en) * 2004-09-30 2006-04-20 Nippon Chemicon Corp Electrolytic capacitor
JP2010153437A (en) * 2008-12-24 2010-07-08 Sanyo Electric Co Ltd Solid electrolytic capacitor
WO2023026811A1 (en) * 2021-08-23 2023-03-02 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191466A (en) 2003-12-26 2005-07-14 Tdk Corp Capacitor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218384A (en) * 1999-02-01 2000-08-08 Matsushita Electric Ind Co Ltd Checking devide for laser welding
WO2000067267A1 (en) * 1999-04-30 2000-11-09 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6890363B1 (en) 1999-05-24 2005-05-10 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US7046504B2 (en) 1999-05-24 2006-05-16 Showa Denko K.K. Solid electrolytic capacitor and method of producing the same
US7141081B2 (en) 1999-05-24 2006-11-28 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6473293B2 (en) 2000-10-12 2002-10-29 Matsushita Electric Industrial Co., Ltd. Capacitor unit, method for producing the same, and solid electrolytic capacitor
US6504705B2 (en) 2000-10-12 2003-01-07 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor, circuit board containing electrolytic capacitor, and method for producing the same
US6680841B2 (en) 2001-07-30 2004-01-20 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and its manufacturing method
US6992880B2 (en) 2002-08-28 2006-01-31 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and its manufacturing method
JP2006108183A (en) * 2004-09-30 2006-04-20 Nippon Chemicon Corp Electrolytic capacitor
JP2010153437A (en) * 2008-12-24 2010-07-08 Sanyo Electric Co Ltd Solid electrolytic capacitor
WO2023026811A1 (en) * 2021-08-23 2023-03-02 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP3128831B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
EP0283239B1 (en) Electrolytic capacitors including a solid electrolyte layer, and their production
EP0634761B1 (en) A method for producing a solid electrolytic capacitor
JP3755336B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US7355835B2 (en) Stacked capacitor and method of fabricating the same
JP5466722B2 (en) Solid electrolytic capacitor
JP4784373B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4662368B2 (en) Manufacturing method of solid electrolytic capacitor
JP3128831B2 (en) Method for manufacturing solid electrolytic capacitor
JP2008078312A (en) Solid electrolytic capacitor
JP4854945B2 (en) Solid electrolytic capacitor
JP2005191466A (en) Capacitor
JP2006093343A (en) Solid electrolyte capacitor
JP4285346B2 (en) Manufacturing method of solid electrolytic capacitor
JP4609042B2 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JPH08273983A (en) Aluminum solid capacitor
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2645562B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2645559B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JPH09312240A (en) Layered solid-state chip capacitor
JPH01278011A (en) Layer-built solid electrolytic capacitor
JP2006073638A (en) Solid electrolytic capacitor
JP2002203747A (en) Chip type solid-state electrolytic capacitor and method of manufacturing the same
JP4466094B2 (en) Electrolytic capacitor manufacturing method
JPH1167603A (en) Solid electrolytic capacitor
JPH0442813B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees