JPH04240710A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH04240710A
JPH04240710A JP3007360A JP736091A JPH04240710A JP H04240710 A JPH04240710 A JP H04240710A JP 3007360 A JP3007360 A JP 3007360A JP 736091 A JP736091 A JP 736091A JP H04240710 A JPH04240710 A JP H04240710A
Authority
JP
Japan
Prior art keywords
solid
layer
electrolytic capacitor
state electrolytic
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3007360A
Other languages
Japanese (ja)
Other versions
JP3074742B2 (en
Inventor
Yoshinori Sekiguchi
関口 芳典
Yoshihiko Saiki
義彦 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP03007360A priority Critical patent/JP3074742B2/en
Publication of JPH04240710A publication Critical patent/JPH04240710A/en
Application granted granted Critical
Publication of JP3074742B2 publication Critical patent/JP3074742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Colloid Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain a solid-state electrolytic capacitor having a stable electrostatic capacity in various environments by forming a first solid-state electrolytic layer by one sol-gel method and by forming a second solid-state electrolytic layer which is a manganese dioxide layer generated by pyrolysis of a manganese nitrate aqueous solution on the first layer. CONSTITUTION:A dielectric film 3, solid-state electrolytic layer 4 and cathode conductor layer 5 are formed in order on an anode body 1 which is made of valve action metal, to fabricate a solid-state electrolytic capacitor. At that time, after the dielectric film 3 is formed, a first solid-state electrolytic layer 4a is formed by the sol-gel method and then a second solid-state electrolytic layer 4b, a manganese dioxide layer which is generated by pyrolysis of a manganese nitrate aqueous solution, is formed on the first layer 4a. For example, the anode body 1 made of Ta powder is transformed in an electrolyte to form the dielectric film 3 and then is dipped in a manganese alcoholate aqueous solution and is left alone in the air of 85 deg.C to be gelled and is dried in the air of 300 deg.C to form the MnO2 film.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固体電解コンデンサの製
造方法に関し、特に弁作用金属の陽極体に形成された誘
電体皮膜に隣接する固体電解質の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for forming a solid electrolyte adjacent to a dielectric film formed on a valve metal anode body.

【0002】0002

【従来の技術】従来の固体電解コンデンサの固体電解質
の形成方法は、例えばタンタル、アルミニウム等の弁作
用金属からなる陽極体を硝酸マンガン水溶液中に浸漬し
、陽極体内部に十分に含浸させたのち温度約300℃の
高温雰囲気中で熱分解し、二酸化マンガンからなる固体
電解質を形成していた。
[Prior Art] A conventional method for forming a solid electrolyte for a solid electrolytic capacitor is to immerse an anode body made of a valve metal such as tantalum or aluminum in an aqueous solution of manganese nitrate to sufficiently impregnate the interior of the anode body. It was thermally decomposed in a high-temperature atmosphere of about 300°C to form a solid electrolyte made of manganese dioxide.

【0003】通常、上述の硝酸マンガン水溶液中への浸
せき、熱分解により生成される二酸化マンガンは、1回
の処理では予め形成されている誘電体皮膜が十分に被覆
されないため、また、二酸化マンガン自体かポーラスな
ため、数回から十数回程度繰り返されるのが普通である
[0003] Normally, manganese dioxide produced by immersion in the above-mentioned manganese nitrate aqueous solution or thermal decomposition does not sufficiently cover the pre-formed dielectric film in one treatment, and the manganese dioxide itself Because it is porous, it is usually repeated several to ten times.

【0004】0004

【発明が解決しようとする課題】固体電解コンデンサの
固体電解質形成工程においては、あらかじめ形成されて
いる誘電体皮膜の全表面を固体電解質で被覆する必要が
ある。なぜならば、仮に固体電解質によって被覆されな
い部分が誘電体皮膜上に存在すると大気中に含まれる水
分が非被覆部の誘電体皮膜に脱着しその結果、コンデン
サの静電容量の変化を招くことになるからである。一方
、小型・大容量化あるいはコストダウンの必要性から弁
作用金属の微細化が進行しているが、従来の方法では、
厚くポーラスな二酸化マンガン層が形成されやすいため
、非常に微細な誘電体皮膜細孔部までも完全に固体電解
質で被覆することが困難になっている。
In the step of forming a solid electrolyte for a solid electrolytic capacitor, it is necessary to cover the entire surface of a previously formed dielectric film with a solid electrolyte. This is because if there is a part of the dielectric film that is not covered by the solid electrolyte, moisture contained in the atmosphere will be desorbed from the dielectric film in the uncovered part, resulting in a change in the capacitance of the capacitor. It is from. On the other hand, the miniaturization of valve metals is progressing due to the need for smaller size, larger capacity, and cost reduction, but with conventional methods,
Since a thick and porous manganese dioxide layer is likely to be formed, it is difficult to completely cover even the very fine pores of the dielectric film with the solid electrolyte.

【0005】本発明の目的は、従来の欠点を除去し、あ
らかじめ形成された誘電体皮膜上に緻密で薄く均一な厚
さを有し、微細な誘電体皮膜細孔部も完全に被覆する固
体電解質層を形成することができ、各種環境中でも静電
容量が安定している固体電解コンデンサの製造方法を提
供することにある。
The object of the present invention is to eliminate the conventional drawbacks and to provide a solid material having a dense, thin and uniform thickness on a pre-formed dielectric film and completely covering even the minute pores of the dielectric film. An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor in which an electrolyte layer can be formed and the capacitance is stable even in various environments.

【0006】[0006]

【課題を解決するための手段】本発明の固体電解コンデ
ンサの製造方法は、弁作用金属からなる陽極体に順次誘
電体皮膜,固体電解質,陰極導電体層を形成する工程を
有する固体電解コンデンサの製造方法において、誘電体
皮膜形成後、ゾルーゲル法によって第1の固体電解質層
を形成する工程と、前記第1の固体電解質上に硝酸マン
ガン水溶液の熱分解法によって生成された二酸化マンガ
ン層からなる第2の固体電解質層を形成する工程とを含
むことを特徴として構成される。
[Means for Solving the Problems] The method for manufacturing a solid electrolytic capacitor of the present invention includes the steps of sequentially forming a dielectric film, a solid electrolyte, and a cathode conductor layer on an anode body made of a valve metal. The manufacturing method includes a step of forming a first solid electrolyte layer by a sol-gel method after forming a dielectric film, and a step of forming a manganese dioxide layer on the first solid electrolyte by a thermal decomposition method of an aqueous solution of manganese nitrate. The method is characterized in that it includes a step of forming a second solid electrolyte layer.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明する
。本発明の実施例の説明をタンタル固体電解コンデンサ
を例にとり説明する。図1は、本発明の一実施例によっ
て形成されたタンタル固体電解コンデンサの断面図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. Embodiments of the present invention will be explained by taking a tantalum solid electrolytic capacitor as an example. FIG. 1 is a cross-sectional view of a tantalum solid electrolytic capacitor formed in accordance with one embodiment of the present invention.

【0008】図1において、陽極リードが導出された直
径1mm,長さ1mm,重さ0.01gのタンタル金属
粉末からなる陽極体を電解液に浸漬し化成電圧20Vを
印加して誘電体皮膜(Ta2 O5 )を形成する。
In FIG. 1, an anode body made of tantalum metal powder with a diameter of 1 mm, a length of 1 mm, and a weight of 0.01 g, from which an anode lead is led out, is immersed in an electrolytic solution, and a dielectric film ( Ta2O5) is formed.

【0009】次にマンガンアルコラート3wt%に陽極
体を浸せきし、陽極体内部まで十分にしみ込ませた後、
温度85℃の大気雰囲気中に10分間放置しゲル化させ
る。次に温度300℃の大気雰囲気中で30分乾燥させ
均一な厚さを有するMnO2 膜を形成する。300℃
の高温加熱前に85℃の大気雰囲気中に放置するのは、
MnO2 膜にヒビ割れを発生させないように急激な反
応を抑えるためである。ゾルーゲル法によるMnO2 
の生成反応は下式で表せる。
Next, the anode body was immersed in 3 wt% manganese alcoholate, and after the anode body was sufficiently penetrated into the inside of the anode body,
The mixture was left in an air atmosphere at a temperature of 85° C. for 10 minutes to gel. Next, it is dried for 30 minutes in an air atmosphere at a temperature of 300° C. to form a MnO2 film having a uniform thickness. 300℃
Leaving it in an air atmosphere at 85℃ before heating it to a high temperature is
This is to suppress a rapid reaction so as not to cause cracks in the MnO2 film. MnO2 by sol-gel method
The production reaction can be expressed by the following formula.

【0010】0010

【0011】また、同様の工法を繰り返してもよい。固
体電解質は、陰極引出しの他に、コンデンサ素子を外部
の機械的ストレスから保護する機能をも有しており、そ
の為に陽極体外周においても十分な厚みを有する必要が
ある。しかし、ゾルーゲル法による固体電解質層は厚く
なり過ぎると割れが発生し易い傾向があり、0.1〜1
0ミクロン、理想的には1ミクロン程度の厚みにおいて
極めて緻密で堅固なものが得られる。そこで上述のゾル
ーゲル法によって第1の固体電解質層を形成した後、公
知の手段の硝酸マンガンの熱分解により二酸化マンガン
からなる十分な厚みを有する第2の固体電解質層を形成
し、さらにグラファイト層、銀ペースト層からなる陰極
導電体層を形成し、タンタル固体電解コンデンサ素子が
得られる。
[0011] Furthermore, the same construction method may be repeated. In addition to drawing out the cathode, the solid electrolyte also has the function of protecting the capacitor element from external mechanical stress, and therefore needs to have a sufficient thickness around the anode body. However, the solid electrolyte layer formed by the sol-gel method tends to crack easily if it becomes too thick;
An extremely dense and solid product can be obtained at a thickness of 0 micron, ideally about 1 micron. Therefore, after forming the first solid electrolyte layer by the above-mentioned sol-gel method, a second solid electrolyte layer made of manganese dioxide and having a sufficient thickness is formed by thermal decomposition of manganese nitrate using known means, and then a graphite layer, A cathode conductor layer consisting of a silver paste layer is formed to obtain a tantalum solid electrolytic capacitor element.

【0012】この様に形成されたコンデンサ素子の耐湿
試験後(85℃,90〜95%R.H.,24h後)お
よび高温放置後(125℃、25h後)の静電容量値の
履歴を測定したところ、表1の結果が得られた。比較と
して硝酸マンガンの熱分解法で得られた従来例品の結果
も示す。
[0012] The history of capacitance values of the capacitor element formed in this manner after a humidity test (85°C, 90-95% R.H., after 24 hours) and after being left at high temperature (125°C, after 25 hours) was investigated. As a result of the measurement, the results shown in Table 1 were obtained. For comparison, the results of a conventional product obtained by thermal decomposition of manganese nitrate are also shown.

【0013】[0013]

【0014】次に他の実施例について説明する。実施例
1と同様に誘電体皮膜の形成後、例えば亜鉛エチレート
{Zn(OC2 H5 )2 }溶液を用いて陽極体に
ディップコーティングした後、温度85℃の大気雰囲気
中に10分間放置しゲル化させる。次に温度300℃の
大気雰囲気中で30分乾燥させ均一な厚さを有するZn
O膜を形成する。続いて、公知の手段の硝酸マンガンの
熱分解により二酸化マンガンからなる第2の固体電解質
層,さらにグラファイト層,銀ペースト層からなる陰極
導電体層を形成し、タンタル固体電解コンデンサ素子が
形成される。
Next, another embodiment will be explained. After forming the dielectric film in the same manner as in Example 1, the anode body was dip-coated using, for example, a zinc ethylate {Zn(OC2H5)2} solution, and then left in an air atmosphere at a temperature of 85°C for 10 minutes to gel. let Next, Zn was dried for 30 minutes in an air atmosphere at a temperature of 300°C to obtain a uniform thickness.
Form an O film. Subsequently, a second solid electrolyte layer made of manganese dioxide is formed by thermal decomposition of manganese nitrate using a known method, and a cathode conductor layer made of a graphite layer and a silver paste layer is formed, thereby forming a tantalum solid electrolytic capacitor element. .

【0015】上述の方法によっても、実施例1と同様の
効果が得られる上に、MnO2 より抵抗率の低いZn
Oからなる第1の固体電解質層が形成されるため損失係
数の小さい固体電解コンデンサ素子を得られるメリット
がある。表2に従来例品及び実施例1品と共に本実施例
品の損失係数を示す。
[0015] The above method also provides the same effects as in Example 1, and also uses Zn, which has a lower resistivity than MnO2.
Since the first solid electrolyte layer made of O is formed, there is an advantage that a solid electrolytic capacitor element with a small loss coefficient can be obtained. Table 2 shows the loss coefficient of the product of this example as well as the conventional example product and the example 1 product.

【0016】[0016]

【0017】[0017]

【発明の効果】以上説明したように、本発明による固体
電解コンデンサの製造方法は、誘電体皮膜形成後、ゾル
ーゲル法により非常に緻密で薄く均一な厚さを有する第
1の固体電解質層を形成した後、公知の手段の硝酸マン
ガンの熱分解による二酸化マンガンからなる第2の固体
電解質層を形成するため、下記の如き効果を有する。
As explained above, in the method for manufacturing a solid electrolytic capacitor according to the present invention, after forming a dielectric film, a first solid electrolyte layer having a very dense, thin, and uniform thickness is formed by a sol-gel method. After that, a second solid electrolyte layer made of manganese dioxide is formed by thermal decomposition of manganese nitrate using a known method, so that the following effects are obtained.

【0018】(1)第1の固体電解質層が、非常に緻密
で均一な厚さを有するので、各種環境中での静電容量が
安定したコンデンサ素子が得られる。
(1) Since the first solid electrolyte layer is very dense and has a uniform thickness, a capacitor element with stable capacitance in various environments can be obtained.

【0019】(2)第1の固体電解質層が、緻密で薄い
ため、非常に微細な誘電体皮膜細孔部も完全に被覆する
ことができる。
(2) Since the first solid electrolyte layer is dense and thin, it can completely cover even the very fine pores of the dielectric film.

【0020】尚、本発明はゾルーゲル法により緻密な電
解質を形成することに特徴があり、導電性が高く、固体
電解コンデンサの固体電解質に利用できるものを表3に
示す。これらの表に示す単体は勿論のこと、これらの複
合化合物も用いることができる。
The present invention is characterized in that a dense electrolyte is formed by a sol-gel method, and Table 3 shows materials that have high conductivity and can be used as solid electrolytes for solid electrolytic capacitors. Not only the simple substances shown in these tables but also complex compounds thereof can be used.

【0021】[0021]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例により得られた固体電解コン
デンサ素子の断面図である。
FIG. 1 is a sectional view of a solid electrolytic capacitor element obtained according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1    陽極体 2    陽極リード 3    誘電体皮膜 4a    第1の固体電解質層 4b    二酸化マンガンからなる第2の固体電解質
層5    陰極導電体層
1 Anode body 2 Anode lead 3 Dielectric film 4a First solid electrolyte layer 4b Second solid electrolyte layer 5 made of manganese dioxide Cathode conductor layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  弁作用金属からなる陽極体に順次誘電
体皮膜,固体電解質,陰極導電体層を形成する工程を有
する固体電解コンデンサの製造方法において、誘電体皮
膜形成後、ゾルーゲル法によって第1の固体電解質層を
形成する工程と、前記第1の固体電解質上に硝酸マンガ
ン水溶液の熱分解法によって生成された二酸化マンガン
層からなる第2の固体電解質層を形成する工程とを含む
ことを特徴とする固体電解コンデンサの製造方法。
Claim 1. A method for manufacturing a solid electrolytic capacitor, which comprises the steps of sequentially forming a dielectric film, a solid electrolyte, and a cathode conductor layer on an anode body made of a valve metal, after forming the dielectric film, a first step is performed using a sol-gel method. and forming a second solid electrolyte layer made of a manganese dioxide layer produced by a thermal decomposition method of an aqueous manganese nitrate solution on the first solid electrolyte. A method for manufacturing a solid electrolytic capacitor.
【請求項2】  ゾルーゲル法によって形成される第1
の固体電解質がCuO,ZnO,PbO2 ,V2 O
5 , SnO2 の単体又は複合化合物であることを
特徴とする請求項1記載の固体電解コンデンサの製造方
法。
[Claim 2] A first film formed by a sol-gel method.
The solid electrolytes of CuO, ZnO, PbO2, V2O
5. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is a single substance or a composite compound of SnO2.
【請求項3】  ゾルーゲル法によって形成される第1
の固体電解質層の厚さが0.1〜10ミクロンであるこ
とを特徴とする請求項1記載の固体電解コンデンサの製
造方法。
[Claim 3] A first film formed by a sol-gel method.
2. The method of manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolyte layer has a thickness of 0.1 to 10 microns.
JP03007360A 1991-01-25 1991-01-25 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JP3074742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03007360A JP3074742B2 (en) 1991-01-25 1991-01-25 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03007360A JP3074742B2 (en) 1991-01-25 1991-01-25 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH04240710A true JPH04240710A (en) 1992-08-28
JP3074742B2 JP3074742B2 (en) 2000-08-07

Family

ID=11663796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03007360A Expired - Lifetime JP3074742B2 (en) 1991-01-25 1991-01-25 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3074742B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5826330A (en) * 1995-12-28 1998-10-27 Hitachi Aic Inc. Method of manufacturing multilayer printed wiring board
CN100410778C (en) * 2004-09-03 2008-08-13 精工爱普生株式会社 Electro-optical device, method of manufacturing the same, and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5826330A (en) * 1995-12-28 1998-10-27 Hitachi Aic Inc. Method of manufacturing multilayer printed wiring board
CN100410778C (en) * 2004-09-03 2008-08-13 精工爱普生株式会社 Electro-optical device, method of manufacturing the same, and electronic apparatus

Also Published As

Publication number Publication date
JP3074742B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US2936514A (en) Electrolytic device
US4017773A (en) Solid valve-metal capacitor with buried graphite in the particles in the electrolyte
US3330999A (en) Electrolytic capacitor with dielectric film formed on ceramic material
US3345543A (en) Solid electrolytic capacitor with anodized aluminum electrode and method of making
JPH04240710A (en) Manufacture of solid-state electrolytic capacitor
JP3209995B2 (en) Method for manufacturing solid electrolytic capacitor
US3314124A (en) Method of manufacturing solid electrolytic capacitor
US3041511A (en) Multilayer thin film capacitor
JPH0239417A (en) Manufacture of electrolytic capacitor
JP2000068160A (en) Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE
JPH06132167A (en) Manufacture of solid electrolytic capacitor
JPH0785461B2 (en) Capacitor
JPH0917685A (en) Capacitor and its manufacture
JPS596501B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JP4555190B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6248891B2 (en)
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JP3006191B2 (en) Method for producing metallized film for capacitor
JPS5934124Y2 (en) solid electrolytic capacitor
JPS6236374B2 (en)
JPS5940763Y2 (en) solid electrolytic capacitor
JPS6249980B2 (en)
JPH0521278A (en) Solid electrolytic capacitor and its manufacture
JPS6052010A (en) Solid electrolytic condenser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000509