JPS6236374B2 - - Google Patents
Info
- Publication number
- JPS6236374B2 JPS6236374B2 JP14192078A JP14192078A JPS6236374B2 JP S6236374 B2 JPS6236374 B2 JP S6236374B2 JP 14192078 A JP14192078 A JP 14192078A JP 14192078 A JP14192078 A JP 14192078A JP S6236374 B2 JPS6236374 B2 JP S6236374B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- anode body
- anode
- solid electrolytic
- insulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 18
- 239000012212 insulator Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 229910000679 solder Inorganic materials 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical group [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【発明の詳細な説明】
本発明は固体電解コンデンサに関し、特に外装
に樹脂を用いた固体電解コンデンサの改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solid electrolytic capacitors, and particularly to improvements in solid electrolytic capacitors using resin for the exterior.
従来この種の固体電解コンデンサは第1図に示
すようにタンタル、アルミ、ニオブ等の弁作用を
有する金属からなる陽極体1を化成処理し誘電体
層2を形成した後、さらにその表面に順次半導体
層3、陰極層4を形成すると共に陰極層に外部リ
ード線5を接続し、さらにその外周面を樹脂にて
外装して構成されている。 Conventionally, this type of solid electrolytic capacitor is manufactured by forming a dielectric layer 2 by chemically converting an anode body 1 made of a metal with valve action such as tantalum, aluminum, or niobium, as shown in FIG. A semiconductor layer 3 and a cathode layer 4 are formed, an external lead wire 5 is connected to the cathode layer, and the outer peripheral surface thereof is covered with resin.
しかしながら樹脂を用いて外装した固体電解コ
ンデンサは湿気、不純物等の混入を防ぐことがで
きず、耐湿試験において製品の電気特性(容量変
化、誘電正接、漏洩電流など)が劣化する欠点が
あつた。 However, solid electrolytic capacitors packaged with resin cannot prevent moisture and impurities from getting in, and the product's electrical characteristics (capacitance change, dielectric loss tangent, leakage current, etc.) deteriorate during humidity tests.
本発明の目的はこのような従来欠点を解決した
固体電解コンデンサを提供することにある。 An object of the present invention is to provide a solid electrolytic capacitor that solves the above-mentioned conventional drawbacks.
本発明によれば陽極体リード部を絶縁物で被覆
し、その陽極体リード部を除くコンデンサ素子全
体を低融点金属層で被覆したことを特徴とする固
体電解コンデンサが得られる。 According to the present invention, there is obtained a solid electrolytic capacitor characterized in that the anode body lead portion is coated with an insulating material, and the entire capacitor element except the anode body lead portion is coated with a low melting point metal layer.
以下本実施例を第2図および第3図により説明
する。 This embodiment will be explained below with reference to FIGS. 2 and 3.
第2図において参照符号1はタンタル、アルミ
ニウム、ニオブ等の粉末を加圧成型した後、高温
真空焼結した陽極体、2は陽極体1をリン酸など
の電解液中で化成処理により生成される金属酸化
物の誘電体層である。3は二酸化マンガンなどの
半導体層で、例えば硝酸マンガンの熱分解により
被着される。4は半導体層3の外周面全体に形成
された半田などの金属による陰極層、この陰極層
4に外部リード線5を接続し、タンタル線などの
陽極体から導出された陽極体リード7と陰極層4
とが直接接触しないように例えばブタジエン樹脂
などの絶縁物8で陽極体リード7の植設された付
け根周辺を被覆する。6はモールド成型法やデイ
ツプ法等により施したエポキシ樹脂あるいはシリ
コン樹脂などの外装絶縁材であり、9は陽極体リ
ード7の先端部に溶接された陽極外部リード線で
ある。 In Fig. 2, reference numeral 1 indicates an anode body produced by press-molding powders of tantalum, aluminum, niobium, etc. and then sintering them in a high-temperature vacuum, and 2 indicates an anode body produced by chemical conversion treatment of the anode body 1 in an electrolyte such as phosphoric acid. It is a dielectric layer of metal oxide. 3 is a semiconductor layer such as manganese dioxide, which is deposited, for example, by thermal decomposition of manganese nitrate. Reference numeral 4 denotes a cathode layer made of metal such as solder formed on the entire outer peripheral surface of the semiconductor layer 3, an external lead wire 5 is connected to this cathode layer 4, and an anode body lead 7 led out from an anode body such as tantalum wire and the cathode. layer 4
The periphery of the implanted base of the anode lead 7 is covered with an insulator 8 such as butadiene resin to prevent direct contact between the anode lead 7 and the anode body lead 7. Reference numeral 6 is an exterior insulating material such as epoxy resin or silicone resin applied by a molding method or dip method, and reference numeral 9 is an anode external lead wire welded to the tip of the anode body lead 7.
尚、本実施例では半導体層3の形成後に陽極体
リード7を絶縁物8で被覆したが、誘電体層2が
形成される前(第3図)、或いは半導体層3の形
成前に陽極体リード7を絶縁物8で被覆しても差
支えない。又第4図に示す如く、従来工法(第1
図)によつて、陰極層4により陽極リード線を取
り付けた後、コンデンサ素子全体を絶縁物8にて
被覆し、さらに絶縁物8の上から、少くともどち
らか一方のリード線との付着を避けて、コンデン
サ素子全体を銀ペースト層などで被覆した後半田
層10にて被覆する方法でも本願の主旨を逸脱す
るものではない。この場合は陰極層4は金属であ
る必要はなく導電性接着剤等を用いても良いこと
は勿論である。又本実施例では絶縁物8としてブ
タジエン樹脂を用いたが、エポキシ樹脂、シリコ
ン樹脂、或いはガラスなどの無機絶縁物を用いて
もよいことは勿論である。 In this embodiment, the anode lead 7 was covered with the insulator 8 after the semiconductor layer 3 was formed, but the anode lead 7 was covered with the insulator 8 before the dielectric layer 2 was formed (FIG. 3) or before the semiconductor layer 3 was formed. There is no problem even if the lead 7 is covered with the insulator 8. In addition, as shown in Figure 4, the conventional construction method (first
After attaching the anode lead wire through the cathode layer 4, the entire capacitor element is covered with an insulator 8, and then from above the insulator 8, the adhesion with at least one of the lead wires is removed. Alternatively, a method of covering the entire capacitor element with a second solder layer 10 coated with a silver paste layer or the like would not depart from the spirit of the present application. In this case, the cathode layer 4 need not be made of metal, and it goes without saying that a conductive adhesive or the like may be used. Further, in this embodiment, butadiene resin is used as the insulator 8, but it goes without saying that an inorganic insulator such as epoxy resin, silicone resin, or glass may also be used.
次に本発明により装作したものと従来法により
製作したタンタル固体電解コンデンサの温度85
℃、湿度95%RHの高温湿試験に於る静電容量の
経時変化を第5図に、誘電正接の変化を第6図
に、漏洩電流の変化を第7図にそれぞれ示す。第
7図の縦軸は対数目盛を示す。第5図、第6図お
よび第7図に示すごとく本発明により製作された
製品は高温耐湿特性が著しく改善されたことがわ
かる。 Next, the temperature of tantalum solid electrolytic capacitors manufactured by the present invention and the conventional method is 85.
Figure 5 shows the change in capacitance over time, Figure 6 shows the change in dielectric loss tangent, and Figure 7 shows the change in leakage current in a high temperature and humidity test at 95% RH and 95% humidity. The vertical axis in FIG. 7 shows a logarithmic scale. As shown in FIGS. 5, 6 and 7, it can be seen that the products manufactured according to the present invention have significantly improved high temperature and humidity resistance properties.
以上本発明によれば少くとも陽極体リードの植
設された付け根周囲を絶縁物で被覆し、かつ該陽
極体リード部を除くコンデンサ素子全体を金属層
で覆うため、湿気、不純物などのコンデンサ素子
への侵入が著しく減少し、それに伴なうコンデン
サの電気特性の劣化を抑えることができるなど、
実用性、信頼性の大なる固体電解コンデンサを提
供することができる。 As described above, according to the present invention, at least the area around the implanted base of the anode body lead is covered with an insulating material, and the entire capacitor element except for the anode body lead is covered with a metal layer, so that moisture, impurities, etc. can be removed from the capacitor element. It is possible to significantly reduce the intrusion into the capacitor and suppress the deterioration of the electrical characteristics of the capacitor.
It is possible to provide a solid electrolytic capacitor with great practicality and reliability.
第1図は従来品の側断面図、第2図、第3図、
第4図は本発明の実施例を示す側断面図である。
第5図、第6図及び第7図は本発明による製品と
従来品との高温耐湿試験に於るそれぞれ静電容
量、誘電正接、漏洩電流の経時的変化を示すグラ
フである。
1:陽極体、2:誘電体層、3:半導体層、
4:陰極層、5:(陰極)外部リード線、6:外
装絶縁材、7:陽極体リード、8:絶縁物、9:
(陽極)外部リード線。10:半田層。
Figure 1 is a side sectional view of the conventional product, Figures 2, 3,
FIG. 4 is a side sectional view showing an embodiment of the present invention.
FIGS. 5, 6, and 7 are graphs showing changes over time in capacitance, dielectric loss tangent, and leakage current, respectively, in a high-temperature humidity test of the product according to the present invention and a conventional product. 1: anode body, 2: dielectric layer, 3: semiconductor layer,
4: Cathode layer, 5: (Cathode) external lead wire, 6: Exterior insulation material, 7: Anode body lead, 8: Insulator, 9:
(Anode) External lead wire. 10: Solder layer.
Claims (1)
層、半導体層、陰極層を順次形成し樹脂を用いて
外装する固体電解コンデンサにおいて、少くとも
陽極体リード部を絶縁物で被覆し、該陽極体リー
ド部を除くコンデンサ素子全体を半田層で被覆し
たことを特徴とする固体電解コンデンサ。1. In a solid electrolytic capacitor in which a dielectric layer, a semiconductor layer, and a cathode layer are sequentially formed on an anode body made of a metal having a valve action and the anode body is packaged with resin, at least the anode body lead portion is covered with an insulator, and the anode A solid electrolytic capacitor characterized by covering the entire capacitor element except for the body leads with a solder layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14192078A JPS5568614A (en) | 1978-11-17 | 1978-11-17 | Solid electrolytic condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14192078A JPS5568614A (en) | 1978-11-17 | 1978-11-17 | Solid electrolytic condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5568614A JPS5568614A (en) | 1980-05-23 |
JPS6236374B2 true JPS6236374B2 (en) | 1987-08-06 |
Family
ID=15303226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14192078A Granted JPS5568614A (en) | 1978-11-17 | 1978-11-17 | Solid electrolytic condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5568614A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57157516A (en) * | 1981-03-23 | 1982-09-29 | Nippon Electric Co | Electronic part |
JPS57159009A (en) * | 1981-03-25 | 1982-10-01 | Nippon Electric Co | Electronic part |
-
1978
- 1978-11-17 JP JP14192078A patent/JPS5568614A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5568614A (en) | 1980-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4090288A (en) | Solid electrolyte capacitor with metal loaded resin end caps | |
CA1056923A (en) | Solid electrolyte capacitor with improved cathode | |
JPS6236374B2 (en) | ||
JPH0997747A (en) | Solid electrolytic capacitor and manufacture thereof | |
US20060164792A1 (en) | Method for manufacturing capacitor element for solid electrolytic capacitor, method for manufacturing solid electrolytic capacitor using such capacitor element and solid electrolytic capacitor using such capacitor element | |
JPH05234823A (en) | Manufacture of solid electrolytic capacitor | |
US3356911A (en) | Miniature capacitor with electrodes and dielectric seals | |
JPH05326341A (en) | Manufacture of solid electrolytic capacitor | |
JPH04192405A (en) | Solid electrolytic capacitor | |
JPS5940763Y2 (en) | solid electrolytic capacitor | |
JP3546451B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPS593569Y2 (en) | solid electrolytic capacitor | |
JP2976518B2 (en) | Chip type capacitor with fuse function | |
JPH0311883Y2 (en) | ||
JPS5824435Y2 (en) | solid electrolytic capacitor | |
JPS6141223Y2 (en) | ||
JPS6011635Y2 (en) | Electrolytic capacitor | |
JPS5927053Y2 (en) | Chip type solid electrolytic capacitor | |
JPS5934121Y2 (en) | Electrolytic capacitor | |
JPS6028129Y2 (en) | Chip type electrolytic capacitor | |
JPS5915487Y2 (en) | solid electrolytic capacitor | |
JPH0533000Y2 (en) | ||
JPS6018836Y2 (en) | electronic components | |
JPS5934124Y2 (en) | solid electrolytic capacitor | |
JPS5838601Y2 (en) | Cotai Denkai Capacitor |