JPH04240581A - Ic tester - Google Patents

Ic tester

Info

Publication number
JPH04240581A
JPH04240581A JP3007809A JP780991A JPH04240581A JP H04240581 A JPH04240581 A JP H04240581A JP 3007809 A JP3007809 A JP 3007809A JP 780991 A JP780991 A JP 780991A JP H04240581 A JPH04240581 A JP H04240581A
Authority
JP
Japan
Prior art keywords
output
timing
pin electronics
transmission lines
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3007809A
Other languages
Japanese (ja)
Inventor
Makoto Imamura
誠 今村
Norio Shimabara
島原 則雄
Eiki Arasawa
荒沢 永樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP3007809A priority Critical patent/JPH04240581A/en
Publication of JPH04240581A publication Critical patent/JPH04240581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize an IC tester in which an exact timing correction is performed by measuring a delay time in a transmission route between a rate generation device and a pin electronics and making timing standards of a plurality of the pin electronics agree to each other. CONSTITUTION:The output of a rate generation device 1 is branched into a plurality of outputs by the use of a distribution circuit 61 and transmitted for input to pin electronics 121-12n through a plurality of transmission routes 71-7n. Trailing end resistance R1 is connected to each trailing end C1-Cn of the transmission routes 71-7n through a switch SW and delay times in the transmission routes 71-7n are measured by the start signal o the transmission route and the reflection signals from the trailing ends C1-Cn at which the switch is turned off in a time measurement circuit 63 to compensate for the differences.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、LSIテスタ等、IC
試験装置におけるタイミング精度の改善、特にTDR等
高精度タイミング測定技術を活用した基準タイミング分
配に関するものである。
[Industrial Application Field] The present invention is applicable to LSI testers, etc.
This invention relates to improving timing accuracy in test equipment, particularly to reference timing distribution using high-precision timing measurement techniques such as TDR.

【0002】0002

【従来の技術】図7は従来のLSIテスタにおけるタイ
ミング発生・補正系を示す構成ブロック図である(NT
TR&D  Vol.38  No.5  1989,
p537/546)。レ―ト発生器(TG)1からの信
号は途中のケ―ブル等における遅延差により、タイミン
グ誤差を含んで、各ピンエレクトロニクス(PE)21
 〜2n に分配される。各PE21 〜2n は被試
験デバイス3の対応するピンとの間で信号の授受を行い
、被試験デバイス3のテストが行われる。一般にLSI
テスタでは被試験デバイス(DUT)3の各ピンに対す
る測定タイミングの基準が揃っていなければ正しいテス
トができない。 そこでPE21 〜2n からのタイミングを揃えるた
め、チャネルセレクタ4で補正すべきチャネルを切換え
ながら、タイミング補正ユニット(TC)5で1チャネ
ルづつ補正すべき遅延時間を測定する。すなわちTDR
(Time  Domain  Reflectome
try :時間領域反射測定法)を利用して、DUT3
の端点を開放状態とするとき全反射の影響によって線路
長Lを往復する時間に対応したステップ幅を持つ階段状
の立上がり・立下がり波形をTC5の測定端子に生じさ
せ、順次PE21 〜2n −DUT3間の線路長測定
を行っう。また直接PE21 〜2n のタイミングを
TC5で測定する場合もある。
[Prior Art] FIG. 7 is a block diagram showing a timing generation/correction system in a conventional LSI tester (NT
TR&D Vol. 38 No. 5 1989,
p537/546). The signal from the rate generator (TG) 1 includes timing errors due to delay differences in intermediate cables, etc., and is transmitted to each pin electronics (PE) 21.
~2n. Each of the PEs 21 to 2n exchanges signals with the corresponding pins of the device under test 3, and the device under test 3 is tested. Generally LSI
The tester cannot perform a correct test unless measurement timing standards for each pin of the device under test (DUT) 3 are aligned. Therefore, in order to align the timings from PE21 to PE2n, the channel selector 4 switches the channels to be corrected, and the timing correction unit (TC) 5 measures the delay time to be corrected for each channel. That is, TDR
(Time Domain Reflectome
DUT3 using try: time domain reflectometry)
When the end points of are in an open state, a step-like rising and falling waveform with a step width corresponding to the time of reciprocating the line length L is generated at the measurement terminal of TC5 due to the influence of total reflection, and sequentially PE21 to 2n-DUT3. Measure the line length between the two. There are also cases where the timing of PE21 to PE2n is directly measured by TC5.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記の
ような構成の場合、PEにおける遅延時間は温度変動等
で頻繁に変るので、上記のようにPE21 〜2n を
含めて補正すると補正の頻度が高くなり、またDUT3
を引抜いた状態でタイミング補正を行うので、工数・時
間がかかるという問題がある。またDUTに直接接続さ
れる信号線を切換える必要があることから、チャネルセ
レクタ4を半導体スイッチで実現することは困難であり
、メカニカルなスイッチとなるので、高価,低信頼性,
低速等の問題がある。本発明は、レ―ト発生器とピンエ
レクトロニクス間の伝送路における遅延時間を測定して
ピンエレクトロニクスが動作する基準となる基準タイミ
ングを一致させることにより、正確なタイミング補正が
されたIC試験装置を実現することを目的とする。
[Problem to be Solved by the Invention] However, in the case of the above-mentioned configuration, the delay time in PE changes frequently due to temperature fluctuations, so if correction is made including PE21 to 2n as described above, the correction frequency becomes high. Then, DUT3 again
Since the timing correction is performed while the is pulled out, there is a problem in that it takes a lot of man-hours and time. In addition, since it is necessary to switch the signal line directly connected to the DUT, it is difficult to implement the channel selector 4 with a semiconductor switch, and a mechanical switch is required, which is expensive, has low reliability, and
There are problems such as low speed. The present invention provides an IC test device with accurate timing correction by measuring the delay time in the transmission path between the rate generator and the pin electronics and matching the reference timing that is the reference for the operation of the pin electronics. The purpose is to realize this.

【0004】0004

【課題を解決するための手段】本発明は伝送路を介して
伝えられるレ―ト発生器の出力をタイミング基準として
複数のピンエレクトロニクスから被試験デバイスの各ピ
ンへ試験信号を印加するIC試験装置に係るもので、そ
の特徴とするところはレ―ト発生器の出力を複数に分岐
する分配回路と、この分配回路の各出力を対応するピン
エレクトロニクスの入力に伝送する複数の伝送路と、こ
れら複数の伝送路の各終端にスイッチを介して接続する
終端抵抗と、前記複数の伝送路の始端のいずれかを選択
する選択手段と、この選択手段が選択した前記伝送路の
始端信号と前記スイッチがオフとされた終端からの反射
信号より前記伝送路における遅延時間を測定する時間測
定回路とを備え、時間測定回路の出力に基づいて遅延時
間の差を補償するように構成した点にある。また、前記
分配回路の各出力を対応する他の分配回路の入力に伝送
する複数の伝送路を備えた点にも特徴がある。
[Means for Solving the Problems] The present invention provides an IC test device that applies test signals from a plurality of pin electronics to each pin of a device under test using the output of a rate generator transmitted via a transmission line as a timing reference. It is characterized by a distribution circuit that branches the output of the rate generator into multiple parts, multiple transmission lines that transmit each output of this distribution circuit to the input of the corresponding pin electronics, and A terminating resistor connected to each end of a plurality of transmission lines via a switch, a selection means for selecting one of the start ends of the plurality of transmission lines, a start end signal of the transmission line selected by the selection means, and the switch. and a time measurement circuit that measures the delay time in the transmission line from the reflected signal from the terminal end which is turned off, and is configured to compensate for the difference in delay time based on the output of the time measurement circuit. Another feature is that it includes a plurality of transmission paths for transmitting each output of the distribution circuit to the corresponding input of another distribution circuit.

【0005】[0005]

【作用】レ―ト発生器の出力を分配回路で分岐した後ピ
ンエレクトロニクスとの間の伝送路における遅延時間を
TDR法で測定し補正しているので、電子スイッチを用
いて伝送路の切換えを行うことができ、補正頻度も低く
でき、正確なタイミング補正が可能となる。また分配回
路を階層構造で構成することにより、多ピンの場合にも
対応できる。
[Operation] The delay time in the transmission line between the output of the rate generator and the pin electronics is measured and corrected by the TDR method after being branched by the distribution circuit, so the transmission line can be switched using an electronic switch. The frequency of correction can be reduced, and accurate timing correction is possible. Furthermore, by configuring the distribution circuit in a hierarchical structure, it is possible to cope with the case of a large number of pins.

【0006】[0006]

【実施例】以下本発明を図面を用いて詳しく説明する。 図1は本発明に係るIC試験装置のタイミング発生・補
正系を示す構成ブロック図である。図7と同じ部分は同
一の記号を付している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a block diagram showing a timing generation/correction system of an IC testing apparatus according to the present invention. The same parts as in FIG. 7 are given the same symbols.

【0007】1はレ―ト発生器(TG)、6はレ―ト発
生器1から出力されるレ―ト信号を複数の伝送路に分岐
するタイミング分配器(TD)、71 〜7n はTD
6の複数の出力が伝送される伝送路、121 〜12n
 は伝送路71 〜7n の各出力をタイミング基準と
して、LSI等からなる被試験デバイス3の各ピンとの
間で信号の授受を行うPEである。TD6において、レ
―ト発生器1からのレ―ト信号は分配回路(DB)61
で複数に分岐され、始端側のマッチング抵抗Ro を介
して伝送路71 〜7n の一端に印加される。この一
端の信号はさらに半導体スイッチ等からなり選択手段を
構成する切換えスイッチ62により選択されて時間測定
回路(TM)63の入力となる。PE121 〜12n
 において、伝送路71 〜7n の終端C1 〜Cn
 はPE121 〜12n の入力段に接続するととも
に、スイッチSWおよびマッチング用の終端抵抗RI 
を介してコモンに接続する。
1 is a rate generator (TG), 6 is a timing distributor (TD) that branches the rate signal output from the rate generator 1 into a plurality of transmission paths, and 71 to 7n are TDs.
Transmission line through which multiple outputs of 6 are transmitted, 121 to 12n
is a PE that sends and receives signals to and from each pin of the device under test 3 made of an LSI or the like, using each output of the transmission lines 71 to 7n as a timing reference. In TD6, the rate signal from rate generator 1 is sent to distribution circuit (DB) 61.
The signal is branched into a plurality of parts and applied to one end of the transmission lines 71 to 7n via a matching resistor Ro on the starting end side. The signal at this one end is further selected by a changeover switch 62 comprising a selection means, such as a semiconductor switch, and becomes an input to a time measurement circuit (TM) 63. PE121 ~12n
, the terminals C1 to Cn of the transmission lines 71 to 7n
is connected to the input stage of PE121 to PE12n, and also connected to the switch SW and the terminating resistor RI for matching.
Connect to common via.

【0008】上記の構成の装置の動作を次に説明する。 図2はSWをオンにした通常の動作状態を示すタイムチ
ャ―トである。この状態では伝送路71 〜7n は始
端抵抗Ro および終端RI によりマッチングがとれ
た状態となるので、信号の反射を生じない。TG1で発
生したレ―ト信号はTD6によりPE121 〜12n
 に各1本づつ分配される。各PEは分配されたタイミ
ングを基準として、DUT3を駆動または測定する。伝
送路71 〜7n により終端C1 〜Cn 点に伝送
されるタイミングT2 については、製造時のばらつき
や、実装時の変形等により、PEごとに遅延時間t2 
がばらつき、またDB61の遅延時間t1 のばらつき
も加わる。
[0008] The operation of the apparatus having the above configuration will now be described. FIG. 2 is a time chart showing a normal operating state when the SW is turned on. In this state, the transmission lines 71 to 7n are matched by the starting end resistance Ro and the ending end RI, so that no signal reflection occurs. The rate signal generated by TG1 is sent to PE121 ~ 12n by TD6.
One bottle each will be distributed. Each PE drives or measures the DUT 3 based on the distributed timing. Regarding the timing T2 of transmission to the termination points C1 to Cn via the transmission lines 71 to 7n, the delay time t2 varies for each PE due to manufacturing variations, deformation during mounting, etc.
In addition, variations in the delay time t1 of the DB 61 are also added.

【0009】図3はPE121 〜12n のいずれか
のSWをオフにして、タイミング誤差を測定する動作状
態を示すタイムチャ―トである。例えばPE121 の
SWがオフになると、C1 点で反射が起こるため、B
1 点でドライブした時刻T1 から反射波が戻ってく
る時刻T3 迄の時間をTM63で測定すれば、これは
SWオン時の伝送路の伝搬時間t2 の2倍に等しいか
ら、伝搬時間t2 を測定できる。以下PE122 〜
12n のSWを順次オフにして、同様に各チャネルの
伝搬時間を測定することができる。また同時にA点のド
ライブ時刻T0 からB1 点に達する時刻T1 迄を
TM63で測定すれば、TD6の入口からPEの入口ま
での伝搬時間を測定できる。
FIG. 3 is a time chart showing an operating state in which any SW of PEs 121 to 12n is turned off and timing errors are measured. For example, when the SW of PE121 is turned off, reflection occurs at point C1, so B
If you measure the time from time T1 when driving at one point to time T3 when the reflected wave returns with TM63, this is equal to twice the propagation time t2 of the transmission line when SW is on, so measure the propagation time t2. can. Below PE122 ~
Similarly, the propagation time of each channel can be measured by sequentially turning off the 12n SWs. At the same time, by measuring with TM63 from drive time T0 at point A to time T1 when reaching point B1, the propagation time from the entrance of TD6 to the entrance of PE can be measured.

【0010】図4はTM63で測定した各チャネルの伝
搬時間に基づいて、DB61の遅延時間を制御する場合
を示している。図5のタイムチャ―トに示すように、T
M63において、時刻T0 ,T1 間を2aの傾きで
積分し、時刻T1 ,T3 間をaの傾きで積分すれば
、積分値Vi はA点からC1 点への伝搬時間と対応
する。分配チャネル全てについて測定し、全てのVi 
が等しくなるようにDB61内の各遅延素子DLの遅延
時間を設定すれば、C1 〜Cn 点のタイミング基準
が数十ps以内の精度で一致する。またPE相互で生じ
る基準タイミングのずれは全てのPEについて容易に同
時に合せることができる。したがってDUT3の全ての
ピンの基準タイミングを正確に合せることができる。
FIG. 4 shows a case where the delay time of the DB 61 is controlled based on the propagation time of each channel measured by the TM 63. As shown in the time chart of Figure 5, T
In M63, if integration is performed between times T0 and T1 with a slope of 2a, and between times T1 and T3 with a slope of a, the integral value Vi corresponds to the propagation time from point A to point C1. Measured on all distribution channels and all Vi
If the delay time of each delay element DL in the DB 61 is set so that the values are equal, the timing standards of the C1 to Cn points will match within several tens of ps. Moreover, the deviation in reference timing that occurs between PEs can be easily adjusted simultaneously for all PEs. Therefore, the reference timings of all pins of the DUT 3 can be accurately matched.

【0011】このような構成のIC試験装置によれば、
DUT3を装填した実配線状態でタィミング分配の伝搬
遅延時間を測定できるので、配線長や実装に起因するタ
イミングのずれを正確に測定することができる。また分
配器自身の遅延時間も測定することにより、完全なタイ
ミング補正が可能となる。またチャネル切換え用のスイ
ッチSW,62は標準信号レベルを取扱うので、いずれ
も半導体スイッチ等の電子スイッチを用いることができ
、安価,高信頼性かつ高速である。またピンエレクトロ
ニクスの入口までの遅延時間のばらつきの補正頻度はそ
う高くなく、頻度の高いピンエレクトロニクスにおける
補正はピンエレクトロニクス自身が内部で(例えば51
2ピン)同時に合せることができるので、タイミング補
正に要する時間を大幅に短縮することができる。なお上
記の実施例において、タイミング分配器において遅延素
子DLを用いる代りに、時間測定回路63の測定値に応
じて各PE121 〜12n に対しデ―タ設定を行う
ことによりタイミング基準を一致させてもよい。
According to the IC test device having such a configuration,
Since the propagation delay time of timing distribution can be measured in the actual wiring state in which the DUT 3 is loaded, it is possible to accurately measure timing deviations due to wiring length and mounting. Furthermore, by measuring the delay time of the distributor itself, complete timing correction becomes possible. Further, since the channel switching switches SW and 62 handle standard signal levels, electronic switches such as semiconductor switches can be used for both, which are inexpensive, highly reliable, and fast. In addition, the frequency of correction for variations in delay time up to the entrance of pin electronics is not very high, and the correction in pin electronics that is frequent is performed internally by the pin electronics itself (for example, 51
(2 pins) can be aligned at the same time, so the time required for timing correction can be significantly shortened. In the above embodiment, instead of using the delay element DL in the timing distributor, the timing standards may be matched by setting data for each PE 121 to 12n according to the measured value of the time measurement circuit 63. good.

【0012】図6は本願に係るIC試験装置の一実施例
で、タイミング分配器を階層構造で構成することにより
、多ピンの場合に対処できるようにしたもののタイミン
グ発生・補正系を示す構成ブロック図である。レ―ト発
生器1から出力されたレ―ト信号はTD60 でn個に
分岐され、それぞれ伝送路701〜70nを介してTD
61 〜6n に送られる。各TD61 〜6n はそ
れぞれm個の伝送路711〜71m,…,7n1〜7n
mに分岐し、それぞれ対応するピンエレクトロニクス1
211〜121m,…,12n1〜12nmに伝送され
る。各TD60 ,61 〜6n は図1の6と同様の
構成を備え、TD61 〜6n の入力には電子スイッ
チSWおよび終端抵抗RI がPEの入力と同様に接続
する。伝送路701〜70nの遅延時間はTD60 の
TMで測定され、伝送路711〜7nmの遅延時間はT
D1 〜TDn のTMで測定される。各TDにおける
遅延時間についても図1の場合と同様に測定される。こ
のようにタイミング分配器を2段で構成した結果、n×
mの非常に多くのPEに対する基準タイミングの分配が
高精度で実現される。なお2段に限らず任意の多段で構
成することができる。
FIG. 6 is a configuration block diagram showing a timing generation/correction system of an embodiment of the IC test device according to the present application, in which the timing distributor is configured in a hierarchical structure to cope with the case of a large number of pins. It is a diagram. The rate signal output from the rate generator 1 is branched into n pieces at TD60, and each is sent to the TD via transmission lines 701 to 70n.
61 to 6n. Each TD61 to 6n has m transmission lines 711 to 71m,..., 7n1 to 7n.
branched into m, each corresponding pin electronics 1
211 to 121m, ..., 12n1 to 12nm. Each TD60, 61 to 6n has the same configuration as 6 in FIG. 1, and an electronic switch SW and a termination resistor RI are connected to the inputs of TD61 to 6n in the same way as the input of PE. The delay time of the transmission lines 701 to 70n is measured at TM of TD60, and the delay time of the transmission lines 711 to 7nm is measured at T.
Measured at TM from D1 to TDn. The delay time at each TD is also measured in the same manner as in FIG. As a result of configuring the timing distributor in two stages in this way, n×
The distribution of the reference timing to a large number of m PEs is achieved with high accuracy. Note that the structure is not limited to two stages, but can be configured in any number of stages.

【0013】[0013]

【発明の効果】以上述べたように本発明によれば、レ―
ト発生器とピンエレクトロニクス間の伝送路における遅
延時間を測定して複数のピンエレクトロニクスのタイミ
ング基準を一致させることにより、正確なタイミング補
正がされたIC試験装置を簡単な構成で実現することが
できる。
[Effects of the Invention] As described above, according to the present invention, the laser
By measuring the delay time in the transmission path between the pulse generator and the pin electronics and matching the timing standards of multiple pin electronics, it is possible to realize an IC test equipment with accurate timing correction with a simple configuration. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係るIC試験装置の一実施例の要部構
成ブロック図である。
FIG. 1 is a block diagram showing a main part of an embodiment of an IC testing device according to the present invention.

【図2】図1装置の通常動作を示すタイムチャ―トであ
る。
FIG. 2 is a time chart showing the normal operation of the device in FIG. 1;

【図3】図1装置の補正時の動作を示すタイムチャ―ト
である。
FIG. 3 is a time chart showing the operation of the device in FIG. 1 during correction.

【図4】図1装置の詳細な構成を示す部分構成ブロック
図である。
FIG. 4 is a partial configuration block diagram showing the detailed configuration of the device in FIG. 1;

【図5】図4装置の動作を示すタイムチャ―トである。FIG. 5 is a time chart showing the operation of the device shown in FIG. 4;

【図6】本発明に係るIC試験装置の他の実施例の要部
構成ブロック図である。
FIG. 6 is a block diagram showing the main parts of another embodiment of the IC testing device according to the present invention.

【図7】IC試験装置の従来例を示す要部構成ブロック
図である。
FIG. 7 is a block diagram showing a main part configuration of a conventional example of an IC test device.

【符号の説明】[Explanation of symbols]

1  レ―ト発生器 3  被試験デバイス 71 〜7n ,701〜70n,711〜7nm  
伝送路121 〜12n ,1211〜121m,…,
12n1〜12nm  ピンエレクトロニクス 61  分配回路 62  選択手段 63  時間測定回路 SW  スイッチ RI   終端抵抗 t2   遅延時間
1 Rate generator 3 Device under test 71 to 7n, 701 to 70n, 711 to 7nm
Transmission lines 121 to 12n, 1211 to 121m,...,
12n1 to 12nm Pin electronics 61 Distribution circuit 62 Selection means 63 Time measurement circuit SW Switch RI Terminating resistor t2 Delay time

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】伝送路を介して伝えられるレ―ト発生器の
出力をタイミング基準として複数のピンエレクトロニク
スから被試験デバイスの各ピンへ試験信号を印加するI
C試験装置において、レ―ト発生器の出力を複数に分岐
する分配回路と、この分配回路の各出力を対応するピン
エレクトロニクスの入力に伝送する複数の伝送路と、こ
れら複数の伝送路の各終端にスイッチを介して接続する
終端抵抗と、前記複数の伝送路の始端のいずれかを選択
する選択手段と、この選択手段が選択した前記伝送路の
始端信号と前記スイッチがオフとされた終端からの反射
信号より前記伝送路における遅延時間を測定する時間測
定回路とを備え、時間測定回路の出力に基づいて遅延時
間の差を補償するように構成したことを特徴とするIC
試験装置。
[Claim 1] A test signal that applies a test signal from a plurality of pin electronics to each pin of a device under test using the output of a rate generator transmitted via a transmission line as a timing reference.
C test equipment includes a distribution circuit that branches the output of the rate generator into multiple units, multiple transmission lines that transmit each output of this distribution circuit to the input of the corresponding pin electronics, and each of these multiple transmission lines. a terminating resistor connected to a terminal end via a switch; selection means for selecting one of the starting ends of the plurality of transmission lines; a starting end signal of the transmission line selected by the selection means; and a terminal end at which the switch is turned off. and a time measurement circuit that measures the delay time in the transmission path from a reflected signal from the IC, and is configured to compensate for a difference in delay time based on the output of the time measurement circuit.
Test equipment.
【請求項2】前記分配回路の各出力を対応する他の分配
回路の入力に伝送する複数の伝送路を備えたことを特徴
とする請求項1記載のIC試験装置。
2. The IC testing apparatus according to claim 1, further comprising a plurality of transmission lines for transmitting each output of said distribution circuit to a corresponding input of another distribution circuit.
JP3007809A 1991-01-25 1991-01-25 Ic tester Pending JPH04240581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007809A JPH04240581A (en) 1991-01-25 1991-01-25 Ic tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007809A JPH04240581A (en) 1991-01-25 1991-01-25 Ic tester

Publications (1)

Publication Number Publication Date
JPH04240581A true JPH04240581A (en) 1992-08-27

Family

ID=11675940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007809A Pending JPH04240581A (en) 1991-01-25 1991-01-25 Ic tester

Country Status (1)

Country Link
JP (1) JPH04240581A (en)

Similar Documents

Publication Publication Date Title
US5703489A (en) Timing calibration circuit and method for test signals
US6556934B2 (en) Timing calibration method and semiconductor device testing apparatus having timing calibration function
US7825652B2 (en) Method and apparatus for remotely buffering test channels
JP4672057B2 (en) Calibration of automatic test equipment
US7076385B2 (en) System and method for calibrating signal paths connecting a device under test to a test system
US8326565B2 (en) Chip tester, method for providing timing information, test fixture set, apparatus for post-processing propagation delay information, method for post-processing delay information, chip test set up and method for testing devices under test
US6784684B2 (en) Testing apparatus including testing board having wirings connected to common point and method of testing semiconductor device by composing signals
US5256964A (en) Tester calibration verification device
US6876938B2 (en) Method to provide a calibrated path for multi-signal cables in testing of integrated circuits
US20070101219A1 (en) Semiconductor testing apparatus and method of calibrating the same
US6882139B2 (en) Electronic component, tester device and method for calibrating a tester device
US11921158B2 (en) Fan-out buffer with skew control function, operating method thereof, and probe card including the same
KR101013829B1 (en) Semiconductor test device
JPH04240581A (en) Ic tester
US9083348B1 (en) Method and apparatus for tuning delay
JPH02198375A (en) Testing apparatus of ic
JPH0736300Y2 (en) Timing calibration device
JPH05172900A (en) Pulse transmission line
JPH0797128B2 (en) Circuit test method and device
TW528875B (en) Method and device for adjusting timing of a semiconductor tester
TWI396854B (en) Test device and socket board
JPH05157812A (en) Ic tester
JPH06281704A (en) Timing calibration device
JP2001059853A (en) Method and device for correcting measurement error of network analyzer
Chu Automatic Calibration of Systematic Errors in Fast Pulse Measurements