JPH04240373A - Temperature and humidity control device for refrigerator - Google Patents

Temperature and humidity control device for refrigerator

Info

Publication number
JPH04240373A
JPH04240373A JP530891A JP530891A JPH04240373A JP H04240373 A JPH04240373 A JP H04240373A JP 530891 A JP530891 A JP 530891A JP 530891 A JP530891 A JP 530891A JP H04240373 A JPH04240373 A JP H04240373A
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
refrigerant
humidity
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP530891A
Other languages
Japanese (ja)
Inventor
Tatsuki Gamou
蒲生 竜己
Hiroshi Ogasawara
宏 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP530891A priority Critical patent/JPH04240373A/en
Publication of JPH04240373A publication Critical patent/JPH04240373A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification
    • F25D2317/04131Control means therefor

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PURPOSE:To refrigerate food stuffs in a high degree of freshness by controlling a temperature and a humidity in a refrigerator independently. CONSTITUTION:The exciting period of time of a solenoid valve 21 is controlled in accordance with the temperature of the inside air of a refrigerator main body 2 and the temperature of outside air to regulate the flow rate of refrigerant passing through a refrigerant evaporator 17 whereby the refrigerating capacity of a refrigerating cycle 3 is controlled and the temperature of inside air is controlled. An inside fan 5 is controlled in accordance with the humidity of the inside air and the surface temperature of the refrigerant evaporator 17 to regulate the amount of ventilating air for the refrigerant evaporator 17 whereby the performance of the refrigerant evaporator 17 is controlled and the humidity of the inside air is controlled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、庫内空気の温度と湿度
とを独立して制御する冷蔵庫の温湿度制御装置に関する
もので、冷蔵庫本体内を個々の食品の最適な貯蔵温度湿
度にすることにより食品の高鮮度冷蔵を可能にするもの
である。
[Industrial Application Field] The present invention relates to a temperature/humidity control device for a refrigerator that independently controls the temperature and humidity of the air inside the refrigerator. This makes it possible to refrigerate foods with high freshness.

【0002】0002

【従来の技術】冷蔵室内に食品を収納して冷蔵する冷蔵
庫においては、食品の鮮度を保持するために、冷蔵室内
を低温高湿度に保つ必要がある。そして、食品をなお一
層の鮮度に保つためには、個々の食品の最適な貯蔵温度
湿度帯に冷蔵室内の温度および湿度を設定することが望
ましい。
2. Description of the Related Art In a refrigerator that stores and refrigerates food in a refrigeration chamber, it is necessary to maintain the inside of the refrigeration chamber at a low temperature and high humidity in order to maintain the freshness of the food. In order to keep foods even more fresh, it is desirable to set the temperature and humidity in the refrigerator compartment to the optimal storage temperature and humidity range for each food.

【0003】ここで、通常の庫内空気の湿度は、冷媒圧
縮機を通常の容量で作動させた時、流入する冷媒により
庫内空気を冷却する冷媒蒸発器に冷蔵室内の水分が付着
し除湿される。このため、庫内空気の温度が例えば4℃
まで低下するので、庫内空気の湿度は約60%程度まで
低下する。また、冷媒圧縮機の作動を停止した時には、
冷媒蒸発器に付着した霜が庫内送風機による強制送風に
よって解けて蒸発するので、水分が冷蔵室内に還元され
るため、庫内空気の湿度が急激に上昇する。そして、庫
内空気の温度が例えば10℃まで上昇すると庫内空気の
湿度は90%程度まで上昇する。
[0003] Here, the humidity of the air inside the refrigerator is normally reduced by dehumidification when the refrigerant compressor is operated at its normal capacity, and the moisture in the refrigerator adheres to the refrigerant evaporator that cools the air inside the refrigerator with the inflowing refrigerant. be done. For this reason, the temperature of the air inside the refrigerator is, for example, 4℃.
As a result, the humidity of the air inside the refrigerator decreases to about 60%. Also, when the refrigerant compressor stops operating,
As the frost adhering to the refrigerant evaporator melts and evaporates due to the forced air flow from the internal blower, moisture is returned to the refrigerator compartment, causing a rapid increase in the humidity of the air inside the refrigerator. When the temperature of the air inside the refrigerator rises to, for example, 10° C., the humidity of the air inside the refrigerator rises to about 90%.

【0004】そこで、冷媒圧縮機を通常の容量で作動さ
せた時に庫内空気の湿度が低下し、冷媒圧縮機の作動を
停止した時に急激に庫内空気の湿度が上昇するという特
性を利用して、冷媒圧縮機の作動および作動の停止を制
御することによって庫内空気の湿度を安定させることが
可能な冷蔵庫の温湿度制御装置(従来技術:実公昭62
−30716号公報等)が提案されている。
[0004] Therefore, the humidity of the air inside the refrigerator decreases when the refrigerant compressor is operated at its normal capacity, and the humidity of the air inside the refrigerator rapidly increases when the refrigerant compressor stops operating. A temperature/humidity control device for a refrigerator (prior art: 1983) is capable of stabilizing the humidity of the air inside the refrigerator by controlling the operation and stoppage of the refrigerant compressor.
-30716, etc.) have been proposed.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来技術に
おいては、冷媒圧縮機の作動を停止した時に、庫内空気
の湿度は上昇して冷蔵室内が高湿に保たれるが庫内空気
の温度も上昇してしまい、庫内空気の温度を設定温度に
保てないという不具合があった。また、冷媒圧縮機の作
動および作動の停止を制御することによって、庫内空気
の温度および湿度の振れ幅がともにかなり大きく振れる
という不具合もあった。したがって、個々の食品の最適
な貯蔵温度湿度帯に冷蔵室内の温度湿度を設定すること
ができないので、食品の鮮度が低下してしまうという課
題があった。
However, in the prior art, when the operation of the refrigerant compressor is stopped, the humidity of the air inside the refrigerator increases and the inside of the refrigerator compartment is kept at high humidity, but the temperature of the air inside the refrigerator increases. There was a problem in that the temperature of the air inside the refrigerator could not be maintained at the set temperature. Furthermore, by controlling the operation and stoppage of the refrigerant compressor, there was also a problem in that the temperature and humidity of the air inside the refrigerator fluctuated considerably. Therefore, it is not possible to set the temperature and humidity in the refrigerator compartment to the optimal storage temperature and humidity range for each food item, resulting in a problem in that the freshness of the food product decreases.

【0006】本発明は、庫内空気の温度と湿度とを独立
して制御することによって食品を高鮮度冷蔵することが
可能な冷蔵庫の温湿度制御装置の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a temperature/humidity control device for a refrigerator that is capable of refrigerating food with high freshness by independently controlling the temperature and humidity of the air inside the refrigerator.

【0007】[0007]

【課題を解決するための手段】本発明は、内部に食品を
貯蔵する冷蔵庫本体と、冷媒を圧縮して吐出する冷媒圧
縮機、この冷媒圧縮機から吐出された冷媒と庫内空気と
を熱交換する冷媒蒸発器、この冷媒蒸発器から流出した
冷媒と庫外空気とを熱交換する冷媒凝縮器、前記冷媒圧
縮機から吐出した冷媒を前記冷媒蒸発器および前記冷媒
凝縮器を迂回させて前記冷媒圧縮機に戻すバイパス配管
、およびこのバイパス配管内を流れる冷媒の流量を調整
する流量調整手段を有する冷凍サイクルと、前記冷媒蒸
発器に庫内空気を送風する庫内送風機と、庫内空気の温
度を検出する庫内温度センサーと、庫外空気の温度を検
出する庫外温度センサーと、庫内空気の湿度を検出する
庫内湿度センサーと、前記冷媒蒸発器の表面温度を検出
する表面温度センサーと、前記庫内空気の温度および前
記庫外空気の温度に応じて前記流量調整手段を制御する
とともに、前記庫内空気の湿度および前記冷媒蒸発器の
表面温度に応じて前記庫内送風機を制御する制御回路と
を備えた技術手段を採用した。
[Means for Solving the Problems] The present invention includes a refrigerator body that stores food therein, a refrigerant compressor that compresses and discharges refrigerant, and a system that heats the refrigerant discharged from the refrigerant compressor and the air inside the refrigerator. A refrigerant evaporator to be replaced, a refrigerant condenser that exchanges heat between the refrigerant flowing out from the refrigerant evaporator and air outside the refrigerator, and a refrigerant discharged from the refrigerant compressor bypassing the refrigerant evaporator and the refrigerant condenser. A refrigeration cycle having a bypass pipe that returns the refrigerant to the refrigerant compressor, and a flow rate adjustment means that adjusts the flow rate of the refrigerant flowing through the bypass pipe, an internal blower that blows internal air to the refrigerant evaporator, and An internal temperature sensor that detects temperature, an external temperature sensor that detects the temperature of external air, an internal humidity sensor that detects the humidity of internal air, and a surface temperature that detects the surface temperature of the refrigerant evaporator. a sensor, and controls the flow rate adjusting means according to the temperature of the air inside the refrigerator and the temperature of the air outside the refrigerator, and controls the inside blower according to the humidity of the air inside the refrigerator and the surface temperature of the refrigerant evaporator. Adopted technical means with a control circuit to control.

【0008】[0008]

【作用】本発明は、つぎの2つの原理を利用している。 まず、第1の原理は、湿り空気線より乾き空気温度が一
定の場合に、露点温度が乾き空気温度に近いほど相対湿
度が高くなることが知られている。ここで、露点温度が
冷媒蒸発器の表面温度と置き換えられるので、冷媒蒸発
器の表面温度、つまり、冷媒蒸発器性能を制御すること
により、庫内空気の湿度を温度から独立して制御するこ
とが可能である。
[Operation] The present invention utilizes the following two principles. First, it is known that the first principle is that when the temperature of dry air is constant compared to the moist air line, the closer the dew point temperature is to the dry air temperature, the higher the relative humidity is. Here, the dew point temperature is replaced by the surface temperature of the refrigerant evaporator, so by controlling the surface temperature of the refrigerant evaporator, that is, the refrigerant evaporator performance, the humidity of the air inside the refrigerator can be controlled independently of the temperature. is possible.

【0009】つづいて、第2の原理として、庫内空気の
温度は、冷蔵庫本体内に侵入してくる庫内侵入熱量(庫
内空気の温度と庫外空気の温度との温度差)と冷凍サイ
クルの冷凍能力との釣合いにより定まる。つまり、冷凍
サイクルの冷凍能力を制御するか、あるいは冷蔵庫本体
内への庫内侵入熱量を制御するかによって、庫内空気の
温度を湿度から独立して制御することが可能である。と
ころが、冷凍サイクルの冷凍能力を制御する一方法とし
て、インバータにより冷媒圧縮機の回転速度を制御して
冷媒圧縮機の容量を変化させることが考えられるが、高
価なインバータを必要とするので経済的ではない。また
、庫内侵入熱量を制御する場合には、例えば冷蔵庫本体
の板厚を変化させる必要があり、そのようなものでは構
造が複雑で制御も困難となるため採用することはできな
い。
Next, as a second principle, the temperature of the air inside the refrigerator is determined by the amount of heat entering the refrigerator (the temperature difference between the temperature of the air inside the refrigerator and the temperature of the air outside the refrigerator) and the temperature of the outside air. It is determined by the balance with the refrigerating capacity of the cycle. In other words, the temperature of the air inside the refrigerator can be controlled independently of the humidity by controlling the refrigeration capacity of the refrigeration cycle or by controlling the amount of heat that enters the refrigerator body. However, one possible way to control the refrigeration capacity of the refrigeration cycle is to use an inverter to control the rotation speed of the refrigerant compressor and change the capacity of the refrigerant compressor, but this requires an expensive inverter and is therefore not economical. isn't it. Furthermore, in order to control the amount of heat that enters the refrigerator, it is necessary to change the plate thickness of the refrigerator body, for example, and such a refrigerator cannot be adopted because the structure is complicated and control is difficult.

【0010】したがって、本発明においては、庫内温度
センサーにより検出された庫内空気の温度が予め設定さ
れた設定温度に達すると、庫外温度センサーにより検出
された庫外空気の温度と庫内空気の温度とに基づいて庫
内侵入熱量を求め、さらに現在のバイパス配管を流れる
冷媒の流量から現在の冷凍サイクルの冷凍能力を求める
。そして、現在の冷凍サイクルの冷凍能力および庫内侵
入熱量に応じて、バイパス配管を流れる冷媒の流量を調
整することによって、冷媒蒸発器および冷媒凝縮器を通
る冷媒の流量を調整する。このため、冷媒蒸発器内に流
入する冷媒の量が変化するので、冷媒圧縮機の作動を停
止することなく、冷凍サイクルの冷凍能力を制御するこ
とが可能となる。そして、冷凍サイクルの冷凍能力と庫
内侵入熱量との釣合いにより、庫内空気の温度が例えば
設定温度に保たれる。
Therefore, in the present invention, when the temperature of the air inside the refrigerator detected by the temperature sensor inside the refrigerator reaches a preset temperature, the temperature of the air outside the refrigerator detected by the temperature sensor outside the refrigerator and the temperature inside the refrigerator are The amount of heat entering the refrigerator is determined based on the air temperature, and the current refrigerating capacity of the refrigeration cycle is determined from the current flow rate of the refrigerant flowing through the bypass piping. Then, the flow rate of the refrigerant passing through the refrigerant evaporator and the refrigerant condenser is adjusted by adjusting the flow rate of the refrigerant flowing through the bypass pipe according to the current refrigeration capacity of the refrigeration cycle and the amount of heat entering the refrigerator. Therefore, since the amount of refrigerant flowing into the refrigerant evaporator changes, it becomes possible to control the refrigerating capacity of the refrigerating cycle without stopping the operation of the refrigerant compressor. The temperature of the air inside the refrigerator is maintained at, for example, a set temperature by the balance between the refrigerating capacity of the refrigeration cycle and the amount of heat that enters the refrigerator.

【0011】また、本発明においては、庫内湿度センサ
ーにより検出された庫内空気の湿度が予め設定された設
定湿度に達すると、表面温度センサーにより検出される
冷媒蒸発器の表面温度に応じて庫内送風機を制御して冷
媒蒸発器への送風量を調整する。このため、冷媒の冷媒
蒸発器内に流入する量が変化するので、冷媒蒸発器の表
面温度、つまり、冷媒蒸発器性能が制御される。よって
、庫内空気の湿度が例えば設定湿度に保たれる。
[0011] Furthermore, in the present invention, when the humidity of the air inside the refrigerator detected by the humidity sensor reaches a preset set humidity, the temperature is increased according to the surface temperature of the refrigerant evaporator detected by the surface temperature sensor. Controls the internal blower to adjust the amount of air sent to the refrigerant evaporator. Therefore, since the amount of refrigerant flowing into the refrigerant evaporator changes, the surface temperature of the refrigerant evaporator, that is, the refrigerant evaporator performance is controlled. Therefore, the humidity of the air inside the refrigerator is maintained at the set humidity, for example.

【0012】0012

【発明の効果】本発明は、庫内空気の温度と湿度とを独
立して制御することができるので、冷蔵庫本体内を低温
高湿に保つことができる。この結果、冷蔵庫本体内を食
品の最適な貯蔵温度湿度に保つことができるので、食品
の高鮮度冷蔵を実現できる。
According to the present invention, since the temperature and humidity of the air inside the refrigerator can be controlled independently, the inside of the refrigerator main body can be kept at a low temperature and high humidity. As a result, the inside of the refrigerator body can be maintained at the optimal storage temperature and humidity for food, making it possible to refrigerate food with high freshness.

【0013】[0013]

【実施例】本発明の冷蔵庫の温湿度制御装置を図1ない
し図5に示す一実施例に基づき説明する。図1は冷蔵庫
の温湿度制御装置を示した図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A temperature and humidity control device for a refrigerator according to the present invention will be explained based on an embodiment shown in FIGS. 1 to 5. FIG. 1 is a diagram showing a temperature and humidity control device for a refrigerator.

【0014】冷蔵庫の温湿度制御装置1は、冷蔵庫本体
2、冷凍サイクル3、庫外送風機4、庫内送風機5、庫
内温度センサー6、庫内湿度センサー7、表面温度セン
サー8、庫外温度センサー9および制御回路10を備え
る。
The refrigerator temperature and humidity control device 1 includes a refrigerator body 2, a refrigeration cycle 3, an external fan 4, an internal fan 5, an internal temperature sensor 6, an internal humidity sensor 7, a surface temperature sensor 8, and an external temperature sensor. A sensor 9 and a control circuit 10 are provided.

【0015】冷蔵庫本体2は、内部に食品を収納して冷
蔵する冷蔵室11を形成する断熱箱12を有する。
The refrigerator main body 2 has a heat insulating box 12 forming a refrigerating chamber 11 in which food is stored and refrigerated.

【0016】冷凍サイクル3は、冷媒圧縮機13、冷媒
凝縮器14、レシーバ15、膨張弁16、冷媒蒸発器1
7、アキュームレータ18、冷媒配管19、バイパス配
管20および電磁弁21から構成されている。冷媒圧縮
機13、冷媒凝縮器14、レシーバ15、膨張弁16、
冷媒蒸発器17およびアキュームレータ18は周知の構
造であるので説明を省く。なお、冷凍サイクル3の構成
部品のうち冷媒蒸発器17のみ冷蔵庫本体2の冷蔵室1
1内に配設されている。
The refrigeration cycle 3 includes a refrigerant compressor 13, a refrigerant condenser 14, a receiver 15, an expansion valve 16, and a refrigerant evaporator 1.
7, an accumulator 18, a refrigerant pipe 19, a bypass pipe 20, and a solenoid valve 21. refrigerant compressor 13, refrigerant condenser 14, receiver 15, expansion valve 16,
Since the refrigerant evaporator 17 and the accumulator 18 have well-known structures, a description thereof will be omitted. Note that among the components of the refrigeration cycle 3, only the refrigerant evaporator 17 is included in the refrigerator compartment 1 of the refrigerator body 2.
It is located within 1.

【0017】冷媒配管19は、冷媒圧縮機13、冷媒凝
縮器14、レシーバ15、膨張弁16、冷媒蒸発器17
およびアキュームレータ18を環状に接続するものであ
る。
The refrigerant pipe 19 includes a refrigerant compressor 13, a refrigerant condenser 14, a receiver 15, an expansion valve 16, and a refrigerant evaporator 17.
and the accumulator 18 are connected in a ring.

【0018】バイパス配管20は、冷媒圧縮機13から
吐出された冷媒を、冷媒凝縮器14、レシーバ15、膨
張弁16および冷媒蒸発器17を迂回させて冷媒圧縮機
13に戻すための配管である。
The bypass pipe 20 is a pipe for returning the refrigerant discharged from the refrigerant compressor 13 to the refrigerant compressor 13 by bypassing the refrigerant condenser 14, receiver 15, expansion valve 16, and refrigerant evaporator 17. .

【0019】電磁弁21は、本発明の流量調整手段であ
って、通電されるとバイパス配管20を開き、通電が停
止されるとバイパス配管20を閉じて、バイパス配管2
0を流れる冷媒の流量を調整する。
The solenoid valve 21 is a flow rate adjusting means of the present invention, and when energized, opens the bypass piping 20, and when energized, closes the bypass piping 20 and closes the bypass piping 20.
Adjust the flow rate of refrigerant flowing through 0.

【0020】庫外送風機4は、通電されると回転して冷
媒凝縮器14に冷蔵室11外の庫外空気を吹きつける。
When the external fan 4 is energized, it rotates and blows external air from outside the refrigerator compartment 11 onto the refrigerant condenser 14 .

【0021】庫内送風機5は、電流値または電圧値に応
じて回転速度が変化する。また、庫内送風機5は、回転
速度に応じて冷蔵室11内の庫内空気を冷媒蒸発器17
に送風する空気量(送風量)を変化させる。
[0021] The internal fan 5 changes its rotational speed depending on the current value or voltage value. Further, the internal air blower 5 transfers internal air within the refrigerator compartment 11 to the refrigerant evaporator 17 according to the rotation speed.
Change the amount of air blown (air volume).

【0022】庫内温度センサー6は、冷蔵庫本体2の冷
蔵室11内に配設され、庫内空気の温度を検出するもの
で、検出した庫内空気の温度を電気量に変換して制御回
路10に送る。
The refrigerator temperature sensor 6 is disposed in the refrigerator compartment 11 of the refrigerator body 2, and detects the temperature of the refrigerator air.The temperature sensor 6 converts the detected temperature of the refrigerator air into an electrical quantity and sends it to the control circuit. Send to 10.

【0023】庫内湿度センサー7は、冷蔵庫本体2の冷
蔵室11内に配設され、庫内空気の湿度を検出するもの
で、検出した庫内空気の湿度を電気量に変換して制御回
路10に送る。
The internal humidity sensor 7 is arranged in the refrigerator compartment 11 of the refrigerator main body 2 and detects the humidity of the internal air.The internal humidity sensor 7 converts the detected humidity of the internal air into an electrical quantity and sends it to the control circuit. Send to 10.

【0024】表面温度センサー8は、冷媒蒸発器17の
フィンに取り付けられ、冷媒蒸発器17の表面温度を検
出するもので、検出した冷媒蒸発器17の表面温度を電
気量に変換して制御回路10に送る。
The surface temperature sensor 8 is attached to the fin of the refrigerant evaporator 17 and detects the surface temperature of the refrigerant evaporator 17. The surface temperature sensor 8 converts the detected surface temperature of the refrigerant evaporator 17 into an electrical quantity and sends it to the control circuit. Send to 10.

【0025】庫外温度センサー9は、冷蔵庫本体2の冷
蔵室11外に配設され、庫外空気の温度を検出するもの
で、検出した庫外空気の温度を電気量に変換して制御回
路10に送る。
The outside temperature sensor 9 is disposed outside the refrigerator compartment 11 of the refrigerator body 2, and detects the temperature of the outside air. Send to 10.

【0026】制御回路10は、庫内空気の温度および庫
内空気の湿度に応じて電磁弁21を通電制御して冷凍サ
イクル3の冷凍能力を変化させる。また、制御回路10
は、庫内空気の温度および冷媒蒸発器17の表面温度に
応じて庫内送風機5の送風量を制御して冷媒蒸発器17
の性能を変化させる。
The control circuit 10 changes the refrigerating capacity of the refrigeration cycle 3 by controlling the energization of the solenoid valve 21 according to the temperature and humidity of the air inside the refrigerator. In addition, the control circuit 10
controls the amount of air blown by the internal blower 5 according to the temperature of the internal air and the surface temperature of the refrigerant evaporator 17.
change the performance of

【0027】つぎに、制御回路10の温湿度制御の一例
を図2のフローチャートに基づいて説明する。まず、冷
蔵室11内の設定温度および設定湿度を読み込む(ステ
ップS1)。なお、冷蔵室11内の設定温度は予め0℃
に設定され、冷蔵室11内の設定湿度は予め90%に設
定されている。そして、冷媒圧縮機13の冷凍能力、庫
外送風機4および庫内送風機5の送風量等の初期設定を
行う(ステップS2)。
Next, an example of temperature and humidity control by the control circuit 10 will be explained based on the flowchart of FIG. First, the set temperature and set humidity in the refrigerator compartment 11 are read (step S1). Note that the temperature in the refrigerator compartment 11 is set to 0°C in advance.
The set humidity in the refrigerator compartment 11 is set to 90% in advance. Then, initial settings are made for the refrigerating capacity of the refrigerant compressor 13, the amount of air blown by the external blower 4 and the internal blower 5, etc. (step S2).

【0028】つづいて、庫内空気の温度を読み込み(ス
テップS3)、庫内空気の温度が設定温度範囲(設定温
度±5℃)内であるか否かを判断する(ステップS4)
。設定温度範囲内ではない(N)時、庫外空気の温度を
読み込み(ステップS5)、庫内侵入熱量から冷凍サイ
クル3の冷凍能力の低下量を決定する(ステップS6)
Next, the temperature of the air inside the refrigerator is read (step S3), and it is determined whether the temperature of the air inside the refrigerator is within the set temperature range (set temperature ±5° C.) (step S4).
. When the temperature is not within the set temperature range (N), the temperature of the air outside the refrigerator is read (step S5), and the amount of decrease in the refrigerating capacity of the refrigeration cycle 3 is determined from the amount of heat entering the refrigerator (step S6).
.

【0029】そして、決定した冷凍サイクル3の冷凍能
力の低下量から電磁弁21のバイパスオンオフ比(T2
/T1)を求める(ステップS7)。ここで、T1は周
期で、T2は電磁弁21の通電時間である。そして、求
めたバイパスオンオフ比に応じて電磁弁21を通電制御
する(ステップS8)。その後にステップS3の制御を
行う。
Then, the bypass on-off ratio of the solenoid valve 21 (T2
/T1) (step S7). Here, T1 is the cycle, and T2 is the energization time of the solenoid valve 21. Then, the electromagnetic valve 21 is energized and controlled according to the obtained bypass on/off ratio (step S8). After that, control in step S3 is performed.

【0030】ステップS4において、設定温度範囲内で
ある(Y)時、庫内空気の湿度を読み込み(ステップS
9)、庫内空気の湿度が設定湿度以上に上昇しているか
否かを判断する(ステップS10)。庫内空気の湿度が
設定湿度以上に上昇している(Y)時、ステップS3の
制御を行う。
In step S4, when the temperature is within the set temperature range (Y), the humidity of the air inside the refrigerator is read (step S4).
9) It is determined whether or not the humidity of the air inside the refrigerator has risen above the set humidity (step S10). When the humidity of the air inside the refrigerator has risen to the set humidity or higher (Y), control in step S3 is performed.

【0031】ステップS10において、設定湿度以上に
上昇していない(N)時、冷媒蒸発器17の表面温度を
読み込み(ステップS11)、冷媒蒸発器17への目標
送風量を演算する(ステップS12)。つぎに、目標送
風量となるように庫内送風機5の電流値または電圧値を
制御する(ステップS13)。そして、ステップS9の
制御を行う。
In step S10, when the humidity has not risen above the set humidity (N), the surface temperature of the refrigerant evaporator 17 is read (step S11), and a target air flow rate to the refrigerant evaporator 17 is calculated (step S12). . Next, the current value or voltage value of the internal fan 5 is controlled so as to reach the target air flow rate (step S13). Then, control in step S9 is performed.

【0032】この冷蔵庫の温湿度制御装置1の作用を図
1、図3ないし図6に基づき説明する。
The operation of the refrigerator temperature and humidity control device 1 will be explained based on FIGS. 1, 3 to 6.

【0033】図3に示すように、例えば現在の冷蔵庫本
体2の庫内空気の温度および湿度が10℃および60%
(点A)であるときに、庫内空気の温度および湿度を0
℃および90%(点B)にするため、まず庫内空気の温
度を下げる制御を行う。
As shown in FIG. 3, for example, the current temperature and humidity of the air inside the refrigerator body 2 are 10° C. and 60%.
(Point A), the temperature and humidity of the air inside the refrigerator are set to 0.
℃ and 90% (point B), first, control is performed to lower the temperature of the air inside the refrigerator.

【0034】このときの庫内空気の温度tiと冷凍サイ
クルの冷凍能力Qおよび庫内侵入熱量qiは、図4に示
すようになる。ここで、冷凍能力Qは100%能力時を
示す。また、庫内侵入熱量は次式である。 式  qi=KF(to−ti)+qfなお、Kは断熱
箱12の熱通過率、Fは断熱箱12の伝熱面積、toは
庫外空気の温度、tiは庫内空気の温度、qf庫内発熱
量(庫内送風機5の発熱量)である。
At this time, the temperature ti of the air inside the refrigerator, the refrigerating capacity Q of the refrigeration cycle, and the amount of heat entering the refrigerator qi are as shown in FIG. Here, the refrigerating capacity Q indicates the time of 100% capacity. In addition, the amount of heat intruding into the refrigerator is expressed by the following formula. Formula qi=KF(to-ti)+qfK is the heat transfer rate of the insulation box 12, F is the heat transfer area of the insulation box 12, to is the temperature of the air outside the refrigerator, ti is the temperature of the air inside the refrigerator, qf This is the internal calorific value (the calorific value of the internal blower 5).

【0035】図4に示すように、冷凍サイクル3が決定
すると冷凍サイクル3の冷凍能力線が決まり、断熱箱1
2と庫内発熱量が決定すると庫内侵入熱量が決まる。そ
して、図4の場合は、冷凍サイクル3の冷凍能力と庫内
侵入熱量との釣合いポイント(点C)より冷凍サイクル
3を100%能力で連続運転したとき、庫内空気の温度
が−10℃となることを示している。
As shown in FIG. 4, when the refrigeration cycle 3 is determined, the refrigerating capacity line of the refrigeration cycle 3 is determined, and the insulation box 1
2 and the amount of heat generated inside the refrigerator is determined, the amount of heat that penetrates into the refrigerator is determined. In the case of Fig. 4, when the refrigeration cycle 3 is continuously operated at 100% capacity from the equilibrium point (point C) between the refrigerating capacity of the refrigeration cycle 3 and the amount of heat entering the refrigerator, the temperature of the air inside the refrigerator is -10°C. It shows that.

【0036】このことにより、冷凍能力を低下させるこ
とによって庫内空気の温度を制御できる。すなわち、図
4に示すように、冷凍サイクル3の冷凍能力が80%能
力のときに冷凍能力Qと庫内侵入熱量qiとの釣合いポ
イント(点D)より庫内空気の温度tiが0℃になるこ
とが確認できる。
[0036] With this, the temperature of the air inside the refrigerator can be controlled by lowering the refrigerating capacity. That is, as shown in FIG. 4, when the refrigerating capacity of the refrigeration cycle 3 is 80% capacity, the temperature ti of the air inside the refrigerator reaches 0°C from the equilibrium point (point D) between the refrigerating capacity Q and the amount of heat qi entering the refrigerator. It can be confirmed that this will happen.

【0037】したがって、この実施例では、制御回路1
0が庫内空気の温度と庫外空気の温度とから冷凍サイク
ル3の冷凍能力の低下量を決め、この冷凍能力の低下量
から電磁弁21のバイパスオンオフ比(T2/T1)を
求めて、電磁弁21の通電時間および通電と通電停止と
の間隔を制御してバイパス配管20に冷媒を流す。
Therefore, in this embodiment, the control circuit 1
0 determines the amount of decrease in the refrigerating capacity of the refrigeration cycle 3 from the temperature of the air inside the refrigerator and the temperature of the air outside the refrigerator, and calculates the bypass on-off ratio (T2/T1) of the solenoid valve 21 from the amount of decrease in the refrigerating capacity. The refrigerant is allowed to flow through the bypass pipe 20 by controlling the energization time of the solenoid valve 21 and the interval between energization and de-energization.

【0038】このため、冷媒配管19を通って冷媒凝縮
器14および冷媒蒸発器17等の冷凍機器内を流れる冷
媒の量が減るので、冷媒蒸発器17内での気化する冷媒
の量も減少する。よって、冷凍サイクル3の冷凍能力が
100%能力から80%能力となり、庫内空気の温度が
0℃まで低下する。このとき、冷凍サイクル3の冷凍能
力の低下により庫内空気の湿度が低下するため、同時に
庫内空気の湿度を上昇させる制御を行う。
Therefore, the amount of refrigerant flowing through the refrigerant condenser 14, refrigerant evaporator 17, and other refrigeration equipment through the refrigerant pipe 19 is reduced, so the amount of refrigerant vaporized in the refrigerant evaporator 17 is also reduced. . Therefore, the refrigerating capacity of the refrigerating cycle 3 changes from 100% capacity to 80% capacity, and the temperature of the air inside the refrigerator drops to 0°C. At this time, since the humidity of the air inside the refrigerator decreases due to a decrease in the refrigerating capacity of the refrigeration cycle 3, control is performed to simultaneously increase the humidity of the air inside the refrigerator.

【0039】図5に示すように、露点温度が変化すると
相対湿度も変化する。すなわち、乾球温度(庫内空気の
温度)および露点温度が0℃および−6℃(点E)のと
き相対湿度は60%となる。また、乾球温度(庫内空気
の温度)および露点温度が0℃および−1.2℃(点F
)のとき相対湿度は90%となる。ここで、冷媒蒸発器
17の表面温度が露点温度と考えられるので、冷媒蒸発
器17の表面温度、つまり、冷媒蒸発器17の性能を制
御することによって相対湿度を変化させることができる
As shown in FIG. 5, when the dew point temperature changes, the relative humidity also changes. That is, when the dry bulb temperature (temperature of the air inside the refrigerator) and the dew point temperature are 0° C. and −6° C. (point E), the relative humidity is 60%. In addition, the dry bulb temperature (temperature of the air inside the refrigerator) and dew point temperature are 0℃ and -1.2℃ (point F
), the relative humidity is 90%. Here, since the surface temperature of the refrigerant evaporator 17 is considered to be the dew point temperature, the relative humidity can be changed by controlling the surface temperature of the refrigerant evaporator 17, that is, the performance of the refrigerant evaporator 17.

【0040】ここで、冷媒蒸発器17の性能は、次式に
より求まる。式  qe=WφΔT  ここで、qeは
冷媒蒸発器17の熱交換量〔kcal〕で一定とする。 Wは空気側重量流量(冷媒蒸発器17への目標送風量)
〔kg/h〕、ΔTは冷媒蒸発器17の性能(冷媒蒸発
器17の表面温度teと庫内空気の温度tiとの温度差
〔℃〕)、φは冷媒蒸発器17の性能係数(内部を流れ
る冷媒の流量と庫内送風量とによっても変化する係数)
である。
Here, the performance of the refrigerant evaporator 17 is determined by the following equation. Formula qe=WφΔT Here, qe is the heat exchange amount [kcal] of the refrigerant evaporator 17 and is constant. W is the air side weight flow rate (target air flow rate to the refrigerant evaporator 17)
[kg/h], ΔT is the performance of the refrigerant evaporator 17 (the temperature difference [°C] between the surface temperature te of the refrigerant evaporator 17 and the temperature ti of the internal air), and φ is the performance coefficient of the refrigerant evaporator 17 (internal )
It is.

【0041】式よりΔTを小さくしてqeを下げないよ
うにするにはWφを大きくすれば良いことが確認できる
。よって、冷凍サイクル3の冷凍能力Qが一定のときに
、冷媒蒸発器17の性能ΔTを小さくするには冷媒蒸発
器17への目標送風量Wを大きくすれば良い。
From the equation, it can be confirmed that in order to reduce ΔT and prevent qe from decreasing, Wφ should be increased. Therefore, when the refrigeration capacity Q of the refrigeration cycle 3 is constant, the target air flow rate W to the refrigerant evaporator 17 can be increased in order to reduce the performance ΔT of the refrigerant evaporator 17.

【0042】よって、庫内空気の温度および湿度を0℃
および90%にするときに、庫内侵入熱量は断熱箱12
と内部発熱量より既知であり、またΔTも庫内空気の湿
度より計算できるので既知となる。したがって、冷媒蒸
発器17の性能係数がその冷媒蒸発器17で決まったも
のだとすれば冷媒蒸発器17への目標送風量Wが求まる
[0042] Therefore, the temperature and humidity of the air inside the refrigerator are set to 0°C.
and 90%, the amount of heat entering the refrigerator is 12
is known from the internal calorific value, and ΔT is also known because it can be calculated from the humidity of the air inside the refrigerator. Therefore, if the performance coefficient of the refrigerant evaporator 17 is determined by that refrigerant evaporator 17, the target air flow rate W to the refrigerant evaporator 17 can be determined.

【0043】このため、冷媒蒸発器17への目標送風量
Wに応じて庫内送風機5への電流値または電圧値を制御
して庫内送風機5の回転速度を上げることによって、冷
媒蒸発器17への送風量を大きくする。このため、冷媒
蒸発器17の表面温度、つまり、冷媒蒸発器17の性能
が制御されるので、冷凍サイクル3の冷凍能力を低下さ
せても庫内空気の湿度が90%に保たれる。
Therefore, by controlling the current value or voltage value to the internal fan 5 in accordance with the target air flow rate W to the refrigerant evaporator 17 and increasing the rotational speed of the internal fan 5, the refrigerant evaporator 17 Increase the amount of air blown to. Therefore, the surface temperature of the refrigerant evaporator 17, that is, the performance of the refrigerant evaporator 17 is controlled, so that even if the refrigerating capacity of the refrigeration cycle 3 is reduced, the humidity of the air inside the refrigerator is maintained at 90%.

【0044】以上のように、この冷蔵庫の温湿度制御装
置1は、庫内空気の温度と湿度とを同時に制御できるの
で、庫内空気の温度を設定温度に近づけながらも庫内空
気の湿度を設定湿度に近づけることができる。この結果
、冷蔵室11内を低温高湿に保てるので、冷蔵室11内
が食品の最適な貯蔵温度湿度となることによって、食品
が高鮮度冷蔵される。
As described above, this refrigerator temperature/humidity control device 1 can control the temperature and humidity of the air inside the refrigerator at the same time. The humidity can be brought close to the set humidity. As a result, the inside of the refrigerator compartment 11 can be maintained at a low temperature and high humidity, so that the inside of the refrigerator compartment 11 has the optimal temperature and humidity for storing food, and the food is refrigerated with high freshness.

【0045】(変形例)  本実施例では、流量調整手
段としてバイパス配管の開口時間を制御する電磁弁を用
いたが、流量調整手段としてバイパス配管の開口度合を
制御する流量調整弁を用いても良い。本発明を冷凍庫の
温湿度制御装置に利用しても良い。
(Modification) In this embodiment, a solenoid valve that controls the opening time of the bypass pipe is used as the flow rate adjustment means, but a flow rate adjustment valve that controls the opening degree of the bypass pipe may also be used as the flow rate adjustment unit. good. The present invention may be utilized in a temperature/humidity control device for a freezer.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に用いた冷蔵庫の温湿度制御
装置を示した概略図である。
FIG. 1 is a schematic diagram showing a temperature and humidity control device for a refrigerator used in an embodiment of the present invention.

【図2】制御回路の温湿度制御の一例を表したフローチ
ャートである。
FIG. 2 is a flowchart showing an example of temperature and humidity control of a control circuit.

【図3】760mmHg時における相対湿度60%と9
0%との湿り空気線図である。
[Figure 3] Relative humidity 60% and 9 at 760mmHg
It is a psychrometric diagram with 0%.

【図4】冷凍サイクルの冷凍能力と庫内空気の温度との
関係を表したグラフである。
FIG. 4 is a graph showing the relationship between the refrigerating capacity of the refrigerating cycle and the temperature of the air inside the refrigerator.

【図5】760mmHg時における相対湿度60%と9
0%との湿り空気線図である。
[Figure 5] Relative humidity 60% and 9 at 760mmHg
It is a psychrometric diagram with 0%.

【符号の説明】[Explanation of symbols]

1  冷蔵庫の温湿度制御装置 2  冷蔵庫本体 3  冷凍サイクル 5  庫内送風機 6  庫内温度センサー 7  庫内湿度センサー 8  表面温度センサー 9  庫外温度センサー 10  制御回路 13  冷媒圧縮機 14  冷媒凝縮器 17  冷媒蒸発器 20  バイパス配管 21  電磁弁(流量調整手段) 1 Refrigerator temperature and humidity control device 2 Refrigerator body 3 Refrigeration cycle 5 Internal blower 6. Internal temperature sensor 7 Internal humidity sensor 8 Surface temperature sensor 9 Outside temperature sensor 10 Control circuit 13 Refrigerant compressor 14 Refrigerant condenser 17 Refrigerant evaporator 20 Bypass piping 21 Solenoid valve (flow rate adjustment means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (a)内部に食品を貯蔵する冷蔵庫本
体と、(b)冷媒を圧縮して吐出する冷媒圧縮機、この
冷媒圧縮機から吐出された冷媒と庫内空気とを熱交換す
る冷媒蒸発器、この冷媒蒸発器から流出した冷媒と庫外
空気とを熱交換する冷媒凝縮器、前記冷媒圧縮機から吐
出した冷媒を前記冷媒蒸発器および前記冷媒凝縮器を迂
回させて前記冷媒圧縮機に戻すバイパス配管、およびこ
のバイパス配管内を流れる冷媒の流量を調整する流量調
整手段を有する冷凍サイクルと、(c)前記冷媒蒸発器
に庫内空気を送風する庫内送風機と、(d)庫内空気の
温度を検出する庫内温度センサーと、(e)庫外空気の
温度を検出する庫外温度センサーと、(f)庫内空気の
湿度を検出する庫内湿度センサーと、(g)前記冷媒蒸
発器の表面温度を検出する表面温度センサーと、(h)
前記庫内空気の温度および前記庫外空気の温度に応じて
前記流量調整手段を制御するとともに、前記庫内空気の
湿度および前記冷媒蒸発器の表面温度に応じて前記庫内
送風機を制御する制御回路とを備えた冷蔵庫の温湿度制
御装置。
Claim 1: (a) a refrigerator body that stores food inside, (b) a refrigerant compressor that compresses and discharges refrigerant, and that exchanges heat between the refrigerant discharged from the refrigerant compressor and the air inside the refrigerator. a refrigerant evaporator, a refrigerant condenser that exchanges heat between the refrigerant flowing out from the refrigerant evaporator and the air outside the refrigerator, and a refrigerant compressor that bypasses the refrigerant evaporator and the refrigerant condenser to compress the refrigerant discharged from the refrigerant compressor. a refrigeration cycle having a bypass pipe for returning the refrigerant to the machine, and a flow rate adjustment means for adjusting the flow rate of the refrigerant flowing in the bypass pipe; (c) an internal blower for blowing internal air to the refrigerant evaporator; (d) (e) an outside temperature sensor that detects the temperature of the outside air; (f) an inside humidity sensor that detects the humidity of the inside air; (g) an inside temperature sensor that detects the temperature of the inside air; ) a surface temperature sensor that detects the surface temperature of the refrigerant evaporator; and (h)
Controlling the flow rate adjusting means according to the temperature of the inside air and the temperature of the outside air, and controlling the inside blower according to the humidity of the inside air and the surface temperature of the refrigerant evaporator. Refrigerator temperature and humidity control device equipped with a circuit.
JP530891A 1991-01-21 1991-01-21 Temperature and humidity control device for refrigerator Pending JPH04240373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP530891A JPH04240373A (en) 1991-01-21 1991-01-21 Temperature and humidity control device for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP530891A JPH04240373A (en) 1991-01-21 1991-01-21 Temperature and humidity control device for refrigerator

Publications (1)

Publication Number Publication Date
JPH04240373A true JPH04240373A (en) 1992-08-27

Family

ID=11607651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP530891A Pending JPH04240373A (en) 1991-01-21 1991-01-21 Temperature and humidity control device for refrigerator

Country Status (1)

Country Link
JP (1) JPH04240373A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049267A1 (en) * 1998-03-25 1999-09-30 Artha Co., Ltd. Cooling method and cooling apparatus
US6257008B1 (en) 1998-03-25 2001-07-10 Moritoshi Nagaoka Cooling method and cooling apparatus
JP2015169398A (en) * 2014-03-08 2015-09-28 東弘電機株式会社 Cooling control method for cold air cooler
JP2019184110A (en) * 2018-04-05 2019-10-24 福島工業株式会社 refrigerator
TWI794745B (en) * 2020-02-18 2023-03-01 日商前川製作所股份有限公司 cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049267A1 (en) * 1998-03-25 1999-09-30 Artha Co., Ltd. Cooling method and cooling apparatus
US6257008B1 (en) 1998-03-25 2001-07-10 Moritoshi Nagaoka Cooling method and cooling apparatus
US6257006B1 (en) * 1998-03-25 2001-07-10 Moritoshi Nagaoka Cooling method and cooling apparatus
JP2015169398A (en) * 2014-03-08 2015-09-28 東弘電機株式会社 Cooling control method for cold air cooler
JP2019184110A (en) * 2018-04-05 2019-10-24 福島工業株式会社 refrigerator
TWI794745B (en) * 2020-02-18 2023-03-01 日商前川製作所股份有限公司 cooling device

Similar Documents

Publication Publication Date Title
EP3435014B1 (en) Refrigerator and control method therefor
US7730732B2 (en) Refrigerating storage cabinet
JP2002147917A (en) Refrigerating equipment and refrigerator provided with refrigerating equipment
JPS58200973A (en) Controller for temperature of refrigerator for heating and cooling
JP2001082850A (en) Refrigerator
EP1102019A1 (en) Refrigeration system with independent compartment temperature control
JPH04240373A (en) Temperature and humidity control device for refrigerator
WO2019208634A1 (en) Hot/cold storage container
JP2000205672A (en) Refrigerating system
JPH1047826A (en) Freezing refrigerator
JP2003194446A (en) Refrigerator
JPS6127665B2 (en)
JPS6373059A (en) Refrigerator
JPH06273011A (en) Cool air drier
JP2000356445A (en) Refrigerator
JP3585564B2 (en) refrigerator
JP2003287331A (en) Refrigerator
JP2000356446A (en) Refrigerator
JPH0533737Y2 (en)
JPH056108B2 (en)
JP3332512B2 (en) Cold air dryer
JP2006153406A (en) Cooling system, and showcase cooling device
JPH0584434B2 (en)
JP2001153477A (en) Refrigerating plant
JP2701634B2 (en) Refrigeration equipment