WO2019208634A1 - Hot/cold storage container - Google Patents

Hot/cold storage container Download PDF

Info

Publication number
WO2019208634A1
WO2019208634A1 PCT/JP2019/017438 JP2019017438W WO2019208634A1 WO 2019208634 A1 WO2019208634 A1 WO 2019208634A1 JP 2019017438 W JP2019017438 W JP 2019017438W WO 2019208634 A1 WO2019208634 A1 WO 2019208634A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigerant
refrigeration circuit
temperature
internal
Prior art date
Application number
PCT/JP2019/017438
Other languages
French (fr)
Japanese (ja)
Inventor
清水 拓也
Original Assignee
サンデン・リテールシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・リテールシステム株式会社 filed Critical サンデン・リテールシステム株式会社
Publication of WO2019208634A1 publication Critical patent/WO2019208634A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove

Definitions

  • the present invention relates to a hot / cold storage for storing an article at a desired freezing / refrigeration temperature range to a temperature range.
  • the heating / cooling chamber that keeps the interior at an arbitrary temperature is provided with a heating device such as an electric heater and an evaporator of a cooling device, and the interior can be heated and cooled.
  • a heating device such as an electric heater and an evaporator of a cooling device
  • the interior can be heated and cooled.
  • the temperature in the storage is detected, the operation of the heating device and the cooling device is controlled so as to become the set temperature, and the gradient operation for changing the interior to the set temperature or the storage Equilibrium operation is performed to maintain the inside at the set temperature.
  • the expansion mechanism of the cooling device includes a variable opening expansion mechanism, and the cooling device is operated continuously, while controlling the opening of the expansion mechanism and the output of the heating device to perform gradient operation and equilibrium operation. I do.
  • Patent Document 2 ON / OFF control of the cooling device is performed so as to suppress deviation from the set temperature gradient during gradient operation.
  • JP-A-2-229556 Japanese Patent Laid-Open No. 3-218803
  • Patent Document 1 and Patent Document 2 In such a temperature-controlled refrigerator that requires precise temperature management, the temperature control methods of Patent Document 1 and Patent Document 2 described above can maintain temperature accurately in a narrow range in equilibrium operation, or in gradient operation. It is difficult to suppress a deviation from the set temperature gradient and smoothly change the temperature.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heating / cooling chamber capable of precise temperature management while suppressing a deviation from a set temperature.
  • the hot / cold storage includes a housing in which a storage room for storing articles is formed, and a first refrigeration cycle for cooling the inside of the storage room.
  • the first refrigeration cycle includes a first internal evaporator that evaporates the refrigerant by at least exchanging heat with the interior of the warehouse in the refrigerant circulation path, and compresses the refrigerant.
  • a first outside evaporator disposed in the circulation path upstream of the compressor and exchanging heat with the outside of the warehouse to evaporate the refrigerant. It is characterized by.
  • a heater for heating the inside of the storage room is provided.
  • a second circulation evaporator configured to provide a refrigerant circulation path different from the first refrigeration cycle by at least a second internal evaporator that exchanges heat with the interior of the warehouse and evaporates the refrigerant.
  • the refrigeration cycle is provided.
  • the internal temperature detector for detecting the internal temperature of the storage room, and the first temperature in a temperature zone at least partially different from each other based on the internal temperature of the storage room detected by the internal temperature detector.
  • a control unit for operating the second refrigeration cycle.
  • the external evaporator is disposed downstream of the first internal evaporator.
  • the first refrigeration cycle includes the internal evaporator and the external evaporator
  • the amount of refrigerant evaporated in the internal evaporator is suppressed, and the internal cooling capacity of the internal evaporator is suppressed. be able to.
  • by evaporating the refrigerant by the outside evaporator it is possible to prevent the liquid refrigerant from returning to the compressor and to stably increase the temperature of the refrigerant flowing into the compressor.
  • precise temperature management such as maintaining the inside of the cabinet in a slight temperature range, suppressing deviation from the set temperature gradient, and smoothly changing the temperature.
  • the hot / cold storage according to the present embodiment is used as, for example, a thermostatic chamber or a medicine storage that requires precise temperature control.
  • FIG. 1 is a schematic perspective view of the hot and cold storage of the present invention.
  • the hot / cold storage 1 is composed of a storage section S arranged at the lower part and a machine part M arranged at the upper part.
  • the storage unit S includes an outer box 10 (housing) that is a rectangular parallelepiped housing having a front opening, and an outer door 11 for closing the front opening of the outer box 10.
  • Each of the doors 11 has a structure filled with a heat insulating material.
  • the outer door 11 opens and closes the front opening of the outer box 10 by rotating around a hinge (not shown) attached to the front surface of the left or right side wall toward the outer box 10.
  • an inner box 12 (storage room) for storing articles is provided. Between the inner box 12 and the outer box 10, a duct 13 for circulating the air in the warehouse (in the storage unit S) is provided.
  • the duct 13 is provided behind and above the inner box.
  • the duct 13 above the inner box 12 has an electric heater 20 (heater) as a heating device for heating the inside of the box and a cooling device for cooling the inside of the box, which will be described later.
  • the internal evaporator 21 first internal evaporator, second internal evaporator
  • fan 22 of the first freezing circuit 31 and the second freezing circuit 32 are provided.
  • the duct 13 communicates the opening 23 at the lower end of the rear part of the inner box 12 and the opening 24 at the upper front end.
  • an internal evaporator 21, a fan 22, and an electric heater 20 are arranged in this order from the rear to the front.
  • the air in the duct 13 passes through the internal evaporator 21 and the electric heater 20, is reflected on the inner wall surface of the outer door 11, and flows into the inner box 12 from the opening 24. Then, the air in the inner box 12 is sucked into the duct 13 through the opening 23 and returns to the internal evaporator 21 to circulate in the storage unit S.
  • an operating device 30 for setting a target temperature reached in the storage is provided.
  • FIG. 2 is a configuration diagram of the first refrigeration circuit 31 (first refrigeration cycle) and the second refrigeration circuit 32 (second refrigeration cycle) in the hot / cold storage 1.
  • the hot / cold storage 1 of the present embodiment includes a first refrigeration circuit 31 and a second refrigeration circuit 32 as a cooling device for cooling the inside of the storage.
  • the first refrigeration circuit 31 has a refrigerant circulation path 33
  • the second refrigeration circuit 32 has a refrigerant circulation path 34.
  • the circulation path 33 and the circulation path 34 are configured independently of each other.
  • the refrigerant for example, both the first refrigeration circuit 31 and the second refrigeration circuit 32 use HFC-134a.
  • the compressor 35 In the circulation path 33 of the first refrigeration circuit 31, the compressor 35, the condenser 36, the electronic expansion valve 37, the internal evaporator 21 (first internal evaporator), An outer evaporator 38 is provided.
  • the compressor 40 the condenser 41, the electronic expansion valve 42, and the internal evaporator 21 (second internal evaporator) are sequentially arranged in the refrigerant flow direction. It has.
  • each of the compressors 35 and 40, the condensers 36 and 41, the electronic expansion valves 37 and 42, and the internal evaporator 21 in each refrigeration circuit 31 and 32 is a known configuration, a detailed description of the structure and function is provided. Is omitted.
  • the first refrigeration circuit 31 is provided with a hot gas defrosting circuit 45.
  • the hot gas defrosting circuit 45 includes a flow path switching electromagnetic valve 46 disposed in the circulation path 33 between the compressor 35 and the condenser 36, a branch from the electromagnetic valve 46, and an electronic expansion valve 37 and a warehouse.
  • the communication path 47 communicates with the circulation path 33 between the inner evaporator 21 and the inner evaporator 21.
  • the solenoid valve 46 is switched so that all the refrigerant discharged from the compressor 35 flows into the condenser 36 at normal times.
  • the user operates the electromagnetic valve 46 by operating the operation device 30, and guides the refrigerant that has been compressed by the compressor 35 and has reached a high temperature to the internal evaporator 21 through the communication path 47.
  • the internal evaporator 21 is heated to remove frost in the internal storage.
  • the compressors 35 and 40, the condensers 36 and 41, the electronic expansion valves 37 and 42, and the outside evaporator 38 are disposed in the machine part M.
  • the internal evaporator 21 is arranged inside the outer box 10, that is, in the storage unit S as described above.
  • the refrigerant circulation paths 33 and 34 are disposed independently of each other. However, all or part of other components such as fins are made common to the first refrigeration circuit. 31 and the 2nd freezing circuit 32 are comprised integrally so that use is possible.
  • the external evaporator 38 is an evaporator having a smaller capacity than the internal evaporator 21.
  • the external evaporator 38 exchanges heat between the refrigerant that has passed through the internal evaporator 21 and the outside air, and evaporates the refrigerant that could not be evaporated in the internal evaporator 21. Thereby, the temperature of the refrigerant returning to the compressor 35 can be stably increased, and the suction temperature of the compressor 35 can be stabilized.
  • the first refrigeration circuit 31 can be stably operated even with a small cooling capacity as compared with the second refrigeration circuit 32 that does not have the external evaporator 38.
  • the inlet of the internal evaporator 21 is provided with an evaporation temperature sensor (not shown) that detects the refrigerant temperature as the evaporation temperature of the refrigerant.
  • the outlet of the evaporator 21 is provided with a superheat degree sensor (not shown) that detects the refrigerant temperature as the superheat degree of the refrigerant.
  • the inner box 12 of the hot / cold refrigerator 1 is provided with an internal temperature sensor 51 (internal temperature detector) for detecting the internal temperature
  • the machine part M is provided with an external air temperature sensor 52 for detecting the external temperature.
  • the control unit 50 control part
  • the electronic expansion valve 37, 42, the electric heater 20, the fan 22, and the like are controlled to perform cooling control by the first refrigeration circuit 31, cooling control by the second refrigeration circuit 32, and temperature rise control by the electric heater 20.
  • the first refrigeration circuit 31 and the second refrigeration circuit 32 are set to operate in substantially the same internal temperature range. Basically, the first refrigeration circuit 31 is continuously operated at all times. For example, when the internal cooling temperature is significantly higher than the target temperature and the required cooling capacity is large, the first refrigeration circuit 31 and the second refrigeration circuit 32 are connected. Operate.
  • the first refrigeration circuit 31 includes the internal evaporator 21 and the external evaporator 38, the heat exchange of the refrigerant in the internal evaporator 21 is performed. The amount can be reduced. Therefore, when the internal temperature is close to the target temperature, cooling of the internal space by the internal evaporator 21 can be suppressed even when the first refrigeration circuit 31 is continuously operated, and stable internal temperature control is achieved. It can be performed.
  • the refrigerant can be evaporated in the external evaporator 38, so that the liquid refrigerant can be prevented from returning to the compressor 35. Thereby, the compressor 35 can be protected. Further, the temperature of the refrigerant flowing into the compressor 35 can be stably increased, and the first refrigeration circuit 31 can be stably operated.
  • the first refrigeration circuit 31 performs precise temperature management such as maintaining the inside of the cabinet in a narrow temperature range, suppressing deviation from the set temperature gradient, and smoothly changing the temperature.
  • a suitable hot / cold storage 1 can be obtained.
  • the hot / cold storage 1 is provided with the 2nd freezing circuit 32, the amount of heat exchange in the internal evaporator 21 is increased by operating the 2nd freezing circuit 32 with the 1st freezing circuit 31. be able to. Thereby, for example, when the internal temperature is high, it is possible to secure a large cooling capacity and to rapidly decrease the internal temperature.
  • the electric heater 20 since the electric heater 20 is provided, the air circulating in the warehouse can be heated with a desired amount of heat with good responsiveness.
  • chamber can be heated rather than external temperature,
  • it can utilize as a thermostat used as a thermostat etc. which maintain the inside of a store
  • the temperature of the interior can be controlled more precisely by controlling the electric heater 20 in response to a temperature change in the interior quickly.
  • the first refrigeration circuit 31 includes an outside evaporator 38 and can be operated with a low cooling performance inside the warehouse. Therefore, the electric heater 20 is used for cooling as described above. However, the power consumption of the electric heater 20 can be suppressed.
  • the internal evaporator 21 and the external evaporator 38 of the 1st freezing circuit 31 are arrange
  • the refrigerant flowing out of the internal evaporator 21 returns to the compressor 35 without passing through the external evaporator 38. Therefore, although the protection performance of the compressor 35 is inferior to that arranged in series, the amount of refrigerant passing through the internal evaporator 21 can be reduced to suppress the internal cooling performance.
  • the electronic expansion valve 37 may be provided for each.
  • the amount of refrigerant flowing into the internal evaporator 21 and the amount of refrigerant flowing into the external evaporator 38 can be controlled by controlling the two electronic expansion valves 37. For example, when the difference between the internal temperature and the target temperature that is set as appropriate is large, the amount of refrigerant flowing into the external evaporator 38 is suppressed, the internal cooling performance is ensured, and the internal temperature and the target temperature are If the difference is small, the amount of refrigerant flowing into the external evaporator 38 can be increased to reduce the cooling performance in the storage and stabilize the slight cooling.
  • the hot gas defrosting circuit 45 may be provided in the second refrigeration circuit 32 in the same manner as the first refrigeration circuit 31. Thereby, the internal evaporator 21 can be heated by both the 1st freezing circuit 31 and the 2nd freezing circuit 32, and the defrosting function in a warehouse can be improved.
  • the first refrigeration circuit 31 has the same configuration as that of the first embodiment.
  • the second refrigeration circuit 32 is similar to the first refrigeration circuit 31 and is connected to the outside evaporator 38. Is provided.
  • the control unit 50 switches the operation of the first refrigeration circuit 31 and the second refrigeration circuit 32 based on the internal temperature.
  • FIG. 3 is a graph showing a setting example of the cooling capacity of the first refrigeration circuit 31 and the second refrigeration circuit 32.
  • FIG. 3 shows changes in the cooling capacity of the first refrigeration circuit 31 and the second refrigeration circuit 32 with respect to the internal temperature.
  • the cooling capacity of the first refrigeration circuit 31 and the cooling capacity of the second refrigeration circuit 32 are added to obtain the required cooling capacity.
  • the cooling capacity of the second refrigeration circuit 32 is adjusted.
  • the cooling capacity of the first refrigeration circuit 31 is 100%
  • the cooling capacity of the second refrigeration circuit 32 is 0%
  • only the first refrigeration circuit 31 is movable.
  • the cooling capacity of the first refrigeration circuit 31 is controlled by the internal temperature, the degree of superheat of the refrigerant, and the evaporation temperature, 100% of the cooling capacity at the internal temperature of 8 ° C. or less in FIG. This is not the maximum cooling capacity of the refrigeration circuit 31 but the cooling capacity required based on the internal temperature or the like.
  • the cooling capacity of the first refrigeration circuit 31 is 0%
  • the cooling capacity of the second refrigeration circuit 32 is 100%
  • only the second refrigeration circuit 32 is movable.
  • the cooling capacity of the second refrigeration circuit 32 is also controlled by the internal temperature or the like, 100% of the cooling capacity at the internal temperature of 12 ° C. or higher in FIG. It is not the capacity but the cooling capacity required based on the internal temperature.
  • the cooling capacity of the first refrigeration circuit 31 is set to 0.75 kW
  • the cooling capacity of the second refrigeration circuit 32 is set to 0.25 kW. .
  • the second refrigeration circuit 32 when the internal temperature is 8 ° C. or lower, only the first refrigeration circuit 31 is operated, and when the internal temperature is 12 ° C. or higher, the second refrigeration circuit 32 is operated. Operate only. In the overlapping temperature range of 8 ° C. to 12 ° C., the first refrigeration circuit 31 and the second refrigeration circuit 32 operate while adjusting their capacities. As shown in FIG. 3, the ratio between the cooling capacity of the first refrigeration circuit 31 and the cooling capacity of the second refrigeration circuit 32 is continuously smooth with respect to the temperature change in the cabinet at 8 ° C. to 12 ° C. Therefore, the overall cooling capacity in the cabinet can also be changed smoothly.
  • the first refrigeration circuit 31 and the second refrigeration circuit 32 are operated in suitable temperature ranges at least partially different from each other. Since both the first refrigeration circuit 31 and the second refrigeration circuit 32 are provided with the outside evaporator 38, the cooling performance can be stably operated at low temperature in any different temperature range, and the precise Temperature control is possible.
  • only the first refrigeration circuit 31 includes the hot gas defrost circuit 45.
  • the first refrigeration circuit 31 operates in the freezing temperature zone of water as described above, for example, so that water condensed on the fins of the internal evaporator 21 is frozen, but the second refrigeration circuit 32 is in the freezing temperature zone of water. Since it does not operate, it does not freeze even if condensation is formed on the fins of the internal evaporator 21. Therefore, the hot gas defrosting circuit 45 is not required according to the operating temperature zone, and the number of parts can be reduced.
  • the refrigerant of the first refrigeration circuit 31 and the refrigerant of the second refrigeration circuit 32 may be different from each other.
  • HFC-404A may be used as the refrigerant in the first refrigeration circuit
  • HFO-1234YF may be used as the refrigerant in the second refrigeration circuit 32.
  • a suitable refrigerant is used in each of the temperature zone of 12 ° C. or less in the cabinet using the first refrigeration circuit 31 and the temperature zone of 8 ° C. or more in the cabinet using the second refrigeration circuit 32.
  • efficiency can be improved or stable cooling can be achieved.
  • the refrigerant amount of the first refrigeration circuit 31 and the refrigerant amount of the second refrigeration circuit 32 may be different. As described above, when the first refrigeration circuit 31 is used at a temperature zone of 12 ° C. or lower and the second refrigeration circuit 32 is used at a temperature zone of 8 ° C. or higher, the first refrigeration circuit is used. Since the internal temperature has already decreased at 31, the amount of refrigerant in the first refrigeration circuit 31 may be made smaller than the amount of refrigerant in the second refrigeration circuit 32. Thereby, since the cooling capacity of the 1st freezing circuit 31 falls, it can be set as the freezing circuit suitable for balance control which maintains at target temperature with a slight temperature change.
  • the external evaporator 38 is disposed on the downstream side of the internal evaporator 21 in the circulation path 33 of the first refrigeration circuit 31.
  • An external evaporator 38 may be arranged on the upstream side of the inner evaporator 21.
  • the electronic expansion valve 37 may be disposed between the outside evaporator 38 and the condenser 36, between the outside evaporator 38 and the condenser 36, and between the outside evaporator 38 and the warehouse. You may arrange
  • the external evaporator 38 may be arranged on the upstream side of the internal evaporator 21.
  • the hot and cold storage of the present invention is widely applied not only to a thermostatic bath and a medicine storage as in the above embodiment, but also to a hot and cold storage that requires precise temperature control such as aging of environmental test equipment and meat. Can do.
  • Hot and cold storage 10
  • Outer box (housing) 20
  • Electric heater (heater) 21
  • Internal evaporator (first internal evaporator, second internal evaporator) 31
  • First refrigeration circuit (first refrigeration cycle) 32
  • Second refrigeration circuit (second refrigeration cycle) 33
  • Circulation path 35
  • External evaporator 50
  • Control unit (control unit) 51

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

[Problem] To provide a hot/cold storage container capable of precise temperature management in which temperature changes are suppressed. [Solution] A hot/cold storage container (1) has an outer box (10) in the interior of which a chamber for storing an object is formed, and a first refrigeration circuit (21) for cooling the interior of the chamber. The first refrigeration circuit (31) is provided with, in a refrigerant circulation passage (33), at least an internal evaporator (21) that exchanges heat with the interior of the chamber, thereby evaporating a refrigerant, a compressor (35) for compressing the refrigerant, and an external evaporator (38) that is arranged in the circulation passage (33) on the upstream side of the compressor (35), and that exchanges heat with the outside of the chamber. The refrigerant flowing from the internal evaporator (21) passes through the external evaporator (38) and then returns to the compressor (35).

Description

温冷庫Hot and cold storage
 本発明は、物品を所望の冷凍冷蔵温度帯から温蔵温度帯の温度で貯蔵するための温冷庫に関する。 The present invention relates to a hot / cold storage for storing an article at a desired freezing / refrigeration temperature range to a temperature range.
 庫内を任意の温度に保持する温冷庫は、電気ヒータ等の加熱装置と冷却装置の蒸発器とが庫内に配置されており、庫内を加熱及び冷却可能となっている。このような温冷庫においては、庫内の温度を検出して、設定した温度になるように加熱装置及び冷却装置の運転を制御して、庫内を設定温度にまで変化させる勾配運転や、庫内を設定温度に維持させる平衡運転を行う。 The heating / cooling chamber that keeps the interior at an arbitrary temperature is provided with a heating device such as an electric heater and an evaporator of a cooling device, and the interior can be heated and cooled. In such a hot and cold storage, the temperature in the storage is detected, the operation of the heating device and the cooling device is controlled so as to become the set temperature, and the gradient operation for changing the interior to the set temperature or the storage Equilibrium operation is performed to maintain the inside at the set temperature.
 例えば特許文献1では、冷却装置の膨張機構に開度可変膨張機構を備え、冷却装置を連続的に運転しつつ、膨張機構の開度及び加熱装置の出力を制御して、勾配運転及び平衡運転を行う。 For example, in Patent Document 1, the expansion mechanism of the cooling device includes a variable opening expansion mechanism, and the cooling device is operated continuously, while controlling the opening of the expansion mechanism and the output of the heating device to perform gradient operation and equilibrium operation. I do.
 また、特許文献2では、冷却装置をON-OFF制御して、勾配運転時の設定された温度勾配からの逸脱を抑えるようにしている。 In Patent Document 2, ON / OFF control of the cooling device is performed so as to suppress deviation from the set temperature gradient during gradient operation.
特開平2-229556号公報JP-A-2-229556 特開平3-218803号公報Japanese Patent Laid-Open No. 3-218803
 しかしながら、例えば恒温槽や研究用として使用する温冷庫においては、わずかな温度範囲に平衡運転させるとともに、勾配運転においても設定された温度勾配からの逸脱を更に抑える精密な温度管理が要求されている。 However, for example, in a temperature-controlled bath or a heating / cooling chamber used for research, precise temperature management is required to perform equilibrium operation in a slight temperature range and further suppress deviation from a set temperature gradient even in gradient operation. .
 このように精密な温度管理を必要とする温冷庫に対しては、上記特許文献1及び特許文献2の温度制御方式では、平衡運転において狭い範囲で温度を正確に維持することや、勾配運転において設定された温度勾配からの逸脱を抑えかつ滑らかに温度変化させることは困難である。 In such a temperature-controlled refrigerator that requires precise temperature management, the temperature control methods of Patent Document 1 and Patent Document 2 described above can maintain temperature accurately in a narrow range in equilibrium operation, or in gradient operation. It is difficult to suppress a deviation from the set temperature gradient and smoothly change the temperature.
 本発明は、以上のような問題点に鑑みてなされたものであって、設定された温度からの逸脱を抑えた精密な温度管理が可能な温冷庫を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a heating / cooling chamber capable of precise temperature management while suppressing a deviation from a set temperature.
 上記課題を解決するために、本発明の温冷庫は、物品を貯蔵するための庫室が内部に形成された筐体と、前記庫室の内部を冷却する第1の冷凍サイクルと、を有する温冷庫であって、前記第1の冷凍サイクルは、冷媒の循環路に、少なくとも、前記庫室の内部と熱交換して前記冷媒を蒸発させる第1の庫内蒸発器と、前記冷媒を圧縮する圧縮機と、前記圧縮機の上流側の前記循環路に配置され、前記庫室の外部と熱交換して前記冷媒を蒸発させる第1の庫外蒸発器と、を設けて構成されることを特徴とする。 In order to solve the above-described problem, the hot / cold storage according to the present invention includes a housing in which a storage room for storing articles is formed, and a first refrigeration cycle for cooling the inside of the storage room. The first refrigeration cycle includes a first internal evaporator that evaporates the refrigerant by at least exchanging heat with the interior of the warehouse in the refrigerant circulation path, and compresses the refrigerant. And a first outside evaporator disposed in the circulation path upstream of the compressor and exchanging heat with the outside of the warehouse to evaporate the refrigerant. It is characterized by.
 好ましくは、前記庫室の内部を加熱する加熱器を備える。 Preferably, a heater for heating the inside of the storage room is provided.
 好ましくは、前記第1の冷凍サイクルとは異なる冷媒の循環路に、少なくとも、前記庫室の内部と熱交換して前記冷媒を蒸発させる第2の庫内蒸発器を設けて構成された第2の冷凍サイクルを備える。 Preferably, a second circulation evaporator configured to provide a refrigerant circulation path different from the first refrigeration cycle by at least a second internal evaporator that exchanges heat with the interior of the warehouse and evaporates the refrigerant. The refrigeration cycle is provided.
 好ましくは、前記庫室の内部温度を検出する庫内温度検出器と、前記庫内温度検出器により検出した前記庫室の内部温度に基づいて、少なくとも一部が互いに異なる温度帯で前記第1の冷凍サイクル及び前記第2の冷凍サイクルを運転させる制御部と、を備える。 Preferably, the internal temperature detector for detecting the internal temperature of the storage room, and the first temperature in a temperature zone at least partially different from each other based on the internal temperature of the storage room detected by the internal temperature detector. And a control unit for operating the second refrigeration cycle.
 好ましくは、前記第1の冷凍サイクルの前記循環路において、前記庫外蒸発器は前記第1の庫内蒸発器の下流に配置される。 Preferably, in the circulation path of the first refrigeration cycle, the external evaporator is disposed downstream of the first internal evaporator.
 本発明によれば、第1の冷凍サイクルが庫内蒸発器と庫外蒸発器を備えることで、庫内蒸発器における冷媒の蒸発量を抑え、庫内蒸発器による庫内の冷却能力を抑えることができる。また、庫外蒸発器によって冷媒を蒸発させることで、圧縮機に液体の冷媒が戻ることを防止できるとともに、圧縮機に流入する冷媒温度を安定して高くすることができる。これにより、庫内をわずかな温度範囲に維持したり、設定された温度勾配からの逸脱を抑えかつ滑らかに温度変化させたりするような精密な温度管理が可能となる。 According to the present invention, since the first refrigeration cycle includes the internal evaporator and the external evaporator, the amount of refrigerant evaporated in the internal evaporator is suppressed, and the internal cooling capacity of the internal evaporator is suppressed. be able to. Further, by evaporating the refrigerant by the outside evaporator, it is possible to prevent the liquid refrigerant from returning to the compressor and to stably increase the temperature of the refrigerant flowing into the compressor. As a result, it is possible to perform precise temperature management such as maintaining the inside of the cabinet in a slight temperature range, suppressing deviation from the set temperature gradient, and smoothly changing the temperature.
本発明の一実施形態の温冷庫の概略斜視図である。It is a schematic perspective view of the hot and cold storage of one embodiment of the present invention. 本実施形態の温冷庫における第1の冷凍回路及び第2の冷凍回路の構成図である。It is a block diagram of the 1st freezing circuit and the 2nd freezing circuit in the hot / cold storage of this embodiment. 第2の実施形態の温冷庫における各冷凍サイクルの冷却能力の設定要領を示す説明図である。It is explanatory drawing which shows the setting point of the cooling capacity of each refrigeration cycle in the hot / cold storage of 2nd Embodiment.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 本実施形態の温冷庫は、例えば精密な温度管理が必要な恒温槽や医薬品の保管庫として使用される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The hot / cold storage according to the present embodiment is used as, for example, a thermostatic chamber or a medicine storage that requires precise temperature control.
 図1は、本発明の温冷庫の概略斜視図である。 FIG. 1 is a schematic perspective view of the hot and cold storage of the present invention.
 温冷庫1は、下部に配置された貯蔵部Sと、上部に配置された機械部Mとから構成されている。 The hot / cold storage 1 is composed of a storage section S arranged at the lower part and a machine part M arranged at the upper part.
 貯蔵部Sは、前面開口を有する直方体状の筐体である外箱10(筐体)と、外箱10の前面開口を閉鎖するための外扉11とを備えており、外箱10及び外扉11は、いずれも、内部に断熱材が充填された構造を有している。 The storage unit S includes an outer box 10 (housing) that is a rectangular parallelepiped housing having a front opening, and an outer door 11 for closing the front opening of the outer box 10. Each of the doors 11 has a structure filled with a heat insulating material.
 外扉11は、外箱10の向かって左側または右側の側壁の前面に取り付けられたヒンジ(図示省略)を中心として回動することにより、外箱10の前面開口を開閉する。 The outer door 11 opens and closes the front opening of the outer box 10 by rotating around a hinge (not shown) attached to the front surface of the left or right side wall toward the outer box 10.
 外箱10の内部には、物品を貯蔵する内箱12(庫室)が備えられている。内箱12と外箱10との間には、庫内(貯蔵部S内)の空気を循環させるダクト13が備えられている。ダクト13は内箱の後方及び上方に設けられ、内箱12の上方のダクト13には庫内を加熱する加熱装置としての電気ヒータ20(加熱器)、庫内を冷却する冷却装置として後述する第1の冷凍回路及31及び第2の冷凍回路32の庫内蒸発器21(第1の庫内蒸発器、第2の庫内蒸発器)、ファン22が備えられている。ダクト13は、内箱12の後部下端部の開口部23と上部の前端部の開口部24とを連通している。内箱12の上方のダクト13には、後方から前方に向かって庫内蒸発器21、ファン22、電気ヒータ20の順番に配置されている。ファン22の作動により、ダクト13内の空気が庫内蒸発器21及び電気ヒータ20を通過して、外扉11の内壁面に反射し開口部24から内箱12内に流入する。そして、内箱12内の空気は、開口部23からダクト13内に吸い込まれ庫内蒸発器21に戻り、貯蔵部S内を循環する。 Inside the outer box 10, an inner box 12 (storage room) for storing articles is provided. Between the inner box 12 and the outer box 10, a duct 13 for circulating the air in the warehouse (in the storage unit S) is provided. The duct 13 is provided behind and above the inner box. The duct 13 above the inner box 12 has an electric heater 20 (heater) as a heating device for heating the inside of the box and a cooling device for cooling the inside of the box, which will be described later. The internal evaporator 21 (first internal evaporator, second internal evaporator) and fan 22 of the first freezing circuit 31 and the second freezing circuit 32 are provided. The duct 13 communicates the opening 23 at the lower end of the rear part of the inner box 12 and the opening 24 at the upper front end. In the duct 13 above the inner box 12, an internal evaporator 21, a fan 22, and an electric heater 20 are arranged in this order from the rear to the front. By the operation of the fan 22, the air in the duct 13 passes through the internal evaporator 21 and the electric heater 20, is reflected on the inner wall surface of the outer door 11, and flows into the inner box 12 from the opening 24. Then, the air in the inner box 12 is sucked into the duct 13 through the opening 23 and returns to the internal evaporator 21 to circulate in the storage unit S.
 また、機械部Mの前面には、庫内の目標到達温度等を設定するための操作装置30が備えられている。 Further, on the front surface of the machine part M, an operating device 30 for setting a target temperature reached in the storage is provided.
 図2は、温冷庫1における第1の冷凍回路31(第1の冷凍サイクル)及び第2の冷凍回路32(第2の冷凍サイクル)の構成図である。 FIG. 2 is a configuration diagram of the first refrigeration circuit 31 (first refrigeration cycle) and the second refrigeration circuit 32 (second refrigeration cycle) in the hot / cold storage 1.
 本実施形態の温冷庫1は、庫内を冷却する冷却装置として、第1の冷凍回路31及び第2の冷凍回路32を備えている。 The hot / cold storage 1 of the present embodiment includes a first refrigeration circuit 31 and a second refrigeration circuit 32 as a cooling device for cooling the inside of the storage.
 第1の冷凍回路31は冷媒の循環路33を有し、第2の冷凍回路32は冷媒の循環路34を有している。循環路33及び循環路34は、互いに独立して構成されている。冷媒は、例えば、第1の冷凍回路31及び第2の冷凍回路32のいずれもHFC-134aを使用している。 The first refrigeration circuit 31 has a refrigerant circulation path 33, and the second refrigeration circuit 32 has a refrigerant circulation path 34. The circulation path 33 and the circulation path 34 are configured independently of each other. As the refrigerant, for example, both the first refrigeration circuit 31 and the second refrigeration circuit 32 use HFC-134a.
 第1の冷凍回路31の循環路33には、冷媒の流通方向で順番に、圧縮機35、凝縮器36、電子膨張弁37、庫内蒸発器21(第1の庫内蒸発器)、庫外蒸発器38を備えている。 In the circulation path 33 of the first refrigeration circuit 31, the compressor 35, the condenser 36, the electronic expansion valve 37, the internal evaporator 21 (first internal evaporator), An outer evaporator 38 is provided.
 一方、第2の冷凍回路32の循環路34には、冷媒の流通方向で順番に、圧縮機40、凝縮器41、電子膨張弁42、庫内蒸発器21(第2の庫内蒸発器)を備えている。 On the other hand, in the circulation path 34 of the second refrigeration circuit 32, the compressor 40, the condenser 41, the electronic expansion valve 42, and the internal evaporator 21 (second internal evaporator) are sequentially arranged in the refrigerant flow direction. It has.
 各冷凍回路31、32における圧縮機35、40、凝縮器36、41、電子膨張弁37、42、庫内蒸発器21の夫々については公知の構成であるので、詳細な構造、機能についての記述は省略する。 Since each of the compressors 35 and 40, the condensers 36 and 41, the electronic expansion valves 37 and 42, and the internal evaporator 21 in each refrigeration circuit 31 and 32 is a known configuration, a detailed description of the structure and function is provided. Is omitted.
 また、第1の冷凍回路31には、ホットガス除霜回路45が備えられている。ホットガス除霜回路45は、圧縮機35と凝縮器36との間の循環路33に配置された流路切換用の電磁弁46と、当該電磁弁46から分岐して電子膨張弁37と庫内蒸発器21との間の循環路33に連通する連通路47と、により構成されている。 The first refrigeration circuit 31 is provided with a hot gas defrosting circuit 45. The hot gas defrosting circuit 45 includes a flow path switching electromagnetic valve 46 disposed in the circulation path 33 between the compressor 35 and the condenser 36, a branch from the electromagnetic valve 46, and an electronic expansion valve 37 and a warehouse. The communication path 47 communicates with the circulation path 33 between the inner evaporator 21 and the inner evaporator 21.
 通常時は圧縮機35から吐出した冷媒が全て凝縮器36に流入するように電磁弁46が切り替えられている。ホットガス除霜回路45は、例えばユーザが操作装置30の操作により電磁弁46を操作して、圧縮機35によって圧縮され高温となった冷媒を連通路47を介して庫内蒸発器21に導くことで、庫内蒸発器21を加熱して、庫内の霜を除去する。 The solenoid valve 46 is switched so that all the refrigerant discharged from the compressor 35 flows into the condenser 36 at normal times. In the hot gas defrosting circuit 45, for example, the user operates the electromagnetic valve 46 by operating the operation device 30, and guides the refrigerant that has been compressed by the compressor 35 and has reached a high temperature to the internal evaporator 21 through the communication path 47. Thus, the internal evaporator 21 is heated to remove frost in the internal storage.
 圧縮機35、40、凝縮器36、41、電子膨張弁37、42及び庫外蒸発器38は、機械部Mに配置されている。庫内蒸発器21は、上述のように外箱10の内部、即ち貯蔵部Sに配置されている。 The compressors 35 and 40, the condensers 36 and 41, the electronic expansion valves 37 and 42, and the outside evaporator 38 are disposed in the machine part M. The internal evaporator 21 is arranged inside the outer box 10, that is, in the storage unit S as described above.
 なお、庫内蒸発器21は、内部で冷媒の循環路33、34は互いに独立して配置されているが、フィン等のその他の部品を全てあるいは部分的に共通化して、第1の冷凍回路31と第2の冷凍回路32の両方で使用可能に一体的に構成されている。 In the internal evaporator 21, the refrigerant circulation paths 33 and 34 are disposed independently of each other. However, all or part of other components such as fins are made common to the first refrigeration circuit. 31 and the 2nd freezing circuit 32 are comprised integrally so that use is possible.
 庫外蒸発器38は、庫内蒸発器21より小さい容量の蒸発器である。 The external evaporator 38 is an evaporator having a smaller capacity than the internal evaporator 21.
 庫外蒸発器38は、庫内蒸発器21を通過した冷媒を外気と熱交換し、庫内蒸発器21において蒸発しきれなかった冷媒を蒸発させる。これにより、圧縮機35に戻る冷媒の温度を安定的に高くし、圧縮機35の吸入温度を安定化させることができる。 The external evaporator 38 exchanges heat between the refrigerant that has passed through the internal evaporator 21 and the outside air, and evaporates the refrigerant that could not be evaporated in the internal evaporator 21. Thereby, the temperature of the refrigerant returning to the compressor 35 can be stably increased, and the suction temperature of the compressor 35 can be stabilized.
 即ち、第1の冷凍回路31は、庫外蒸発器38を有しない第2の冷凍回路32と比較して、小さい冷却能力であっても安定して作動させることができる。 That is, the first refrigeration circuit 31 can be stably operated even with a small cooling capacity as compared with the second refrigeration circuit 32 that does not have the external evaporator 38.
 また、第1の冷凍回路31及び第2の冷凍回路32の夫々について、庫内蒸発器21の入口には冷媒の蒸発温度としての冷媒温度を検出する図示しない蒸発温度センサを備えるとともに、庫内蒸発器21の出口には冷媒の過熱度としての冷媒温度を検出する図示しない過熱度センサを備えている。 Further, for each of the first refrigeration circuit 31 and the second refrigeration circuit 32, the inlet of the internal evaporator 21 is provided with an evaporation temperature sensor (not shown) that detects the refrigerant temperature as the evaporation temperature of the refrigerant. The outlet of the evaporator 21 is provided with a superheat degree sensor (not shown) that detects the refrigerant temperature as the superheat degree of the refrigerant.
 温冷庫1の内箱12内には庫内温度を検出する庫内温度センサ51(庫内温度検出器)を備えるとともに、機械部Mには外気温度を検出する外気温センサ52を備えている。そして、機械部Mに備えられたコントロールユニット50(制御部)において、庫内温度、外気温度、蒸発温度、過熱度、及び操作装置30によって設定された目標設定温度等に基づいて、電子膨張弁37、42、電気ヒータ20、ファン22等が作動制御され、第1の冷凍回路31による冷却制御、第2の冷凍回路32による冷却制御、及び電気ヒータ20による昇温制御がされる。 The inner box 12 of the hot / cold refrigerator 1 is provided with an internal temperature sensor 51 (internal temperature detector) for detecting the internal temperature, and the machine part M is provided with an external air temperature sensor 52 for detecting the external temperature. . And in the control unit 50 (control part) with which the machine part M was equipped, based on the inside temperature, the outside temperature, the evaporation temperature, the degree of superheat, the target set temperature set by the operating device 30, etc., the electronic expansion valve 37, 42, the electric heater 20, the fan 22, and the like are controlled to perform cooling control by the first refrigeration circuit 31, cooling control by the second refrigeration circuit 32, and temperature rise control by the electric heater 20.
 第1の実施形態の温冷庫1では、第1の冷凍回路31及び第2の冷凍回路32は、略同一の庫内温度帯で作動するように設定されている。基本的に第1の冷凍回路31は常時連続運転させ、例えば庫内温度が目標温度より大幅に高く要求する冷却能力が大きい場合には、第1の冷凍回路31とともに第2の冷凍回路32を作動させる。 In the hot / cold storage 1 of the first embodiment, the first refrigeration circuit 31 and the second refrigeration circuit 32 are set to operate in substantially the same internal temperature range. Basically, the first refrigeration circuit 31 is continuously operated at all times. For example, when the internal cooling temperature is significantly higher than the target temperature and the required cooling capacity is large, the first refrigeration circuit 31 and the second refrigeration circuit 32 are connected. Operate.
 以上のように、第1の実施形態の温冷庫1では、第1の冷凍回路31が庫内蒸発器21と庫外蒸発器38を備えているため、庫内蒸発器21における冷媒の熱交換量を抑えることができる。したがって、庫内温度が目標温度に近い場合に、第1の冷凍回路31を連続的に運転させても庫内蒸発器21による庫内の冷却を抑えることができ、安定した庫内の温度管理を行うことができる。 As described above, in the hot / cold storage 1 of the first embodiment, since the first refrigeration circuit 31 includes the internal evaporator 21 and the external evaporator 38, the heat exchange of the refrigerant in the internal evaporator 21 is performed. The amount can be reduced. Therefore, when the internal temperature is close to the target temperature, cooling of the internal space by the internal evaporator 21 can be suppressed even when the first refrigeration circuit 31 is continuously operated, and stable internal temperature control is achieved. It can be performed.
 庫内蒸発器21において冷媒の蒸発が十分でなくても、庫外蒸発器38において冷媒を蒸発させることができるので、圧縮機35に液体の冷媒が戻ることを防止することができる。これにより、圧縮機35を保護することができる。また、圧縮機35に流入する冷媒温度を安定して高くすることができ、第1の冷凍回路31を安定して作動させることができる。 Even if the refrigerant is not sufficiently evaporated in the internal evaporator 21, the refrigerant can be evaporated in the external evaporator 38, so that the liquid refrigerant can be prevented from returning to the compressor 35. Thereby, the compressor 35 can be protected. Further, the temperature of the refrigerant flowing into the compressor 35 can be stably increased, and the first refrigeration circuit 31 can be stably operated.
 したがって、第1の冷凍回路31により、庫内を狭い温度範囲に維持したり、設定された温度勾配からの逸脱を抑えかつ滑らかに温度変化させたりするような、精密な温度管理を行うのに適した温冷庫1にすることができる。 Therefore, the first refrigeration circuit 31 performs precise temperature management such as maintaining the inside of the cabinet in a narrow temperature range, suppressing deviation from the set temperature gradient, and smoothly changing the temperature. A suitable hot / cold storage 1 can be obtained.
 更に、温冷庫1は、第2の冷凍回路32を備えているので、第1の冷凍回路31とともに第2の冷凍回路32を作動させることで、庫内蒸発器21における熱交換量を増加させることができる。これにより、例えば庫内温度が高い場合に冷却能力を大きく確保して、庫内温度を迅速に低下させることが可能となる。 Furthermore, since the hot / cold storage 1 is provided with the 2nd freezing circuit 32, the amount of heat exchange in the internal evaporator 21 is increased by operating the 2nd freezing circuit 32 with the 1st freezing circuit 31. be able to. Thereby, for example, when the internal temperature is high, it is possible to secure a large cooling capacity and to rapidly decrease the internal temperature.
 また、電気ヒータ20を備えているので、庫内を循環する空気を応答性良く所望の熱量で加熱することができる。これにより、庫内を外気温よりも加熱することができ、例えば、庫内を冷凍冷蔵温度帯から温蔵温度帯の温度に維持させる恒温槽などとして使用する温冷庫として利用することができる。 Moreover, since the electric heater 20 is provided, the air circulating in the warehouse can be heated with a desired amount of heat with good responsiveness. Thereby, the inside of a store | warehouse | chamber can be heated rather than external temperature, For example, it can utilize as a thermostat used as a thermostat etc. which maintain the inside of a store | warehouse | chamber at the temperature of a freezing / refrigeration temperature zone.
 また、冷却する際に電気ヒータ20を使用することで、庫内の温度変化に迅速に対応して電気ヒータ20を制御することにより、より精密に庫内を温度管理することができる。 In addition, by using the electric heater 20 when cooling, the temperature of the interior can be controlled more precisely by controlling the electric heater 20 in response to a temperature change in the interior quickly.
 なお、第1の冷凍回路31は庫外蒸発器38を備えており、庫内の冷却性能を低く安定させて運転することができるため、上記のように冷却する際に電気ヒータ20を使用しても、電気ヒータ20の消費電力を抑えることができる。 The first refrigeration circuit 31 includes an outside evaporator 38 and can be operated with a low cooling performance inside the warehouse. Therefore, the electric heater 20 is used for cooling as described above. However, the power consumption of the electric heater 20 can be suppressed.
 なお、上記実施形態では、第1の冷凍回路31の庫内蒸発器21と庫外蒸発器38が循環路33に直列に配置されているが、並列に配置してもよい。並列に配置することで、庫内蒸発器21から流出した冷媒が庫外蒸発器38を通過せずに圧縮機35に戻る。したがって、直列に配置したものより圧縮機35の保護性能は劣るものの、庫内蒸発器21の冷媒の通過量を減少させて庫内の冷却性能を抑制することができる。 In addition, in the said embodiment, although the internal evaporator 21 and the external evaporator 38 of the 1st freezing circuit 31 are arrange | positioned in series with the circulation path 33, you may arrange | position in parallel. By arranging in parallel, the refrigerant flowing out of the internal evaporator 21 returns to the compressor 35 without passing through the external evaporator 38. Therefore, although the protection performance of the compressor 35 is inferior to that arranged in series, the amount of refrigerant passing through the internal evaporator 21 can be reduced to suppress the internal cooling performance.
 庫内蒸発器21と庫外蒸発器38を並列に設けた場合に、夫々に電子膨張弁37を設けるとよい。これにより、この2つの電子膨張弁37の制御により、庫内蒸発器21へ流入する冷媒量及び庫外蒸発器38へ流入する冷媒量を制御することができる。例えば庫内温度と適宜設定される目標温度との差が大きい場合には、庫外蒸発器38へ流入する冷媒量を抑え、庫内の冷却性能を大きく確保し、庫内温度と目標温度との差が小さい場合には、庫外蒸発器38へ流入する冷媒量を多くして、庫内の冷却性能を低下させて僅かな冷却を安定させて行うことができる。 When the internal evaporator 21 and the external evaporator 38 are provided in parallel, the electronic expansion valve 37 may be provided for each. Thus, the amount of refrigerant flowing into the internal evaporator 21 and the amount of refrigerant flowing into the external evaporator 38 can be controlled by controlling the two electronic expansion valves 37. For example, when the difference between the internal temperature and the target temperature that is set as appropriate is large, the amount of refrigerant flowing into the external evaporator 38 is suppressed, the internal cooling performance is ensured, and the internal temperature and the target temperature are If the difference is small, the amount of refrigerant flowing into the external evaporator 38 can be increased to reduce the cooling performance in the storage and stabilize the slight cooling.
 また、第2の冷凍回路32に、第1の冷凍回路31と同様にホットガス除霜回路45を設けてもよい。これにより、第1の冷凍回路31及び第2の冷凍回路32の両方で庫内蒸発器21を加熱して、庫内の除霜機能を向上させることができる。 Further, the hot gas defrosting circuit 45 may be provided in the second refrigeration circuit 32 in the same manner as the first refrigeration circuit 31. Thereby, the internal evaporator 21 can be heated by both the 1st freezing circuit 31 and the 2nd freezing circuit 32, and the defrosting function in a warehouse can be improved.
 次に、第1の冷凍回路31と第2の冷凍回路32を、庫内温度に基づいて切り替え作動する第2の実施形態について説明する。 Next, a second embodiment in which the first refrigeration circuit 31 and the second refrigeration circuit 32 are switched over based on the internal temperature will be described.
 第2の実施形態では、第1の冷凍回路31は第1の実施形態の構成と同一であるが、第2の冷凍回路32については、第1の冷凍回路31と同様に庫外蒸発器38を備える。 In the second embodiment, the first refrigeration circuit 31 has the same configuration as that of the first embodiment. However, the second refrigeration circuit 32 is similar to the first refrigeration circuit 31 and is connected to the outside evaporator 38. Is provided.
 コントロールユニット50は、庫内温度に基づいて、第1の冷凍回路31及び第2の冷凍回路32の作動を切り替える。 The control unit 50 switches the operation of the first refrigeration circuit 31 and the second refrigeration circuit 32 based on the internal temperature.
 図3は、第1の冷凍回路31及び第2の冷凍回路32の冷却能力の設定例を示すグラフである。図3は、庫内温度に対する第1の冷凍回路31及び第2の冷凍回路32夫々の冷却能力の変化を示している。 FIG. 3 is a graph showing a setting example of the cooling capacity of the first refrigeration circuit 31 and the second refrigeration circuit 32. FIG. 3 shows changes in the cooling capacity of the first refrigeration circuit 31 and the second refrigeration circuit 32 with respect to the internal temperature.
 図3に示すように、第1の冷凍回路31の冷却能力と第2の冷凍回路32の冷却能力とを加算して、必要とされる冷却能力となるように第1の冷凍回路31及び第2の冷凍回路32の冷却能力が調整される。 As shown in FIG. 3, the cooling capacity of the first refrigeration circuit 31 and the cooling capacity of the second refrigeration circuit 32 are added to obtain the required cooling capacity. The cooling capacity of the second refrigeration circuit 32 is adjusted.
 庫内温度8℃以下では、第1の冷凍回路31の冷却能力を100%、第2の冷凍回路32の冷却能力を0%とし、第1の冷凍回路31のみ可動させる。 When the internal temperature is 8 ° C. or lower, the cooling capacity of the first refrigeration circuit 31 is 100%, the cooling capacity of the second refrigeration circuit 32 is 0%, and only the first refrigeration circuit 31 is movable.
 なお、第1の冷凍回路31の冷却能力は、庫内温度、冷媒の過熱度及び蒸発温度により制御されるので、図3中の庫内温度8℃以下における冷却能力の100%は、第1の冷凍回路31の最大冷却能力ではなく、庫内温度等に基づいて必要とされる冷却能力である。 Since the cooling capacity of the first refrigeration circuit 31 is controlled by the internal temperature, the degree of superheat of the refrigerant, and the evaporation temperature, 100% of the cooling capacity at the internal temperature of 8 ° C. or less in FIG. This is not the maximum cooling capacity of the refrigeration circuit 31 but the cooling capacity required based on the internal temperature or the like.
 庫内温度12℃以上では、第1の冷凍回路31の冷却能力を0%、第2の冷凍回路32の冷却能力を100%とし、第2の冷凍回路32のみ可動させる。 When the internal temperature is 12 ° C. or higher, the cooling capacity of the first refrigeration circuit 31 is 0%, the cooling capacity of the second refrigeration circuit 32 is 100%, and only the second refrigeration circuit 32 is movable.
 また、第2の冷凍回路32の冷却能力についても、庫内温度等により制御されるので、図3中の庫内温度12℃以上における冷却能力の100%は第2の冷凍回路32の最大冷却能力ではなく、庫内温度等に基づいて必要とされる冷却能力である。 Further, since the cooling capacity of the second refrigeration circuit 32 is also controlled by the internal temperature or the like, 100% of the cooling capacity at the internal temperature of 12 ° C. or higher in FIG. It is not the capacity but the cooling capacity required based on the internal temperature.
 例えば、第1の冷凍回路31の最大冷却能力=第2の冷凍回路32の最大冷却能力=1kwであって、庫内温度10℃の時に必要とされる冷却能力が1kwの場合には、第1の冷凍回路31の冷却能力=第2の冷凍回路32の冷却能力=0.5kwにする。また、庫内温度10℃の時に必要とされる冷却能力が0.5kwの場合には、第1の冷凍回路31の冷却能力=第2の冷凍回路32の冷却能力=0.25kwにする。 For example, when the maximum cooling capacity of the first refrigeration circuit 31 = the maximum cooling capacity of the second refrigeration circuit 32 = 1 kW, and the cooling capacity required when the internal temperature is 10 ° C. is 1 kW, The cooling capacity of the first refrigeration circuit 31 = the cooling capacity of the second refrigeration circuit 32 = 0.5 kW. When the cooling capacity required when the internal temperature is 10 ° C. is 0.5 kW, the cooling capacity of the first refrigeration circuit 31 = the cooling capacity of the second refrigeration circuit 32 = 0.25 kW.
 庫内温度9℃の時に必要とされる冷却能力が1kwの場合には、第1の冷凍回路31の冷却能力=0.75kwとし、第2の冷凍回路32の冷却能力=0.25kwにする。 When the cooling capacity required when the internal temperature is 9 ° C. is 1 kW, the cooling capacity of the first refrigeration circuit 31 is set to 0.75 kW, and the cooling capacity of the second refrigeration circuit 32 is set to 0.25 kW. .
 以上のように、第2の実施形態では、庫内温度が8℃以下の場合には第1の冷凍回路31のみ作動させ、庫内温度が12℃以上の場合には第2の冷凍回路32のみ作動させる。重複する温度帯である8℃~12℃においては、第1の冷凍回路31及び第2の冷凍回路32が能力を調整しながら稼働する。図3に示すように、8℃~12℃において、庫内の温度変化に対して、第1の冷凍回路31の冷却能力と第2の冷凍回路32の冷却能力との比率が連続的に滑らかに変化するので、全体的な庫内の冷却能力も滑らかに変化させることができる。 As described above, in the second embodiment, when the internal temperature is 8 ° C. or lower, only the first refrigeration circuit 31 is operated, and when the internal temperature is 12 ° C. or higher, the second refrigeration circuit 32 is operated. Operate only. In the overlapping temperature range of 8 ° C. to 12 ° C., the first refrigeration circuit 31 and the second refrigeration circuit 32 operate while adjusting their capacities. As shown in FIG. 3, the ratio between the cooling capacity of the first refrigeration circuit 31 and the cooling capacity of the second refrigeration circuit 32 is continuously smooth with respect to the temperature change in the cabinet at 8 ° C. to 12 ° C. Therefore, the overall cooling capacity in the cabinet can also be changed smoothly.
 このように、第2の実施形態では、第1の冷凍回路31及び第2の冷凍回路32を夫々適した少なくとも一部が互いに異なる温度帯で作動させる。第1の冷凍回路31及び第2の冷凍回路32のいずれにも庫外蒸発器38を備えているので、いずれの異なる温度帯においても冷却性能を低く安定して作動させることができ、精密な温度管理が可能となる。 Thus, in the second embodiment, the first refrigeration circuit 31 and the second refrigeration circuit 32 are operated in suitable temperature ranges at least partially different from each other. Since both the first refrigeration circuit 31 and the second refrigeration circuit 32 are provided with the outside evaporator 38, the cooling performance can be stably operated at low temperature in any different temperature range, and the precise Temperature control is possible.
 また、第2の実施形態においては、第1の冷凍回路31にのみ、ホットガス除霜回路45を備えている。第1の冷凍回路31は例えば上記のように水の凍結温度帯でも稼働するので庫内蒸発器21のフィン等に結露した水が凍結するが、第2の冷凍回路32は水の凍結温度帯では作動しないので、庫内蒸発器21のフィン等に結露したとしても凍結はしない。したがって、作動温度帯に応じてホットガス除霜回路45が不要となり、部品点数の削減を図ることができる。 In the second embodiment, only the first refrigeration circuit 31 includes the hot gas defrost circuit 45. The first refrigeration circuit 31 operates in the freezing temperature zone of water as described above, for example, so that water condensed on the fins of the internal evaporator 21 is frozen, but the second refrigeration circuit 32 is in the freezing temperature zone of water. Since it does not operate, it does not freeze even if condensation is formed on the fins of the internal evaporator 21. Therefore, the hot gas defrosting circuit 45 is not required according to the operating temperature zone, and the number of parts can be reduced.
 また、上記第2の実施形態において、第1の冷凍回路31の冷媒と第2の冷凍回路32の冷媒を異なるものに採用するとよい。例えば、第1の冷凍回路31では冷媒としてHFC―404Aを使用し、第2の冷凍回路32では冷媒としてHFO―1234YFを使用すればよい。上記のように第1の冷凍回路31を使用する庫内の温度帯12℃以下と、第2の冷凍回路32を使用する庫内の温度帯8℃以上とで、夫々適した冷媒を使用することで、効率の向上あるいは安定した冷却を図ることができる。 In the second embodiment, the refrigerant of the first refrigeration circuit 31 and the refrigerant of the second refrigeration circuit 32 may be different from each other. For example, HFC-404A may be used as the refrigerant in the first refrigeration circuit 31, and HFO-1234YF may be used as the refrigerant in the second refrigeration circuit 32. As described above, a suitable refrigerant is used in each of the temperature zone of 12 ° C. or less in the cabinet using the first refrigeration circuit 31 and the temperature zone of 8 ° C. or more in the cabinet using the second refrigeration circuit 32. Thus, efficiency can be improved or stable cooling can be achieved.
 また、第2の実施形態において、第1の冷凍回路31の冷媒量と第2の冷凍回路32の冷媒量を異なるようにしてもよい。上記のように第1の冷凍回路31を庫内の温度帯12℃以下で使用し、第2の冷凍回路32を庫内の温度帯8℃以上で使用する場合には、第1の冷凍回路31では庫内温度がすでに低下していることから、第1の冷凍回路31の冷媒量を第2の冷凍回路32の冷媒量よりも少なくするとよい。これにより、第1の冷凍回路31の冷却能力が低下するので、僅かな温度変化で目標温度に維持するような平衡制御に適した冷凍回路にすることができる。 In the second embodiment, the refrigerant amount of the first refrigeration circuit 31 and the refrigerant amount of the second refrigeration circuit 32 may be different. As described above, when the first refrigeration circuit 31 is used at a temperature zone of 12 ° C. or lower and the second refrigeration circuit 32 is used at a temperature zone of 8 ° C. or higher, the first refrigeration circuit is used. Since the internal temperature has already decreased at 31, the amount of refrigerant in the first refrigeration circuit 31 may be made smaller than the amount of refrigerant in the second refrigeration circuit 32. Thereby, since the cooling capacity of the 1st freezing circuit 31 falls, it can be set as the freezing circuit suitable for balance control which maintains at target temperature with a slight temperature change.
 なお、上記第1の実施形態及び第2の実施形態では、第1の冷凍回路31の循環路33において、庫内蒸発器21の下流側に庫外蒸発器38を配置しているが、庫内蒸発器21の上流側に庫外蒸発器38を配置してもよい。この場合、電子膨張弁37を、庫外蒸発器38と凝縮器36との間に配置してもよいし、庫外蒸発器38と凝縮器36との間、及び庫外蒸発器38と庫内蒸発器21との間に夫々配置してもよい。また、第2の実施形態の第2の冷凍回路32においても同様に、庫内蒸発器21の上流側に庫外蒸発器38を配置してもよい。 In the first embodiment and the second embodiment, the external evaporator 38 is disposed on the downstream side of the internal evaporator 21 in the circulation path 33 of the first refrigeration circuit 31. An external evaporator 38 may be arranged on the upstream side of the inner evaporator 21. In this case, the electronic expansion valve 37 may be disposed between the outside evaporator 38 and the condenser 36, between the outside evaporator 38 and the condenser 36, and between the outside evaporator 38 and the warehouse. You may arrange | position between the inner evaporators 21, respectively. Similarly, in the second refrigeration circuit 32 of the second embodiment, the external evaporator 38 may be arranged on the upstream side of the internal evaporator 21.
 また、本発明の温冷庫は、上記実施形態のように恒温槽や医薬品の保管庫だけではなく、環境試験装置や食肉等の熟成など精密な温度管理を必要とする温冷庫に広く適用することができる。 In addition, the hot and cold storage of the present invention is widely applied not only to a thermostatic bath and a medicine storage as in the above embodiment, but also to a hot and cold storage that requires precise temperature control such as aging of environmental test equipment and meat. Can do.
1        温冷庫
10       外箱(筐体)
20       電気ヒータ(加熱器)
21       庫内蒸発器(第1の庫内蒸発器、第2の庫内蒸発器)
31       第1の冷凍回路(第1の冷凍サイクル)
32       第2の冷凍回路(第2の冷凍サイクル)
33、34    循環路
35       圧縮機
38       庫外蒸発器
50       コントロールユニット(制御部)
51       庫内温度センサ(庫内温度検出器)
1 Hot and cold storage 10 Outer box (housing)
20 Electric heater (heater)
21 Internal evaporator (first internal evaporator, second internal evaporator)
31 First refrigeration circuit (first refrigeration cycle)
32 Second refrigeration circuit (second refrigeration cycle)
33, 34 Circulation path 35 Compressor 38 External evaporator 50 Control unit (control unit)
51 Internal temperature sensor (Internal temperature detector)

Claims (5)

  1.  物品を貯蔵するための庫室が内部に形成された筐体と、
     前記庫室の内部を冷却する第1の冷凍サイクルと、を有する温冷庫であって、
     前記第1の冷凍サイクルは、冷媒の循環路に、少なくとも、前記庫室の内部と熱交換して前記冷媒を蒸発させる第1の庫内蒸発器と、前記冷媒を圧縮する圧縮機と、前記圧縮機の上流側の前記循環路に配置され、前記庫室の外部と熱交換して前記冷媒を蒸発させる庫外蒸発器と、を設けて構成されることを特徴とする温冷庫。
    A housing in which a storage room for storing articles is formed;
    A first refrigeration cycle for cooling the interior of the storage room,
    The first refrigeration cycle includes, in the refrigerant circulation path, at least a first internal evaporator that exchanges heat with the interior of the storage chamber to evaporate the refrigerant, a compressor that compresses the refrigerant, A hot / cold refrigerator provided with an external evaporator disposed in the circulation path on the upstream side of the compressor and exchanging heat with the outside of the storage chamber to evaporate the refrigerant.
  2.  前記庫室の内部を加熱する加熱器を備えたことを特徴とする請求項1に記載の温冷庫。 The heating / cooling chamber according to claim 1, further comprising a heater for heating the inside of the storage room.
  3.  前記第1の冷凍サイクルとは異なる冷媒の循環路に、少なくとも、前記庫室の内部と熱交換して前記冷媒を蒸発させる第2の庫内蒸発器を設けて構成された第2の冷凍サイクルを備えたことを特徴とする請求項1または2に記載の温冷庫。 A second refrigeration cycle comprising a refrigerant circulation path different from that of the first refrigeration cycle, and at least a second internal evaporator that evaporates the refrigerant by exchanging heat with the interior of the warehouse. The hot / cold storage according to claim 1 or 2, characterized by comprising:
  4.  前記庫室の内部温度を検出する庫内温度検出器と、
     前記庫内温度検出器により検出した前記庫室の内部温度に基づいて、少なくとも一部が互いに異なる温度帯で前記第1の冷凍サイクル及び前記第2の冷凍サイクルを運転させる制御部と、を備えたことを特徴とする請求項3に記載の温冷庫。
    An internal temperature detector for detecting the internal temperature of the storage room;
    A controller that operates the first refrigeration cycle and the second refrigeration cycle in a temperature zone at least partially different from each other based on the internal temperature of the storage room detected by the internal temperature detector. The hot and cold storage according to claim 3.
  5.  前記第1の冷凍サイクルの前記循環路において、前記庫外蒸発器は前記第1の庫内蒸発器の下流に配置されることを特徴とする請求項1から4のいずれか1項に記載の温冷庫。 5. The apparatus according to claim 1, wherein the external evaporator is disposed downstream of the first internal evaporator in the circulation path of the first refrigeration cycle. 6. Hot and cold storage.
PCT/JP2019/017438 2018-04-24 2019-04-24 Hot/cold storage container WO2019208634A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018082702A JP2019190706A (en) 2018-04-24 2018-04-24 Hot/cold storage
JP2018-082702 2018-04-24

Publications (1)

Publication Number Publication Date
WO2019208634A1 true WO2019208634A1 (en) 2019-10-31

Family

ID=68295149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017438 WO2019208634A1 (en) 2018-04-24 2019-04-24 Hot/cold storage container

Country Status (2)

Country Link
JP (1) JP2019190706A (en)
WO (1) WO2019208634A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112902511A (en) * 2021-02-07 2021-06-04 中国地质科学院水文地质环境地质研究所 Bath lotion circulation low-temperature constant-temperature bath
CN112902512A (en) * 2021-02-07 2021-06-04 中国地质科学院水文地质环境地质研究所 Sleeve type condenser low-temperature constant-temperature system and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071457A (en) * 2005-09-07 2007-03-22 Ishikawajima Inspection & Instrumentation Co Air conditioning device for environmental test
JP2012237494A (en) * 2011-05-11 2012-12-06 Hoshizaki Electric Co Ltd Refrigerating device
JP2013148262A (en) * 2012-01-19 2013-08-01 Espec Corp Environmental control apparatus
JP2017015315A (en) * 2015-06-30 2017-01-19 ダイキン工業株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071457A (en) * 2005-09-07 2007-03-22 Ishikawajima Inspection & Instrumentation Co Air conditioning device for environmental test
JP2012237494A (en) * 2011-05-11 2012-12-06 Hoshizaki Electric Co Ltd Refrigerating device
JP2013148262A (en) * 2012-01-19 2013-08-01 Espec Corp Environmental control apparatus
JP2017015315A (en) * 2015-06-30 2017-01-19 ダイキン工業株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112902511A (en) * 2021-02-07 2021-06-04 中国地质科学院水文地质环境地质研究所 Bath lotion circulation low-temperature constant-temperature bath
CN112902512A (en) * 2021-02-07 2021-06-04 中国地质科学院水文地质环境地质研究所 Sleeve type condenser low-temperature constant-temperature system and using method thereof
CN112902512B (en) * 2021-02-07 2022-09-23 中国地质科学院水文地质环境地质研究所 Sleeve type condenser low-temperature constant-temperature system and using method thereof

Also Published As

Publication number Publication date
JP2019190706A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US9140479B2 (en) Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
US9810472B2 (en) Synchronous temperature rate control for refrigeration with reduced energy consumption
EP3435014B1 (en) Refrigerator and control method therefor
JP4867758B2 (en) refrigerator
AU2004282449B2 (en) Cooling storage
US9140477B2 (en) Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption
KR101140711B1 (en) Refrigerator and method for control operating thereof
US11226145B2 (en) Refrigerator and method for controlling a compressor based on temperature of storage compartment
US11268751B2 (en) Refrigerator and method for controlling the same
KR100560561B1 (en) Continuously operating type showcase
WO2019208634A1 (en) Hot/cold storage container
CN113286974B (en) Fast switching multiple evaporator system for appliances
KR102176725B1 (en) refrigerator
KR102617277B1 (en) Refrigerator and method for controlling the same
JP2019191841A (en) Temperature controller for warm/cold storage
JP6615354B2 (en) Freezer refrigerator
KR20120044556A (en) Refrigerator and control method thereof
JP2007232255A (en) Cooling apparatus and vending machine
JP4286106B2 (en) Freezer refrigerator
JP7438451B2 (en) Freezer refrigerator
US20230375255A1 (en) Refrigerator appliance with convertible compartment
JP2023110768A (en) Cooling device
KR102589265B1 (en) Refrigerator and method for controlling the same
JP2018004170A (en) Refrigerator
JP2002089981A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793721

Country of ref document: EP

Kind code of ref document: A1